Ангиотензин действие на сосуды

АНГИОТЕНЗИН (синоним ангиотонин) — биологически активный октапептид, повышающий артериальное давление; в организме образуется из α2-глобулина крови под влиянием ренина.
При дефиците натрия в организме и уменьшении кровоснабжения почек в кровь выделяется образующийся в юкстагломерулярном аппарате ренин (см.). Будучи протеиназой, он действует на α2-глобулин крови (гипертензиноген), отщепляя декапептид, называемый ангиотензином I. Под влиянием пептидазы от молекулы физиологически неактивного ангиотензина I отщепляются две аминокислоты (гистидин и лейцин) и образуется октапептид-ангиотензин II. Большая часть этих превращений происходит в то время, когда кровь проходит через легкие. Ангиотензин быстро разрушается ангиотензиназами (аминопептидазы и другие) путем отщепления аминокислот со стороны N — конца молекулы пептида. Время полураспада ангиотензина 1—2 минуты. Ангиотензиназы обнаружены во многих тканях, однако наиболее значительное их количество содержится в эритроцитах. Кроме того, существует механизм захвата ангиотензина органными сосудами.
Эти взаимодействующие между собой биологически активные вещества образуют ренин-ангиотензинную систему, принимающую участие в регуляции водно-солевого обмена и кровообращения.
Аминокислотный состав ангиотензина установлен Скеггсом (L. Т. Skeggs, 1956). Последовательность аминокислот в молекуле ангиотензина установлена Пейджем (J. H. Page).
Синтез тождественного естественному ангиотензину был осуществлен Аракавои и Бампесом (К. Arakawa. F. M. Bumpus, 1961). Ангиотензин растворим в воде, в ледяной уксусной кислоте и этиленгликоле, но плохо растворяется в этиловом спирте и не растворяется в эфире, хлороформе и амилалкоголе; разрушается в щелочной среде и в биологических жидкостях, содержащих ангиотензиназы; обладает слабой иммунологической активностью.
Синтезированы физиологически активные аналоги ангиотензина: валин-5-ангиотензин II, изолейцин-5-ангиотензин II и другие. Прессорная активность ангиотензина зависит от наличия в его структуре ароматического кольца, карбоксильной группы фенил-аланина, фенольной группы тирозина, наличия пролина в седьмой позиции цепи пептида и специфической гексапептидной трехмерной структуры.
По силе вазоконстрикторного действия ангиотензина значительно превосходит норадреналин и, в отличие от последнего, не вызывает выброса крови из депо. Это объясняется наличием чувствительных к ангиотензину рецепторов только в прекапиллярных артериолах, которые расположены в организме неравномерно. Поэтому действие ангиотензина на сосуды различных областей неодинаково. Системный прессорный эффект сопровождается уменьшением кровотока в почках, кишечнике и коже и увеличением его в мозге, сердце и надпочечниках. Изменения кровотока в мышцах незначительны. Усиление работы сердца является вторичным результатом изменения гемодинамики, однако в опытах на папиллярной мышце показано незначительное прямое усиливающее действие ангиотензина на сердце. Большие дозы ангиотензина могут вызывать сужение сосудов сердца и мозга.
Ангиотензин действует на сердечно-сосудистую систему и опосредованно через нервную систему и эндокринные железы. Ангиотензин увеличивает секрецию адреналина и норадреналина надпочечниками, усиливает вазоконстрикторные симпатические эффекты и реакции на экзогенный норадреналин. Описаны системные адренергические реакции в результате прямого действия на нервные центры.
Действие ангиотензина на мускулатуру кишечника уменьшается в результате блокады холинергических механизмов атропином и усиливается ингибиторами холинэстеразы. Вероятно, некоторые так называемые опосредованные через нервную систему реакции на ангиотензин являются по своей природе контррегуляторными и возникают в результате системных или регионарных изменений кровообращения.
Основные сердечно-сосудистые реакции на ангиотензин возникают в результате его прямого действия на гладкую мускулатуру сосудов. Прессорное действие ангиотензина сохраняется после блокады альфа- и бета-адренорецепторов, после перерезки блуждающих нервов, денервации каротидного синуса, хотя величина реакций может несколько изменяться. Прессорное действие ангиотензина усиливается после двусторонней нефрэктомии, что обусловлено устранением трехкомпонентной ингибирующей системы. Один из компонентов этой системы — лизофосфолипид — ингибирует образование ангиотензина и вызывает снижение артериального давления.
Влияние нервной системы на образование ангиотензина в крови может осуществляться через изменения артериального давления, тонуса сосудов почек и, возможно, в результате прямых нервных влияний на секрецию ренина. Адренергические нервы оканчиваются вблизи клеток юкстагломерулярного аппарата.
