Анатомия сосудов и капилляров

Анатомия сосудов и капилляров thumbnail

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 22 января 2019; проверки требуют 12 правок.

Капилля́р (от лат. capillaris – волосяной) является самым тонким сосудом в организме человека и других животных. Средний диаметр капилляра составляет 5-10 мкм. Соединяя артерии и вены, он участвует в обмене веществ между кровью и тканями.

Строение[править | править код]

Стенки капилляров состоят из одного слоя клеток эндотелия. Толщина этого слоя настолько мала, что позволяет проходить обмену веществ между тканевой жидкостью и плазмой крови через стенки капилляров. Продукты, образующиеся в результате жизнедеятельности организма (такие как диоксид углерода и мочевина), также могут проходить через стенки капилляров для транспортировки их к месту выведения из организма. На проницаемость капиллярной стенки оказывают влияние цитокины. Стенки капилляров высоко проницаемы для всех растворенных в плазме крови низкомолекулярных веществ. Чтобы преодолеть огромное сопротивление выбросу воды и солей во внеклеточный матрикс через проницаемые стенки капилляров, в артериальных сосудах за счёт их вазомоций накапливается энергия крови, давлением которой с каждым сердечным циклом происходит гидравлический удар, вышибающий «пробку» в капиллярах из деформированных эритроцитов в посткапилляры и воды во внеклеточный матрикс. Именно эта картина описана в книге «Механика кровообращения»[1]: «ускорение крови в начале фазы изгнания происходит очень быстро: картина такая, как если бы по столбу крови нанесли удар молотком» – это и есть пульсовый удар, ощущаемый в сосудах всего тела.

Общая площадь поперечных сечений капилляров человека – 50 м², это в 25 раз больше поверхности тела, всего их насчитывается 100-160 млрд капилляров. Суммарная длина капилляров среднестатистического взрослого человека составляет приблизительно 100 000 км[2].

Функции[править | править код]

В функции капилляра входит перенос питательных веществ, сигнальных веществ (гормонов) и других соединений. В некоторых случаях крупные молекулы могут быть слишком велики для диффузии через эндотелий, и для их переноса используются механизмы эндоцитоза и экзоцитоза.

В механизме иммунного ответа клетки эндотелия выставляют молекулы-рецепторы на своей поверхности, задерживая иммунные клетки и помогая их последующему переходу во внесосудистое пространство к очагу инфекции или иного повреждения.

Объём фильтрации через общую обменную поверхность капилляров организма составляет около 60 л/мин или примерно 85 000 л/сут. При этом давление в начале артериальной части капилляра 37,5 мм рт. ст. – эффективное давление составляет около (37,5−28) = 9,5 мм рт. ст. – давление в конце венозной части капилляра, направленное наружу капилляра, 20 мм рт. ст. – эффективное реабсорбционное давление около (20−28) = −8 мм рт. ст.

Виды[править | править код]

Существует три вида капилляров:

Непрерывные капилляры[править | править код]

Межклеточные соединения в этом виде капилляров очень плотные, что позволяет диффундировать только малым молекулам и ионам.

Фенестрированные капилляры[править | править код]

В их стенке встречаются просветы для проникновения крупных молекул. Фенестрированные капилляры встречаются в кишечнике, эндокринных железах и других внутренних органах (почки), где происходит интенсивный транспорт веществ между кровью и окружающими тканями.

Синусоидные капилляры (синусоиды)[править | править код]

В стенке этих капилляров содержатся щели (синусы), величина которых достаточна для выхода вне просвета капилляра эритроцитов и крупных молекул белка. Синусоидные капилляры есть в печени, лимфоидной ткани, эндокринных и кроветворных органах, таких, как костный мозг и селезёнка. Синусоиды в печеночных дольках содержат клетки Купфера, способные захватывать и уничтожать инородные тела.

Примечания[править | править код]

Литература[править | править код]

  • Волосные сосуды // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). – СПб., 1890-1907.

Источник

Благодаря сети мельчайших кровеносных сосудов каждая клетка организма получает необходимые ей кислород и питательные вещества.

Капилляры – мельчайшие кровеносные сосуды, пронизывающие все ткани и органы человеческого организма. По капиллярам кровь поступает к каждой клетке тела и доставляет ей кислород и питательные вещества, необходимые для жизни. Из клеток в кровь переходят продукты жизнедеятельности, которые в дальнейшем переносятся к другим органам или удаляются из организма. Обмен веществ между кровью и клетками тела может происходить только через стенку капилляров, поэтому их можно назвать главными элементами кровеносной системы. При расстройстве кровотока по капиллярам, изменении их стенки клетки тела будут испытывать голод, что постепенно приведет к нарушению их деятельности и даже гибели.

