Амортизирующие сосуды выполняют функцию
Структурно-функциональная организация кровеносной системы. Функциональная роль амортизирующих, резистивных, обменных и емкостных сосудов.
Подробности
Различные участки кровеносного русла имеют различные характеристики. Это позволяет участкам сосудистого русла выполнять функции амортизирующих, резистивных, обменных и емкостных сосудов.
Объемная скорость кровотока.
Объемная скорость кровотока (Q)- это количество крови, которое проходит через определенное суммарное сечение сосудов в единицу времени (обычно за одну минуту). Суммарный просвет сосудов постепенно увеличивается, включая капилляры, где он максимальный, а затем постепенно уменьшается. Однако, в полых венах он в 1,5-2 раза больше, чем в аорте.
Объемную скорость можно определить по формуле:
Q = (P1-P2) / W.
Иначе, объемная скорость (Q) равняется разности давлений крови в начальной и конечной части сосудистой системы (P1-P2), поделенной на сопротивление этого отдела сосудистой системы (W). Отсюда, чем больше разность давлений крови, и чем меньше сопротивление, тем больше объемная скорость. Однако, эту формулу для определения объемной скорости можно использовать только теоретически. Объемная скорость во всех суммарных сечениях сосудов одинакова и составляет у взрослого и здорового человека в состоянии покоя в среднем 4-5 литров крови за минуту.
Однако, это совсем не означает, что в различных участках одного сечения она одинакова, то есть в одном участке этого сечения она увеличивается (площадь поперечного сечения здесь соответственно уменьшается), то в других она соответственно уменьшается (следовательно, площадь поперечного сечения здесь возрастает). На этом основано перераспределение кровообращения в зависимости от функциональной нагрузки. Объемную скорость кровообращения за 1 минуту иначе можно назвать минутным объемом кровообращения (МОК). При физическом напряжении минутный объем кровообращения (МОК) увеличивается и может доходить до 30 литров крови. Если учесть, что объемная скорость и МОК – одна и та же величина, то практически для ее определения можно использовать все методы, которые применяются для оценки МОК, а именно методы Фика, индикаторный, Грольмана и др., о которых шла речь в подразделе “Физиология сердца”.
Линейная скорость кровотока.
Линейная скорость кровотока (V) оценивается расстоянием, которое проходит частица крови в единицу времени (секунда). Ее легко можно вычислить по формуле:
V = Q / P*r2
где Q – объемная скорость, (P*r2) – сечение сосуда (имеется в виду суммарный просвет сосудов соответствующего калибра). Как следует из формулы, линейная скорость находится в прямой зависимости от объемной скорости, и обратной зависимости – от сечения сосудов. Отсюда следует, что линейная скорость должна быть различной в разных сечениях сосудов. Так в состоянии покоя линейная скорость в аорте составляет 400-600 мм/с, в артериях среднего калибра – 200-300 мм/с, в артериолах – 8-10 мм/с, в капиллярах – 0,3-0,5 мм/с. Затем по ходу венозного кровотока линейная скорость постепенно возрастает, т. к. суммарный просвет сосудов уменьшается и в полых венах она доходит до 150-200 мм/с.
Естественно, что линейная скорость частиц крови, находящихся ближе к стенке сосудов, меньше, чем тех частиц, которые находятся в центре столба крови, а также линейная скорость во время систолы желудочков несколько больше, чем во время диастолы. Кроме того, в начальной части аорты она может уменьшаться или даже быть нулевой, т. к. при падении давления в левом желудочке, кровь естественно устремляется по направлению к сердечной мышце в силу разности давлений. При физической нагрузке линейная скорость увеличивается во всех сечениях сосудистой системы.
Определение | Артерии | Капилляры | Вены | |
Строение | Стенки аорты состоят преимущественно из эластических волокон | В состав стенок других артерий входят также и мышечные элементы, что делает возможным процесс нейрогуморальной регуляции их просвета | Стенка капилляра представляет собой слой эндотелиальных клеток, расположенных на базальной мембране | – В венах имеются клапаны – В стенках вен присутствуют как эластические, так и мышечные волокна |
Функция | Часть энергии систолы передается на стенки этих сосудов. Под давлением крови стенки растягиваются и за счет сокращений проталкивают кровь дальше по направлению к периферии | Объем кровотока в тканях корригируется «по потребности». Просвет артериальных сосудов может меняться, что, несомненно, сказывается на системном артериальном давлении | Питательные вещества и кислород диффундируют в ткани, а продукты клеточного метаболизма, в том числе и углекислый газ в кровеносное русло | – Обеспечивают ток крови только в одном направлении – Регулируют объем циркулирующей крови |
Аорта и крупные артерии | Амортизирующие (проводящие, распределительные) сосуды |
Мелкие артерии и артериолы | Сосуды сопротивления (резистивные сосуды), регулируют кровоснабжение тканей и уровень артериального давления |
Капилляры | Обменные сосуды |
Венулы и вены | Ёмкостные сосуды |
Источник
ФУНКЦИОНАЛЬНАЯ КЛАССИФИКАЦИЯ СОСУДОВ
1. Амортизирующие сосуды – аорта, легочная артерия и их крупные ветви, т.е. сосуды эластического типа.