Ангиотензин является стимуляторам секреции альдостерона (см.). Стимулирующее действие ангиотензина на секрецию альдостерона установлено прямыми экспериментами с введением ангиотензина в сосуды перфузируемого надпочечника и добавлением к срезам надпочечников.
Стимуляция синтеза глюкокортикоидов незначительна либо отсутствует. Действие ангиотензина на секрецию альдостерона и водно-солевой обмен, вероятно, является физиологически более важным, чем действие на гладкую мускулатуру сосудов, и проявляется в дозах, не вызывающих изменений артериального давления. В связи с этим имеются основания рассматривать ренин-ангиотензинную систему как ренин-ангиотензин-альдостеронную систему.
Ангиотензин принимает участие в регуляции водно-солевого обмена, контролируя уровень секреции альдостерона и функцию почек. Ангиотензин вызывает сокращение афферентных сосудов почек, сокращение мышц лоханки вокруг прямых почечных канальцев и повышение внутриканальцевого давления, снижает почечный кровоток и выделение воды и натрия. Такого рода реакции характерны для человека и некоторых животных (собаки). Однако у крыс, кроликов и некоторых других животных ангиотензин вызывает повышение выделения воды и натрия. Действие ангиотензина на кровообращение и функцию почек может изменяться в зависимости от уровня секреции кортикостероидов, водно-солевого баланса, артериального давления и от дозы препарата. При циррозе печени, тяжелых формах недостаточности кровообращения с асцитом и артериальной гипертензией ангиотензин усиливает диурез и выделение натрия.
Секреция ренина и альдостерона возрастает во время ортостатической пробы (см.). Введение специфических к ангиотензину антител вызывает временную гипотензию, что также свидетельствует об участии ангиотензина в регуляции артериального давления в физиологических условиях. Его физиологические свойства послужили основанием для предположения об участии ангиотензина в патогенезе артериальных гипертензий. Однако активность ренина и содержание ангиотензина в крови больных гипертонической болезнью не изменены. Ангиотензин принимает участие в патогенезе почечной гипертензий, сердечных отеков и нарушений водно-солевого обмена. При гипотонических состояниях (шок, коллапс) активность ренина повышается больше, чем активность разрушающих ангиотензин ангиотензиназ.
Ангиотензин в крови определяют биологическими и радиоиммунологическими методами [Ю. А. Серебровская, И. А. Учитель, 1970; Джонстон (С. Johnston), 1971).
В клинической практике для лечения острых гипотонических состояний (коллапс, травматический, кардиогенный и геморрагический шок и другое) применяется ангиотензинамид (см.), синтетический препарат из группы ангиотензинов.
Синтетические аналоги ангиотензина вызывают перекрестную тахифилаксию (см.), выраженную в различной степени, что, возможно, объясняется неодинаковым их сродством к рецепторной системе. Способность ангиотензина вызывать тахифилаксию относительно невелика, однако она может использоваться в качестве дифференциально-диагностической пробы. При реноваскулярной гипертензий введение ангиотензина вызывает меньшее повышение артериального давления, чем при артериальных гипертензиях с нормальным содержанием ангиотензина в крови. Проба имеет относительное значение.
Библиография: Вихерт А. М. и Ушкалов А. Ф. Различные аспекты физиологического действия ангиотензина, Кардиология, т. 11, № 3. с. 143, 1971; Крикштопайтис М. И. Вазоактивные полипептиды в клинической практике, Тер. арх., т. 39, № 12, с. 12, 1967, библиогр.; Лиелайс Я. П. и Чипенс Г. И. Система ренин — ангиотснзин и ее функции в организме, в кн.: Хим. и биол. пептидов, под ред. X. М. Маркова, с 113, Рига, 1971, библиогр.; Марков X. М. Действие ренина и ангиотензина на сердечно-сосудистую систему, Пат. физиол. и эксперим. тер., т. 14, № 4, с. 78, 1970, библиогр.; Марков X. М. и Иванова И. А. Иммунологическая активность ренина и ангиотензина, Урол. и нефрол., № 1, с. 62, 1971, библиогр.; Merrifield R. B. Peptide hormones, Recent Progr. Hormone Res., v. 23, p. 451, 1967, bibliogr.; Whelan R. F., Seroop G. S. a. Walsh J. A. Cardiovascular actions of angiotensin in man, Amer. Heart J., v. 77, p. 546, 1969, bibliogr.
А. И. Хомазюк.
Источник
Ангиотензин – это пептидный гормон, который вызывает сужение кровеносных сосудов (вазоконстрикцию), повышение артериального давления, а также высвобождение альдостерона из коры надпочечников в кровеносное русло.