Артериолы и венулы

Капилляры – самые многочисленные и самые тонкие сосуды, их диаметр составляет в среднем 7-8 мкм. Капилляры широко соединяются (анастомозируют) между собой, образуя внутри органов сети (между доставляющими органам кровь артериями и выносящими кровь венами). Тонкие артерии, по которым кровь поступает в капиллярные сети, – это артериолы, а выносящие кровь мелкие вены – венулы. Артериолы, особенно те, от которых непосредственно ответвляются капилляры (прекапиллярные артериолы), регулируют поступление крови в капиллярные сети. Суживаясь или расширяясь, они перекрывают или, наоборот, возобновляют течение крови по капиллярам. Именно поэтому прекапиллярные артериолы называют кранами сердечно-сосудистой системы. Венулы вместе с более крупными венами выполняют емкостную функцию – удерживают имеющуюся в органе кровь.

Шунты

Есть сосуды, напрямую связывающие артериолы и венулы, – артериоловенулярные анастомозы (шунты). По ним кровь сбрасывается из артериального русла в венозное, минуя капиллярные сети. Значение артериоловенулярных анастомозов возрастает в неработающем, отдыхающем органе, когда нет необходимости в усиленном обмене веществ и большая часть поступившей крови без захода в капиллярные сети направляется дальше.

Микроциркуляция

Капилляры, артериолы и венулы относятся к микрососудам, т. е. сосудам с диаметром менее 200 мкм. Движение крови по ним получило название микроциркуляции, а сами микрососуды – микроциркуляторного русла. Микроциркуляции придается большое значение в создании оптимальных режимов работающих органов, а в случае ее нарушения – в развитии патологического процесса. Ежесуточно по кровеносным сосудам протекает 8000-9000 л крови. Благодаря постоянной циркуляции крови поддерживается необходимая концентрация веществ в тканях, что нужно для нормального течения обменных процессов и поддержания постоянства внутренней среды организма (гомеостаз).

Строение капилляра

Стенка капилляра состоит из одного слоя эндотелиальных клеток, снаружи от которых лежит базальная мембрана. Стенка капилляра представляет собой естественный биологический фильтр, через который осуществляются переход питательных веществ, воды и кислорода из крови в ткани и обратное – из тканей в кровь – поступление продуктов обмена. Современные методы исследования, в частности электронная микроскопия, свидетельствуют, что стенка капилляра – не пассивная перегородка и существуют специальные пути активного транспорта веществ через нее. В переносе веществ участвуют стыки между эндотелиальными клетками, специальные поры, пронизывающие наиболее тонкие участки стенки капилляров кишечника, почек, эндокринных желез, и пузырьки для переноса жидкостей, имеющиеся внутри эндотелиальных клеток в стенке капилляров большинства органов.

История изучения капиллярной сети

Хотя кровеносные капилляры были открыты М. Мальпиги еще в 1661 году, серьезное их исследование началось только в ХХ веке и привело к возникновению учения о микроциркуляции крови. Идея об исключительном значении капилляров в удовлетворении потребностей тканей в притоке крови была высказана А. Крогом, который за свои исследования в 1920 году был удостоен Нобелевской премии.

Собственно термин «микроциркуляция» стал употребляться только с 1954 года, когда в США состоялась первая научная конференция ученых, занимающихся капиллярным кровотоком. В России огромный вклад в изучение микроциркуляции внесли академики А. М. Чернух, В. В. Куприянов и созданные ими научные школы. Благодаря современным техническим достижениям, связанным с внедрением компьютерных и лазерных технологий, стало возможным исследовать микроциркуляцию в прижизненных условиях и широко использовать результаты в клинической практике для диагностики нарушений и мониторинга успешности лечения.

Читайте также:  Удаление сосудов на лице лазером купон

Особенности строения микроциркуляторного русла

Трудности изучения микрососудов на протяжении десятилетий были связаны с чрезвычайно малыми их размерами и сильной разветвленностью капиллярных сетей. Наиболее узкие капилляры находятся в скелетных мышцах и нервах – диаметр их составляет 4,5-6,5 мкм. В этих органах обмен веществ очень интенсивен. Более широкие капилляры имеют кожа и слизистые оболочки – 7-11 мкм. Самые широкие капилляры (синусоиды) расположены в костях, печени и железах, где их диаметр достигает 20-30 мкм.