Специфическая функция этих сосудов – поддержание движущей силы кровотока в диастолу желудочков сердца. Здесь сглаживается перепад давления между систолой, диастолой и покоем желудочков за счет эластических свойств стенки сосудов. В результате в период покоя давление в аорте поддерживается на уровне 80 мм рт.ст., что стабилизирует движущую силу, при этом эластические волокна стенок сосудов отдают накопленную во время систолы потенциальную энергию сердца и обеспечивают непрерывность тока крови и давление по ходу сосудистого русла. Эластичность аорты и легочной артерии смягчает также гидравлический удар крови во время систолы желудочков. Изгиб аорты повышает эффективность перемешивания крови (основное перемешивание, создание однородности транспортной среды происходят в сердце).
2. Сосуды распределения – средние и мелкие артерии мышечного типа регионов и органов; их функция – распределение потока крови по всем органам и тканям организма.
Вклад этих сосудов в общее сосудистое сопротивление небольшой и составляет 10- 20 %. При увеличении запроса ткани диаметр сосуда подстраивается к повышенному кровотоку в соответствии с изменением линейной скорости за счет эндотелийзависимого механизма. При увеличении скорости сдвига пристеночного слоя крови апикальная мембрана эндотелиоцитов деформируется, и они синтезируют оксид азота (NO), который снижает тонус гладких мышц сосуда, т.е. сосуд расширяется. Изменения сопротивления и пропускной способности этих сосудов модулируются нервной системой. Например, снижение активности симпатических волокон, иннервирующих позвоночные и внутренние сонные артерии, увеличивает мозговой кровоток на 30 %, а активация снижает кровоток на 20 %. По-видимому, в ряде случаев сосуды распределения могут стать лимитирующим звеном, препятствующим значительному увеличению кровотока в органе, несмотря на его метаболический запрос, например коронарные и мозговые сосуды, пораженные атеросклерозом. Предполагают, что нарушение эндотелийзависимого механизма, регулирующего соответствие между линейной скоростью кровотока и тонусом сосудов, в частности, в артериях ног может служить причиной развития гипоксии в мышцах нижних конечностей при нагрузках у лиц с облитерирую-щим эндартериитом.
3. Сосуды сопротивления. К ним относят артерии диаметром менее 100 мкм, артерио-лы, прекапиллярные сфинктеры, сфинктеры магистральных капилляров. На долю этих сосудов приходится около 50-60 % общего сопротивления кровотоку, с чем и связано их название. Сосуды сопротивления определяют кровоток системного, регионального и мик-роциркуляторного уровней. Суммарное сопротивление сосудов разных регионов формирует системное диастолическое артериальное давление, изменяет его и удерживает на определенном уровне в результате общих нейрогенных и гуморальных изменений тонуса этих сосудов. Разнонаправленные изменения тонуса сосудов сопротивления разных регионов обеспечивают перераспределение объемного кровотока между регионами. В регионе или органе они перераспределяют кровоток между работающими и неработающими микрорегионами, т.е. управляют микроциркуляцией. Наконец, сосуды сопротивления микрорегиона распределяют кровоток между обменной и шунтовой цепями, определяют количество функционирующих капилляров. Так, включение в работу одной ар-
териолы обеспечивает кровоток в 100 капиллярах.
4. Обменные сосуды – капилляры. Частично транспорт веществ происходит также в ар-териолах и венулах. Через стенку артериол легко диффундирует кислород (в частности, этот путь играет важную роль в снабжении кислородом нейронов мозга), а через люки венул (межклеточные поры диаметром 10- 20 нм) осуществляется диффузия из крови белковых молекул, которые в дальнейшем попадают в лимфу.
Гистологически, по строению стенки, выделяют три типа капилляров.