Ангиотензин способствует повышению артериального давления за счет сужения кровеносных сосудов
Ангиотензин играет значимую роль в ренин-ангиотензин-альдостероновой системе, которая является главной целью лекарственных средств, снижающих артериальное давление.
Основной механизм действия антагонистов рецепторов ангиотензина 2 связан с блокадой АТ1-рецепторов, за счет чего устраняется неблагоприятное воздействие ангиотензина 2 на тонус сосудов и нормализуется повышенное артериальное давление.
Уровень ангиотензина в крови повышается при почечной гипертензии и новообразованиях почек, продуцирующих ренин, а понижается при обезвоживании организма, синдроме Конна и удалении почки.
Синтез ангиотензина
Предшественником ангиотензина является ангиотензиноген – белок класса глобулинов, который относится к серпинам и вырабатывается преимущественно печенью.
Выработка ангиотензина 1 происходит под влиянием на ангиотензиноген ренина. Ренин – протеолитический фермент, который относится к наиболее значимым почечным факторам, принимающим участие в регуляции артериального давления, при этом сам он прессорными свойствами не обладает. Ангиотензин 1 также не обладает вазопрессорной активностью и быстро превращается в ангиотензин 2, который является наиболее мощным из всех известных прессорных факторов. Превращение ангиотензина 1 в ангиотензин 2 происходит за счет удаления С-концевых остатков под воздействием ангиотензинпревращающего фермента, который присутствует во всех тканях организма, однако больше всего синтезируется в легких. Последующее расщепление ангиотензина 2 обусловливает образование ангиотензина 3 и ангиотензина 4.
Помимо этого, способностью образовывать ангиотензин 2 из ангиотензина 1 обладают тонин, химазы, катепсин G и другие сериновые протеазы, что является так называемым альтернативным путем образования ангиотензина 2.
Ренин-ангиотензин-альдостероновая система
Ренин-ангиотензин-альдостероновая система – это гормональная система, которая обеспечивает регуляцию артериального давления и объема циркулирующей в организме крови.
Лекарственные средства, действующие путем блокады ангиотензиновых рецепторов, были созданы в ходе изучения ингибиторов ангиотензина 2, которые способны блокировать его образование или действие и таким образом снижать активность ренин-ангиотензин-альдостероновой системы.
Ренин-ангиотензин-альдостероновый каскад начинается с синтеза препроренина путем трансляции рениновой мРНК в юкстагломерулярных клетках афферентных артериол почек, где из препроренина, в свою очередь, образуется проренин. Значительная часть последнего путем экзоцитоза выбрасывается в кровоток, однако часть проренина превращается в ренин в секреторных гранулах юкстагломерулярных клеток, затем также выделяясь в кровеносное русло. По этой причине в норме объем циркулирующего в крови проренина значительно выше концентрации активного ренина. Контроль выработки ренина является определяющим фактором активности ренин-ангиотензин-альдостероновой системы.
Ренин регулирует синтез ангиотензина 1, не обладающего биологической активностью и выступающего прекурсором ангиотензина 2, служащего сильным вазоконстриктором прямого действия. Под его влиянием происходит сужение кровеносных сосудов и последующее повышение кровяного давления. Также он имеет протромботический эффект – регулирует адгезию и агрегацию тромбоцитов. Кроме того, ангиотензин 2 потенциирует высвобождение норадреналина, повышает выработку адренокортикотропного гормона и антидиуретического гормона, способен вызывать чувство жажды. За счет повышения давления в почках и сужения эфферентных артериол ангиотензин 2 увеличивает скорость гломерулярной фильтрации.
Задача ренин-ангиотензин-альдостероновой системы – регуляция артериального давления
Ангиотензин 2 оказывает свое действие на клетки организма через рецепторы ангиотензина (АТ-рецепторы) разных типов. Наибольшее сродство ангиотензин 2 имеет к АТ1-рецепторам, которые локализуются преимущественно в гладкой мускулатуре кровеносных сосудов, сердце, некоторых областях мозга, печени, почках, коре надпочечников. Период полураспада ангиотензина 2 составляет 12 минут. Ангиотензин 3, формирующийся из ангиотензина 2, обладает 40% его активности. Период полураспада ангиотензина 3 в кровотоке составляет примерно 30 секунд, в тканях организма – 15–30 минут. Ангиотензин 4 является гексопептидом и схож по своим свойствам с ангиотензином 3.
Продолжительное повышение концентрации ангиотензина 2 приводит к уменьшению чувствительности клеток к инсулину с высоким риском развития сахарного диабета второго типа.