Длина капилляров варьирует в различных органах от 100 до 400 мкм. Однако если все капилляры, имеющиеся в теле человека, вытянуть в одну линию, то их длина составит около 10 000 км. Такая колоссальная протяженность капилляров создает чрезвычайно большую обменную поверхность их стенки – около 2500-3000 кв. м, что примерно в 1500 раз превышает поверхность тела. Количество капилляров в разных органах неодинаково. Густота их расположения связана с интенсивностью работы органа. Например, в сердечной мышце на 1 кв. мм поперечного сечения приходится до 5500 капилляров, в скелетных мышцах – около 1400, а в коже всего 40 капилляров.

В настоящее время точно установлено, что разные органы имеют характерные особенности строения микроциркуляторного русла (количество, диаметр, плотность и взаимное расположение микрососудов, характер их ветвления и т. п.), обусловленные спецификой работы органа. При этом в большинстве случаев микроциркуляторное русло состоит из повторяющихся модулей, каждый из которых обслуживает свой участок органа. Это позволяет быстро приспосабливать кровоснабжение органа к изменениям его функционирования. Усложнение строения микроциркуляторного русла органов происходит постепенно, вместе с ростом и развитием человеческого организма. Нарастание количества микрососудов приурочено ко времени интенсивного увеличения массы органа, а структурное созревание (оформление модулей) микроциркуляторного русла завершается к моменту окончательного полового созревания (к 15-17 годам).

Функциональные характеристики капиллярной сети

Общая емкость капиллярного русла составляет 25-30 л, тогда как объем крови в теле человека равен 5 л. Поэтому большая часть капилляров периодически выключается из кровотока. У человека в условиях покоя одновременно открыто только 20-35% капилляров. В мышце при спокойном состоянии заполнено кровью не более 40% капилляров. При физических нагрузках в кровоток включаются почти все капилляры работающей мышцы. Капилляры сами не способны изменять свой просвет. Как уже было сказано, кровоток в них регулируется посредством сужения или расширения приносящих кровь артериол и использования артериоловенулярных анастомозов. Наблюдения свидетельствуют, что в органах постоянно происходит замена одних функционирующих капилляров другими. Высокая изменчивость кровотока в капиллярах – необходимое условие приспособления микроциркуляторной системы к потребностям органов и тканей в доставке питательных веществ.

Особенности кровотока в капиллярах

Поскольку емкость капиллярного русла очень большая, это ведет к значительному замедлению тока крови в капиллярах. Скорость движения крови по капиллярам колеблется от 0,3 до 1 мм/с, тогда как в крупных артериях она достигает 80-130 мм/с. Медленный кровоток обеспечивает наиболее полный обмен веществ между кровью и тканями. При движении крови ее клетки (эритроциты) выстраиваются в капилляре в один ряд, поскольку их радиус приблизительно равен радиусу капилляра. Значение такого приспособления становится понятно, если вспомнить, что кислород переносится эритроцитами и его передача клеткам органов будет происходить наиболее эффективно, если эритроциты наилучшим образом соприкасаются со стенкой капилляра. При движении по капиллярам эритроциты легко деформируются, поэтому даже наиболее узкие капилляры не являются для них препятствием. В отличие от эритроцитов другие клетки крови (лимфоциты) с трудом преодолевают узкие участки капиллярного русла и могут на какое-то время закупоривать просвет капилляра.

При значительном снижении скорости капиллярного кровотока эритроциты могут склеиваться между собой и образовывать агрегаты по типу монетных столбиков из 25-50 эритроцитов. Крупные агрегаты могут полностью закупорить капилляр и вызвать в нем остановку крови. Усиление агрегации эритроцитов происходит при различных заболеваниях.

Регулирование микроциркуляции крови

Как же происходит регуляция микроциркуляции? Во-первых, микрососуды реагируют на растяжение: при повышении давления крови артериолы суживаются и ограничивают приток крови в капилляры, при снижении давления расширяются. Во-вторых, к наиболее крупным из микрососудов (но не к капиллярам) подходят симпатические нервы, при раздражении которых происходит сужение крупных артериол и венул. В-третьих, микрососуды очень чувствительны к растворенным в крови вазоактивным веществам и реагируют даже на такую их концентрацию, которая в 10-100 раз меньше необходимой для сужения или расширения крупных сосудов. Так, кожные сосуды проявляют высокую чувствительность к адреналину (полное закрытие просвета артериол происходит при его ничтожной концентрации в крови – кожные покровы бледнеют), в то время как микрососуды внутренних органов гораздо менее чувствительны, а микрососуды скелетных мышц и сердца при действии адреналина могут расширяться. Ионы калия, кальция, натрия, а также вещества, накапливающиеся в тканях при их интенсивной деятельности, приводят к расширению микрососудов. Наибольшей чувствительностью к действию вазоактивных веществ обладают прекапиллярные артериолы, наименьшей – крупные артериолы и венулы.