Сплошные (соматические) капилляры. Эн-дотелиоциты их лежат на базальной мембране, плотно прилегая друг к другу, межклеточные щели между ними имеют ширину 4- 5 нм (межэндотелиальные поры). Через поры такого диаметра проходят вода, водорастворимые неорганические и низкомолекулярные органические вещества (ионы, глюкоза, мочевина), а для более крупных водорастворимых молекул стенка капилляров является барьером (гистогематическим, гематоэнцефа-лическим). Этот тип капилляров представлен в скелетных мышцах, коже, легких, центральной нервной системе.
Окончатые (висцеральные) капилляры. От сплошных капилляров отличаются тем, что в эндотелиоцитах есть фенестры (окна) диаметром 20-40 нм и более, образованные в результате слияния апикальной и базальной фосфолипидных мембран. Через фенестры могут проходить крупные органические молекулы и белки, необходимые для деятельности клеток или образующиеся в результате нее. Капилляры этого типа находятся в слизистой оболочке желудочно-кишечного тракта, в почках, железах внутренней и внешней секреции.
Несплошные (синусоидные) капилляры. У них нет базальной мембраны, а межклеточные поры имеют диаметр до 10-15 нм. Такие капилляры имеются в печени, селезенке, красном костном мозге; они хорошо проницаемы для любых веществ и даже для форменных элементов крови, что связано с функцией соответствующих органов.
5. Шунтирующие сосуды. К ним относят артериоловенулярные анастомозы. Их функции – шунтирование кровотока. Истинные анатомические шунты (артериоловенулярные анастомозы) есть не во всех органах. Наиболее типичны эти шунты для кожи: при необходимости уменьшить теплоотдачу кровоток по системе капилляров прекращается и кровь (тепло) сбрасывается по шун-
там из артериальной системы в венозную. В других тканях функцию шунтов при определенных условиях могут выполнять магистральные капилляры и даже истинные капилляры (функциональное шунтирование). В этом случае также уменьшается транскапиллярный поток тепла, воды, других веществ и увеличивается транзитный перенос в венозную систему. В основе функционального шунтирования лежит несоответствие между скоростями конвективного и транскапиллярного потоков веществ. Например, в случае повышения линейной скорости кровотока в капиллярах некоторые вещества могут не успеть продиффундировать через стенку капилляра и с потоком крови сбрасываются в венозное русло; прежде всего это касается водорастворимых веществ, особенно медленно диффундирующих. Кислород также может шунтироваться при высокой линейной скорости кровотока в коротких капиллярах.
6. Емкостные (аккумулирующие) сосуды – это посткапиллярные венулы, венулы, мелкие вены, венозные сплетения и специализированные образования – синусоиды селезенки. Их общая емкость составляет около 50 % всего объема крови, содержащейся в сердечно-сосудистой системе. Функции этих сосудов связаны со способностью изменять свою емкость, что обусловлено рядом морфологических и функциональных особенностей емкостных сосудов. Посткапиллярные венулы образуются при объединении нескольких капилляров, диаметр их около 20 мкм, они в свою очередь объединяются в венулы диаметром 40-50 мкм. Венулы и вены широко анастомозируют друг с другом, образуя венозные сети большой емкости. Емкость их может меняться пассивно под давлением крови в результате высокой растяжимости венозных сосудов и активно, под влиянием сокращения гладких мышц, которые имеются в венулах диаметром 40-50 мкм, а в более крупных сосудах образуют непрерывный слой.
В замкнутой сосудистой системе изменение емкости одного отдела влияет на объем крови в другом, поэтому изменения емкости вен влияют на распределение крови во всей системе кровообращения, в отдельных регионах и микрорегионах. Емкостные сосуды регулируют наполнение («заправку») сердечного насоса, а следовательно, и сердечный выброс. Они демпфируют резкие изменения объема крови, направляемой в полые вены, например, при ортоклиностатических перемещениях человека, осуществляют времен-
ное (за счет снижения скорости кровотока в емкостных сосудах региона) или длительное (синусоиды селезенки) депонирование крови, регулируют линейную скорость органного кровотока и давление крови в капиллярах микрорегионов, т.е. влияют на процессы диффузии и фильтрации.
Венулы и вены богато иннервированы симпатическими волокнами. Перерезка нервов или блокада адренорецепторов приводят к расширению вен, что может существенно увеличить площадь поперечного сечения, а значит и емкость венозного русла, которая может возрастать на 20 %. Эти изменения свидетельствуют о наличии нейрогенного тонуса емкостных сосудов. При стимулировании адренергических нервов из емкостных сосудов изгоняется до 30 % объема крови, содержащейся в них, емкость вен уменьшается. Пассивные изменения емкости вен могут возникать при сдвигах трансмурального давления, например, в скелетных мышцах после интенсивной работы, в результате снижения тонуса мышц и отсутствия их ритмической деятельности; при переходе из положения лежа в положение стоя под влиянием гравитационного фактора (при этом увеличивается емкость венозных сосудов ног и брюшной полости, что может сопровождаться падением системного АД).