Ангиотензин 2 и внеклеточный уровень ионов калия относятся к наиболее значимым регуляторам альдостерона, который является важным регулятором баланса калия и натрия в организме и играет значимую роль в контроле объема жидкостей. Он увеличивает реабсорбцию воды и натрия в дистальных извитых канальцах, собирательных трубках, слюнных и потовых железах, толстом кишечнике, вызывая экскрецию ионов калия и водорода. Повышенная концентрация альдостерона в крови приводит к задержке в организме натрия и усиленному выделению калия с мочой, то есть к снижению уровня данного микроэлемента в сыворотке крови (гипокалиемия).
Читайте также:
6 основных причин повышенного артериального давления
Боремся с гипертонией: 5 лучших народных средств
10 интересных фактов о глазах и зрении
Повышенный уровень ангиотензина
При длительном увеличении концентрации ангиотензина 2 в крови и тканях повышается образование коллагеновых волокон и развивается гипертрофия гладкомышечных клеток кровеносных сосудов. В результате стенки кровеносных сосудов утолщаются, уменьшается их внутренний диаметр, что приводит к повышению артериального давления. Помимо этого, происходит истощение и дистрофия клеток сердечной мышцы с их последующей гибелью и замещением соединительной тканью, что является причиной развития сердечной недостаточности.
Длительный спазм и гипертрофия мышечного слоя кровеносных сосудов обусловливают ухудшение кровоснабжения органов и тканей, в первую очередь головного мозга, сердца, почек, зрительного анализатора. Продолжительный недостаток кровоснабжения почек приводит к их дистрофии, нефросклерозу и формированию почечной недостаточности. При недостаточном кровоснабжении головного мозга наблюдаются нарушения сна, эмоциональные расстройства, снижение интеллекта, памяти, шум в ушах, головная боль, головокружение и пр. Ишемия сердца может осложняться стенокардией, инфарктом миокарда. Недостаточное кровоснабжение сетчатки глаза приводит к прогрессирующему снижению остроты зрения.
Ренин регулирует синтез ангиотензина 1, не обладающего биологической активностью и выступающего прекурсором ангиотензина 2, служащего сильным вазоконстриктором прямого действия.
Продолжительное повышение концентрации ангиотензина 2 приводит к уменьшению чувствительности клеток к инсулину с высоким риском развития сахарного диабета второго типа.
Блокаторы ангиотензина 2
Блокаторы ангиотензина 2 (антагонисты ангиотензина 2) – это группа лекарственных средств, снижающих артериальное давление.
Лекарственные средства, действующие путем блокады ангиотензиновых рецепторов, были созданы в ходе изучения ингибиторов ангиотензина 2, которые способны блокировать его образование или действие и таким образом снижать активность ренин-ангиотензин-альдостероновой системы. К таким веществам относятся ингибиторы синтеза ринина, ингибиторы образования ангиотензиногена, ингибиторы ангиотензинпревращающего фермента, антагонисты ангиотензиновых рецепторов и пр.
Блокаторы (антагонисты) рецепторов ангиотензина 2 – это группа гипотензивных лекарственных средств, которая объединяет препараты, модулирующие функционирование ренин-ангиотензин-альдостероновой системы через взаимодействие с ангиотензиновыми рецепторами.
Блокаторы ангиотензина применяются для понижения артериального давления
Основной механизм действия антагонистов рецепторов ангиотензина 2 связан с блокадой АТ1-рецепторов, за счет чего устраняется неблагоприятное воздействие ангиотензина 2 на тонус сосудов и нормализуется повышенное артериальное давление. Прием препаратов данной группы обеспечивает продолжительный антигипертензивный и органопротекторный эффект.
В настоящее время продолжаются клинические исследования, посвященные изучению эффективности и безопасности блокаторов рецепторов ангиотензина 2.
Видео с YouTube по теме статьи:
Нашли ошибку в тексте? Выделите ее и нажмите Ctrl + Enter.
Источник
Ангиотензин II и вазопрессин. Эндотелин и брадикинин
Ангиотензин II. Ангиотензин II обладает мощным сосудосуживающим действием. Всего одна миллионная часть грамма этого вещества способна увеличить артериальное давление в организме человека на 50 мм рт. ст. и более.
Сосудосуживающее влияние ангиотензина II особенно сильно сказывается на мелких арте-риолах. Благодаря этому в изолированном участке ткани кровоток резко снижается. Однако физиологическое значение ангиотензина II заключается в том, что сужение артериол во всех участках сосудистой системы приводит к повышению общего периферического сопротивления и, следовательно, к повышению артериального давления. Таким образом, этот гормон играет важную интегративную роль в регуляции артериального давления.