Диагностика расстройств микроциркуляции крови

Актуальные для современной клинической практики оценка состояния микроциркуляции и диагностика ее расстройств при самых различных заболеваниях можно сделать с помощью таких методов, как капилляроскопия кожи и слизистых оболочек, биомикроскопия сосудов конъюнктивы, лазерная допплеровская флоуметрия. Состояние микроциркуляции в любом участке тела с большой степенью точности дает возможность судить о ее состоянии в организме в целом.

Ранними признаками нарушений капиллярного кровотока являются сужение артериол, застойные явления в венулах, приводящие к их расширению и значительной извитости, а также снижение интенсивности кровотока в капиллярах. На более поздних стадиях выявляется распространенная внутрисосудистая агрегация эритроцитов, что неизбежно влечет за собой остановку кровотока в капиллярах. Финал микроциркуляторных расстройств – стаз, т. е. полная блокада кровотока и резкое нарушение барьерной функции микрососудов, что нередко сопровождается кровоизлияниями – выходом эритроцитов через стенку капилляров, которые являются наиболее ранимыми. Артериоловенулярные анастомозы более устойчивы к расстройствам микроциркуляции и проявляют тенденцию к сохранению кровотока даже в условиях распространения стаза на значительную часть микроциркуляторного русла.

Расстройства микроциркуляции лежат в основе большого числа заболеваний, поэтому при их лечении необходимо восстановление функций микрососудов с помощью различных лекарственных средств.

Автор: Ольга Гурова, кандидат биологических наук, старший научный сотрудник, доцент кафедры анатомии человека РУДН

Источник

Капилляры (лат. capillaris волосной) – самые тонкостенные сосуды микроциркуляторного русла, по к-рым движется кровь и лимфа. Различают кровеносные и лимфатические капилляры (рис. 1).

Рис. 1. Микроциркуляторное русло фиброзной капсулы почки: кровеносные (1) и лимфатические (2) капилляры. Микроскопический препарат, импрегнированный азотистокислым серебром; X 120.

Рис. 1. Микроциркуляторное русло фиброзной капсулы почки: кровеносные (1) и лимфатические (2) капилляры. Микроскопический препарат, импрегнированный азотистокислым серебром; X 120.

Онтогенез

Клеточные элементы стенки капилляров и клетки крови имеют единый источник развития и возникают в эмбриогенезе из мезенхимы. Однако общие закономерности развития кровеносных и лимфатических Капилляров в эмбриогенезе изучены еще недостаточно. На протяжении онтогенеза кровеносные Капилляры постоянно меняются, что выражается в запустевании и облитерации одних Капилляров и новообразовании других. Возникновение новых кровеносных К. происходит путем выпячивания («почкования») стенки ранее образовавшихся К. Этот процесс происходит при усилении функции того или иного органа, а также при реваскуляризации органов. Процесс выпячивания сопровождается делением эндотелиальных клеток и увеличением размеров «почки роста». При слиянии растущего К. со стенкой предсуществующего сосуда происходит перфорация эндотелиальной клетки, расположенной на верхушке «почки роста», и соединение просветов обоих сосудов. Эндотелий капилляров, образующихся путем почкования, не имеет межэндотелиальных контактов и называется «бесшовным». К старости строение кровеносных К. существенно меняется, что проявляется уменьшением числа и размеров капиллярных петель, увеличением расстояния между ними, появлением резко извитых К., в которых сужения просвета чередуются с выраженными расширениями (Старческий варикоз, по Д. А. Жданову), а также значительным утолщением базальных мембран, дистрофией эндотелиальных клеток и уплотнением соединительной ткани, окружающей К. Эта перестройка вызывает снижение функций газообмена и питания тканей.

Читайте также:  Краснодарский край лечение сосудов

Кровеносные капилляры имеются во всех органах и тканях, они являются продолжением артериол, прекапиллярных артериол (прекапилляров) или, чаще, боковыми ветвями последних. Отдельные К., объединяясь между собой, переходят в посткапиллярные венулы (посткапилляры). Последние, сливаясь друг с другом, дают начало собирательным венулам, выносящим кровь в более крупные венулы. Исключением из этого правила у человека и млекопитающих являются синусоидные (с широким просветом) К. печени, расположенные между приносящими и выносящими венозными микрососудами, и клубочковые К. почечных телец, расположенные по ходу приносящих и выносящих артериол.