Временное депонирование связано с перераспределением крови между емкостными сосудами и сосудами сопротивления в пользу емкостных и снижением линейной скорости циркуляции. В состоянии покоя до 50 % объема крови функционально выключено из кровообращения: в венах подсосочкового сплетения кожи может находиться до 1 л крови, в печеночных – 1 л, в легочных – 0,5 л. Длительное депонирование – это депонирование крови в селезенке в результате функционирования специализированных образований – синусоидов (истинных депо), в которых кровь может задерживаться на длительное время и по мере необходимости выбрасываться в кровоток.
7. Сосуды возврата крови в сердце – это средние, крупные и полые вены, выполняющие роль коллекторов, через которые обеспечиваются региональный отток крови, возврат ее к сердцу. Емкость этого отдела венозного русла составляет около 18 % и в физиологических условиях изменяется мало (на величину менее ‘/5 от исходной емкости). Вены, особенно поверхностные, могут увеличивать объем содержащейся в них крови за счет способности стенок к растяжению при повышении трансмурального давления.
Соседние файлы в папке КРОВООБРАЩЕНИЕ
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Источник
Это аорта, лёгочная артерия и их крупные ветви, то есть сосуды эластического типа.
Специфическая функция этих сосудов – поддержание движущей силы кровотока в диастолу желудочков сердца. Здесь сглаживается перепад давления между систолой, диастолой и покоем желудочков за счёт эластических свойств стенки сосудов. В результате в период покоя давление в аорте поддерживается на уровне 80 мм рт.ст., что стабилизирует движущую силу, при этом эластические волокна стенок сосудов отдают накопленную во время систолы потенциальную энергию сердца и обеспечивают непрерывность тока крови и давление по ходу сосудистого русла. Эластичность аорты и лёгочной артерии смягчает также гидравлический удар крови во время систолы желудочков. Изгиб аорты повышает эффективность перемешивания крови (основное перемешивание, создание однородности транспортной среды происходят в сердце).
Сосуды распределения
Это средние и мелкие артерии мышечного типа регионов и органов; их функция – распределение потока крови по всем органам и тканям организма. Вклад этих сосудов в общее сосудистое сопротивление небольшой и составляет 10-20 %. При увеличении запроса ткани диаметр сосуда подстраивается к повышенному кровотоку в соответствии с изменением линейной скорости за счёт эндотелийзависимого механизма. При увеличении скорости сдвига пристеночного слоя крови апикальная мембрана эндотелиоцитов деформируется, и они синтезируют оксид азота (NO), который снижает тонус гладких мышцсосуда, то есть сосуд расширяется. Изменения сопротивления и пропускной способности этих сосудов модулируются нервной системой. Например, снижение активности симпатических волокон, иннервирующих позвоночные и внутренние сонные артерии, увеличивает мозговой кровоток на 30 %, а активация снижает кровоток на 20 %. По-видимому, в ряде случаев сосуды распределения могут стать лимитирующим звеном, препятствующим значительному увеличению кровотока в органе, несмотря на метаболический запрос, например коронарные и мозговые сосуды, поражённые атеросклерозом. Предполагают, что нарушение эндотелийзависимого механизма, регулирующего соответствие между линейной скоростью кровотока и тонусом сосудов, в частности, в артериях ног может служить причиной развития гипоксии в мышцах нижних конечностей при нагрузке у лиц с облитерирующим эндартериитом.
Сосуды сопротивления
К ним относят артерии диаметром меньше 100 мкм, артериолы, прекапиллярные сфинктеры, сфинктеры магистральных капилляров. На долю этих сосудов приходится около 50-60 % общего сопротивления кровотоку, с чем и связано их название. Сосуды сопротивления определяют кровоток системного, регионального и микроциркуляторногоуровня. Суммарное сопротивление сосудов разных регионов формирует системное диастолическое артериальное давление, изменяет его и удерживает на определённом уровне в результате общих нейрогенных и гуморальных изменений тонуса этих сосудов. Разнонаправленные изменения тонуса сосудов сопротивления разных регионов обеспечивают перераспределение объёмного кровотока между регионами. В регионе или в органе они перераспределяют кровоток между работающими и неработающими микрорегионами, то есть управляют микроциркуляцией. Наконец, сосуды сопротивления микрорегиона распределяют кровоток между обменной и шунтовой цепями, определяют количество функционирующих капилляров. Так, включение в работу одной артериолы обеспечивает кровоток в 100 капиллярах.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Источник