Вазопрессин. Вазопрессин, или так называемый антидиуретический гормон, также является сосудосуживающим гормоном — даже более эффективным, чем ангиотензин II. Он образуется в головном мозге, в нервных клетках гипоталамуса, затем по аксонам нервных клеток транспортируется в заднюю долю гипофиза, где в результате секретируется в кровь.
Очевидно, что вазопрессин мог бы оказывать значительное влияние на функции кровообращения. Однако в норме секретируется очень небольшое количество вазопрессина, поэтому большинство физиологов полагают, что вазопрессин не играет существенной роли в регуляции кровообращения. Тем не менее, экспериментальные исследования показали, что концентрация вазопрессина в крови после тяжелой кровопотери возрастает настолько, что вызывает увеличение артериального давления на 60 мм рт. ст. и практически возвращает его к нормальному уровню.
Важной функцией вазопрессина является усиление реабсорбции воды из почечных канальцев в кровоток или, другими словами, регуляция объема жидкости в организме, поэтому гормон имеет второе название — антидиуретический гормон.
Эндотелин – мощный сосудосуживающий фактор в поврежденных кровеносных сосудах. Наряду с ангиотензином и вазопрессином обнаружен еще один эффективный сосудосуживающий фактор — эндотелии. Это пептид, состоящий из 21 аминокислоты, небольшое количество которого (несколько на-нограммов) вызывает мощное сосудосуживающее действие.
Этот пептид присутствует в эндотелиальных клетках практически всех кровеносных сосудов. Однако он выделяется только при повреждении эндотелия, вызванного травмой или инъекцией повреждающих агентов в кровь. Местное высвобождение эндотелина и последующая вазоконстрикция предотвращают кровотечение из артерий диаметром до 5 мм при травматическом разрыве сосудов.
Брадикинин. Группа веществ, называемых кининами, вызывает значительное расширение сосудов при поступлении в кровь или тканевую жидкость ряда органов и тканей.
Кинины представляют собой короткие полипептиды, которые появляются в крови или тканевой жидкости в результате расщепления альфа2-глобулинов протеолитическими ферментами. Важнейшим протеолитическим ферментом в данном случае является калликреин, присутствующий в крови и тканевой жидкости в неактивной форме. Он активируется при изменении нормального состава крови, развитии воспалительного процесса в тканях, а также под действием других химических или физических факторов. Активный калликреин воздействует на альфа2-глобулины и вызывает появление кинина, называемого каллидином, который затем под действием тканевых ферментов превращается в брадикинин. Брадикинин действует только в течение нескольких минут. Его инактивация происходит при участии фермента карбоксипептидазы, называемой также превращающим ферментом. Интересно отметить, что этот же фермент играет исключительно важную роль в активации ангиотензина. Затем активный калликреин разрушается под действием ингибитора калликреина, также присутствующего во всех жидкостях организма.
Брадикинин вызывает как значительное расширен ие артериол, так и увеличение проницаемости капилляров. Так, например, инъекция 1 мкг брадикинина в плечевую артерию человека вызывает увеличение кровотока в верхней конечности по меньшей мере в 6 раз. Еще меньшее количество брадикинина, введенное в ткани местно, вызывает местную гиперемию и отек, т.к. происходит увеличение проницаемости капиллярной стенки.
Полагают, что именно кинины играют специфическую роль в регуляции кровотока и выхода жидкости из капиллярного русла в очаге воспаления. Полагают также, что брадикинин является естественным фактором, который участвует в регуляции кровотока в сосудистой системе кожи, а также слюнных желез и желез желудочно-кишечного тракта.
– Также рекомендуем “Влияние ионов на сосуды. Нервная регуляция кровообращения”
Оглавление темы “Регуляция кровоснабжения”:
1. Различия в кровоснабжении разных органов и тканей. Механизмы регуляции кровотока
2. Вазодилататорная и гипоксическая теория регуляции кровотока в органах и тканях
3. Реактивная гиперемия. Активная гиперемия
4. Метаболическая и миогенная регуляция кровотока. Краткосрочная регуляция кровотока
5. Эндотелиальный сосудорасширяющий фактор. Долговременная регуляция местного кровотока
6. Васкуляризация тканей. Формирование и рост новых кровеносных сосудов
7. Коллатеральное кровообращение. Гуморальная регуляция кровообращения
8. Ангиотензин II и вазопрессин. Эндотелин и брадикинин
9. Влияние ионов на сосуды. Нервная регуляция кровообращения
10. Парасимпатическая регуляция кровообращения. Сосудодвигательный центр головного мозга
Источник