Кровеносные К. впервые обнаружил в легких лягушки М. Мальпиги в 1661 г.; спустя 100 лет Спалланцани (L. Spallanzani) нашел К. и у теплокровных животных. Открытие капиллярных путей транспорта крови завершило создание научно обоснованных представлений о замкнутой системе кровообращения, заложенных У. Гарвеем. В России начало систематическому изучению К. положили исследования Н. А. Хржонщевского (1866), А. Е. Голубева (1868), А. И. Иванова (1868), М. Д. Лавдовспого (1870). Существенный вклад в изучение анатомии и физиологии К. внес дат. физиолог А. Крог (1927). Однако наибольшие успехи в изучении структурно-функциональной организации К. были достигнуты во второй половине 20 в., чему способствовали многочисленные исследования, выполненные в СССР Д. А. Ждановым с сотр. в 1940-1970 гг., В. В. Куприяновым с сотр. в 1958-1977 гг., А. М. Чернухом с сотр. в 1966-1977 гг., Г. И. Мчедлишвили с сотр. в 1958- 1977 гг. и др., а за рубежом – Лендисом (E. М. Landis) в 1926-1977 гг., Цвейфахом (В. Zweifach) в 1936-1977 гг., Ренкином (E. М. Renkin) в 1952- 1977 гг., Паладе (G.E. Palade) в 1953- 1977 гг., Касли-Смитом (Т. R. Casley-Smith) в 1961-1977 гг., Видерхильмом (С. A. Wiederhielm) в 1966-1977 гг. и др.

Кровеносным К. принадлежит существенная роль в системе кровообращения; они обеспечивают транскапиллярный обмен – проникновение растворенных в крови веществ из сосудов в ткани и обратно. Неразрывная связь гемодинамической и обменной (метаболической) функций кровеносных К. находит выражение в их строении. По данным микроскопической анатомии, К. имеют вид узких трубок, стенки которых пронизаны субмикроскопическими «порами». Капиллярные трубки бывают относительно прямыми, изогнутыми или закрученными в клубочек. Средняя длина капиллярной трубки от прекапиллярной артериолы до посткапиллярной венулы достигает 750 мкм, а площадь поперечного сечения- 30 мкм2. Калибр К. в среднем соответствует диаметру эритроцита, однако в разных органах внутренний диаметр К. колеблется от 3-5 до 30-40 мкм.

Рис. 2. Схематическое изображение строения стенки кровеносного капилляра: 1 — эндотелиальная оболочка; 2 — базальная оболочка, состоящая из базальной мембраны (3) и перицитов (4), в просвете капилляра видны эритроциты (5).

Рис. 2. Схематическое изображение строения стенки кровеносного капилляра: 1 – эндотелиальная оболочка; 2 – базальная оболочка, состоящая из базальной мембраны (3) и перицитов (4), в просвете капилляра видны эритроциты (5).

Рис. 3. Электронограмма фрагмента стенки кровеносного капилляра из околоушной слюнной железы: I — часть эритроцита в просвете капилляра; II — эндотелиоцит (1 — цитоплазма, 2 — микропиноцитозные везикулы); III — базальная мембрана; IV — перицит, расположенный в толще базальной мембраны (3 — цитоплазма, 4 — ядро, 5 — контакт отростка перицита с эндотелиоцитом).

Рис. 3. Электронограмма фрагмента стенки кровеносного капилляра из околоушной слюнной железы: I – часть эритроцита в просвете капилляра; II – эндотелиоцит (1 – цитоплазма, 2 – микропиноцитозные везикулы); III – базальная мембрана; IV – перицит, расположенный в толще базальной мембраны (3 – цитоплазма, 4 – ядро, 5 – контакт отростка перицита с эндотелиоцитом).

Рис. 4. Электронограмма элементов стенки кровеносных капилляров: а — внутримозговой капилляр (1 — гликопротеидовое покрытие, 2 — эндотелиоцит); х 60 000; б — межклеточный контакт в эндотелиальной оболочке гломерулярного капилляра почки (1 — цитоплазма соседних эндотелиоцитов, 2 — контактирующие цитолеммы, 3 - межмембранный промежуток); х 90 000; в и г — гломерулярные капилляры почки (1 - открытые фенестры; 2 — диафрагмальные фенестры в цитоплазме эндотелиоцитов); X 70 000; д — стенка синусоидного капилляра печени (1 — прерывистый контакт между смежными эндотелиоцитами 2); х 35 000.

Рис. 4. Электронограмма элементов стенки кровеносных капилляров: а – внутримозговой капилляр (1 – гликопротеидовое покрытие, 2 – эндотелиоцит); х 60 000; б – межклеточный контакт в эндотелиальной оболочке гломерулярного капилляра почки (1 – цитоплазма соседних эндотелиоцитов, 2 – контактирующие цитолеммы, 3 – межмембранный промежуток); х 90 000; в и г – гломерулярные капилляры почки (1 – открытые фенестры; 2 – диафрагмальные фенестры в цитоплазме эндотелиоцитов); X 70 000; д – стенка синусоидного капилляра печени (1 – прерывистый контакт между смежными эндотелиоцитами 2); х 35 000.

Как показали электронно-микроскопические наблюдения, стенка кровеносного К., часто называемая капиллярной мембраной, состоит из двух оболочек: внутренней – эндотелиальной и наружной – базальной. Схематическое изображение строения стенки кровеносного К. представлено на рисунке 2, более детальное – на рисунках 3 и 4.

Эндотелиальная оболочка образована уплощенными клетками – эндотелиоцитами (см. Эндотелий). Число эндотелиоцитов, ограничивающих просвет К., обычно не превышает 2-4. Ширина эндотелиоцита колеблется от 8 до 19 мкм и длина – от 10 до 22 мкм. В каждом эндотелиоците выделяют три зоны: периферическую, зону органелл, ядросодержащую зону. Толщина этих зон и их роль в обменных процессах различны. Половину объема эндотелиоцита занимают ядро и органеллы – пластинчатый комплекс (комплекс Гольджи), митохондрии, зернистая и незернистая сеть, свободные рибосомы и полисомы. Органеллы сконцентрированы вокруг ядра, вместе с к-рым составляют трофический центр клетки. Периферическая зона эндотелиоцитов выполняет в основном обменные функции. В цитоплазме этой зоны располагаются многочисленные микропиноцитозные везикулы и фенестры (рис. 3 и 4). Последние представляют собой субмикроскопические (50-65 нм) отверстия, которые пронизывают цитоплазму эндотелиоцитов и бывают перекрыты истонченной диафрагмой (рис. 4, в, г), являющейся дериватом клеточной мембраны. Микропиноцитозные везикулы и фенестры, участвующие в трансэндотелиальном переносе макромолекул из крови в ткани и обратно, в физиологии называют крупными «норами». Каждый эндотелиоцит покрыт снаружи тончайшим слоем продуцируемых им гликопротеидов (рис. 4, а), последние играют немаловажную роль в поддержании постоянства микросреды, окружающей клетки эндотелия, и в адсорбции веществ, транспортируемых через них. В эндотелиальной оболочке соседние клетки объединяются с помощью межклеточных контактов (рис. 4, б), состоящих из цитолемм смежных эндотелиоцитов и межмембранных промежутков, заполненных гликопротеидами. Эти промежутки в физиологии чаще всего отождествляют с мелкими «порами», через которые проникают вода, ионы и белки с низким молекулярным весом. Пропускная способность межэндотелиальных промежутков различна, что объясняется особенностями их строения. Так, в зависимости от толщины интерцеллюлярной щели различают межэндотелиальные контакты плотного, щелевого и прерывистого типов. В плотных контактах интерцеллюлярная щель на значительном протяжении полностью облитерирована благодаря слиянию цитолемм смежных эндотелиоцитов. В щелевых контактах величина наименьшего расстояния между мембранами соседних клеток колеблется между 4 и 6 нм. В прерывистых контактах толщина межмембранных промежутков достигает 200 нм и более. Межклеточные контакты последнего типа в физиологической литературе также отождествляют с крупными «порами».

Базальная оболочка стенки кровеносного К. состоит из клеточных и неклеточных элементов. Неклеточный элемент представлен базальной мембраной (см.), окружающей эндотелиальную оболочку. Большинство исследователей рассматривает базальную мембрану как своеобразный фильтр толщиной 30-50 нм с размерами пор, равными – 5 нм, в к-ром сопротивление проникновению частиц возрастает с увеличением диаметра последних. В толще базальной мембраны расположены клетки – перициты; их называют адвентициальными клетками, клетками Руже, или интрамуральными перицитами. Перициты имеют вытянутую форму и изогнуты в соответствии с внешним контуром эндотелиальной оболочки; они состоят из тела и многочисленных отростков, которые оплетают эндотелиальную оболочку К. и, проникая через базальную мембрану, вступают в контакты с эндотелиоцитами. Роль этих контактов, так же как и функции перицитов, достоверно не выяснена. Высказано предположение об участии перицитов в регуляции роста эндотелиальных клеток К.

Читайте также:  Лазерное удаление сосудов на лице самара

Морфологические и функциональные особенности кровеносных капилляров

Кровеносные Капилляры разных органов и тканей обладают типовыми особенностями строения, что связано со спецификой функции органов и тканей. Принято различать три типа К.: соматический, висцеральный и синусоидный. Стенка кровеносных капилляров соматического типа характеризуется непрерывностью эндотелиальном и базальной оболочек. Как правило, она малопроницаема для крупных молекул белка, но легко пропускает воду с растворенными в ней кристаллоидами. К. такой структуры обнаружены в коже, скелетной и гладкой мускулатуре, в сердце и коре полушарий большого мозга, что соответствует характеру обменных процессов в этих органах и тканях. В стенке К. висцерального типа имеются окошки – фенестры. К. висцерального типа характерны для тех органов, которые секретируют и всасывают большие количества воды и растворенных в ней веществ (пищеварительные железы, кишечник, почки) или же участвуют в быстром транспорте макромолекул (эндокринные железы). К. синусоидного типа обладают большим просветом (до 40 мкм), что сочетается с прерывистостью их эндотелиальной оболочки (рис. 4, д) и частичным отсутствием базальной мембраны. К. этого типа обнаружены в костном мозге, печени и селезенке. Показано, что через их стенки легко проникают не только макромолекулы (напр., в печени, к-рая продуцирует основную массу белков плазмы крови), но и клетки крови. Последнее характерно для органов, участвующих в процессе кроветворения.

Стенка К. имеет не только общую природу и тесную морфол, связь с окружающей соединительной тканью, но связана с ней и функционально. Поступающая из кровеносного русла через стенку К. в окружающую ткань жидкость с растворенными в ней веществами и кислород переносятся рыхлой соединительной тканью ко всем остальным тканевым структурам. Следовательно, перикапиллярная соединительная ткань как бы дополняет собой микроциркуляторное русло. Состав и физ.-хим. свойства этой ткани в значительной мере определяют условия транспорта жидкости в тканях.

Сеть К. является значительной рефлексогенной зоной, посылающей к нервным центрам различные импульсы. По ходу К. и окружающей их соединительной ткани находятся чувствительные нервные окончания. По-видимому, среди последних значительное место занимают хеморецепторы, сигнализирующие о состоянии обменных процессов. Эффекторные нервные окончания у К. в большинстве органов не обнаружены.

Сеть Капилляров, образованная трубками малого калибра, где суммарные показатели поперечного сечения и площади поверхности значительно превалируют над длиной и объемом, создает наиболее благоприятные возможности для адекватного сочетания функций гемодинамики и транскапиллярного обмена. Характер транскапиллярного обмена (см. Капиллярное кровообращение) зависит не только от типовых особенностей строения стенок К.; не меньшее значение в этом процессе принадлежит связям между отдельными К. Наличие связей свидетельствует об интеграции К., а следовательно, и о возможности различного сочетания их функц, активности. Основной принцип интеграции К.- объединение их в определенные совокупности, составляющие единую функциональную сеть. Внутри сети положение отдельных К. неодинаково по отношению к источникам доставки крови и ее оттока (т. е. к прекапиллярным артериолам и посткапиллярным венулам). Эта неоднозначность выражается в том, что в одной совокупности К. связаны между собой последовательно, благодаря чему устанавливаются прямые коммуникации между приносящими и выносящими микро-сосудами, а в другой совокупности К. располагаются параллельно по отношению к К. указанной выше сети. Такие топографические различия К. обусловливают неоднородность распределения потоков крови в сети.

Рис. 5. Схематическое изображение строения стенки лимфатического капилляра с элементами окружающей соединительной ткани; 1 — эндотелиоцит; 2 — просвет лимфатического капилляра; 3 — коллагеновые протофибриллы соединительной ткани; 4—«якорные» филаменты; 5 — соединительная ткань.

Рис. 5. Схематическое изображение строения стенки лимфатического капилляра с элементами окружающей соединительной ткани; 1 – эндотелиоцит; 2 – просвет лимфатического капилляра; 3 – коллагеновые протофибриллы соединительной ткани; 4-«якорные» филаменты; 5 – соединительная ткань.

Рис. 6. Электронограмма элементов стенки лимфатических капилляров и окружающей их соединительной ткани: а — эндотелиоцит (стрелками указаны микропиноцитозные везикулы); х 20 000; б — «якорные» филаменты (1), фиксирующие эндотелиоцит (2) к окружающим его коллагеновым протофибриллам (3); х 50 000; в и г — цитоплазма эндотелиоцитов (1 — лизосома, 2 — остаточное тельце); X 60 000.

Рис. 6. Электронограмма элементов стенки лимфатических капилляров и окружающей их соединительной ткани: а – эндотелиоцит (стрелками указаны микропиноцитозные везикулы); х 20 000; б – «якорные» филаменты (1), фиксирующие эндотелиоцит (2) к окружающим его коллагеновым протофибриллам (3); х 50 000; в и г – цитоплазма эндотелиоцитов (1 – лизосома, 2 – остаточное тельце); X 60 000.

Лимфатические капилляры

Лимфатические капилляры (рис. 5 и 6) представляют собой систему замкнутых с одного конца эндотелиальных трубок, которые выполняют дренажную функцию – участвуют во всасывании из тканей фильтрата плазмы и крови (жидкости с растворенными в ней коллоидами и кристаллоидами), некоторых форменных элементов крови (лимфоцитов, эритроцитов), участвуют также в фагоцитозе (захват инородных частиц, бактерий). Лимф. К. отводят лимфу через систему интра- и экстраорганных лимф, сосудов в главные лимфатические коллекторы – грудной проток и правый лимфатический проток (см. Лимфатическая система). Лимф. К. пронизывают ткани всех органов, за исключением головного и спинного мозга, селезенки, хрящей, плаценты, а также хрусталика и склеры глазного яблока. Диаметр их просвета достигает 20-26 мкм, а стенка, в отличие от кровеносных К., представлена лишь резко уплощенными эндотелиоцитами (рис. 5). Последние примерно в 4 раза крупнее, чем эндотелиоциты кровеносных К. В клетках эндотелия, кроме обычных органелл и микропиноцитозных везикул, встречаются лизосомы и остаточные тельца – внутриклеточные структуры, возникающие в процессе фагоцитоза, что объясняется участием лимф. К. в фагоцитозе. Другая особенность лимф. К. заключается в наличии «якорных», или «стройных», филаментов (рис. 5 и 6), осуществляющих фиксацию их эндотелия к окружающим К. коллагеновым протофибриллам. В связи с участием в процессах всасывания межэндотелиальные контакты в их стенке имеют различное строение. В период интенсивной резорбции ширина межэндотелиальных щелей увеличивается до 1 мкм.

Методы исследования капилляров

При изучении состояния стенок Капилляров, формы капиллярных трубок и пространственных связей между ними широко используют инъекционные и безынъекционные методики, различные способы реконструкции К., трансмиссионную и растровую электронную микроскопию (см.) в сочетании с методами морфометрического анализа (см. Морфометрия медицинская) и математического моделирования; для прижизненного исследования К. в клинике применяют микроскопию (см. Капилляроскопия).

Патологию К. – см. статьи Воспаление; Капиллярное кровообращение; Микроциркуляция, патология; Отек; Проницаемость.

Библиография: Алексеев П. П. Болезни мелких артерий, капилляров и артериовенозных анастомозов, Л., 1975, библиогр.; Казначеев В. П. и Дзизинский А. А. Клиническая патология транскапиллярного обмена, М., 1975, библиогр.; Куприянов В. В., Караганов Я. Л. и Козлов В. И. Микроциркуляторное русло, М., 1975, библиогр.; Фолков Б. и Нил Э. Кровообращение, пер. с англ., М., 1976; Чернух А. М., Александров П. Н. иАлексеев О. В. Микроциркуляции, М., 1975, библиогр.; Шахламов В. А. Капилляры, М., 1971, библиогр.; Шошенко К. А. Кровеносные капилляры, Новосибирск, 1975, библиогр.; Hammersen F. Anatomie der terminalen Strombahn, Miinchen, 1971; Krоgh A. Anatomie und Physiologie der Capillaren, B. u. a., 1970, Bibliogr.; Microcirculation, ed. by G. Kaley a. B. M. Altura, Baltimore a. o., 1977; Simionescu N., Simionescu M. a. Palade G. E. Permeability of muscle capillaries to small heme peptides, J. cell. Biol., v. 64, p. 586, 1975; Zweifach B. W. Microcirculation, Ann. Rev. Physiol., v. 35, p. 117, 1973, bibliogr.

Я. Л. Караганов.

Источник