Артерии сосуды микроциркуляторного русла

Сосуды микроциркуляторного русла. Артериолы. Прекапилляры. Посткапилляры. Венулы.По мере уменьшения калибра артерий все оболочки их стенок становятся тоньше. Артерии постепенно переходят в артериолы, с которых начинается микроциркуляторное сосудистое русло (МЦР). Через стенки его сосудов осуществляется обмен веществ между кровью и тканями, поэтому микроциркуляторное русло именуется обменным звеном сосудистой системы. Постоянно происходящий обмен воды, ионов, микро- и макромолекул между кровью, тканевой средой и лимфой, представляет собой процесс микроциркуляции, от состояния которого зависит поддержание постоянства внутритканевого и внутриорганного гомеостаза. В составе МЦР различают артериолы, прекапилляры (прекапиллярные артериолы), гемокапилляры, посткапилляры (посткапиллярные венулы) и венулы. Артериолы — мелкие сосуды диаметром 50-100 мкм, постепенно переходящие в капилляры. Основная функция артериол — регулирование притока крови в основное обменное звено МЦР — гемокапилляры. В их стенке еще сохраняются все три оболочки, свойственные более крупным сосудам, хотя они и становятся очень тонкими. Внутренний просвет артериол выстлан эндотелием, под которым лежат единичные клетки подэндотелиального слоя и тонкая внутренняя эластическая мембрана. В средней оболочке спиралевидно располагаются гладкие миоциты. Они образуют всего 1-2 слоя. Гладкие мышечные клетки имеют непосредственный контакт с эндотелиоцитами, благодаря наличию перфораций во внутренней эластической мембране и в базальной мембране эндотелия. Эндотелио-миоцитарные контакты обеспечивают передачу сигналов от эндотелиоцитов, воспринимающих изменение концентраций биологически активных соединений, регулирующих тонус артериол, на гладкомышечные клетки. Характерным для артериол является также наличие миомиоцитарных контактов, благодаря которым артериолы выполняют свою роль “кранов сосудистой системы” (Сеченов И.М.). Артериолы обладают выраженной сократительной активностью, называемой вазомоцией. Наружная оболочка артериол чрезвычайно тонка и сливается с окружающей соединительной тканью. Прекапилляры (прекапиллярные артериолы) — тонкие микрососуды (диаметром около 15 мкм), отходящие от артериол и переходящие в гемокапилляры. Их стенка состоит из эндотелия, лежащего на базальной мембране, гладкомышечных клеток, расположенных поодиночке и наружных адвентициальных клеток. В местах отхождения от прекапиллярных артериол кровеносных капилляров имеются гладкомышечные сфинктеры. Последние регулируют приток крови к отдельным группам гемокапилляров и при отсутствии выраженной функциональной нагрузки на орган большая часть прекапиллярных сфинктеров закрыта. В области сфинктеров гладкие миоциты формируют несколько циркулярных слоев. Эндотелиоциты имеют большое количество хеморецепторов и образуют множество контактов с миоцитами. Эти особенности строения позволяют прекапиллярным сфинктерам реагировать на действие биологически активных соединений и изменять приток крови в гемокапилляры. Гемокапилляры. Наиболее тонкостенные сосуды микроциркуляторного русла, по которым кровь транспортируется из артериального звена в венозное. Из этого правила есть исключения: в клубочках почек гемокапилляры располагаются между приносящими и выносящими артериолами. Такие атипично расположенные кровеносные капилляры образуют сети, называемые чудесными. Функциональное значение гемокапилляров чрезвычайно велико. Они обеспечивают направленное движение крови и обменные процессы между кровью и тканями. По диаметру гемокапилляры подразделяются на узкие (5-7 мкм), широкие (8-12 мкм), синусоидные (20-30 мкм и более с меняющимся по ходу диаметром) и лакуны. Стенка кровеносных капилляров состоит из клеток — эндотелиоцитов и перицитов, а также неклеточного компонента — базальной мембраны. Снаружи капилляры окружены сетью ретикулярных волокон. Внутренняя выстилка гемокапилляров образована однослойным пластом плоских эндотелиоцитов. Стенку капилляра в поперечнике образуют от одной до четырех клеток. Эндотелиоциты имеют полигональную форму, содержат, как правило, одно ядро и все органеллы. Наиболее характерными ультраструктурами их цитоплазмы являются пиноцитозные везикулы. Последних особенно много в тонких периферических (маргинальных) частях клеток. Пиноцитозные везикулы связаны с плазмолеммой наружной (люминальной) и внутренней (аблюминальной) поверхностей эндотелиоцитов. Их образование отражает процесс трансэндотелиального переноса веществ. При слиянии пиноцитозных пузырьков формируются сплошные трансэндотелиальные канальцы. Плазмолемма люминальной поверхности эндотелиальных клеток покрыта гликокаликсом, выполняющим функцию адсорбции и активного поглощения из крови продуктов обмена веществ и метаболитов. Здесь эндотелиальные клетки образуют микровыросты, численность которых отражает степень функциональной транспортной активности гемокапилляров. В эндотелии гемокапилляров ряда органов наблюдаются “отверстия” (фенестры) диаметром около 50-65 нм, закрытые диафрагмой толщиной 4-6 нм. Их присутствие облегчает течение обменных процессов. Эндотелиальные клетки обладают динамическим сцеплением и непрерывно скользят одна относительно другой, образуя интердигитации, щелевые и плотные контакты. Между эндотелиоцитами в гемокапиллярах некоторых органов обнаруживаются щелевидные поры и прерывистая базальная мембрана. Эти межклеточные щели служат еще одним из путей транспорта веществ между кровью и тканями. Снаружи от эндотелия располагается базальная мембрана толщиной 25-35 нм. Она состоит из тонких фибрилл, погруженных в гомогенный липопротеиновый матрикс. Базальная мембрана в отдельных участках по длиннику гемокапилляра расщепляется на два листка, между которыми лежат перициты. Они оказываются как бы “замурованными” в базальной мембране. Полагают, что деятельность и изменение диаметра кровеносных капилляров регулируется, благодаря способности перицитов набухать и отбухать. Аналогом наружной оболочки сосудов в гемокапиллярах служат адвентициальные (периваскулярные) клетки вместе с преколлагеновыми фибриллами и аморфным веществом. Для гемокапилляров характерна органная специфичность строения. В этой связи различают три типа капилляров: 1) непрерывные, или капилляры соматического типа, — располагаются в мозгу, мышцах, коже; 2) фенестрированные, или капилляры висцерального типа, — располагаются в эндокринных органах, почках, желудочно-кишечном тракте; 3) прерывистые, или капилляры синусоидного типа, — располагаются в селезенке, печени. В гемокапиллярах соматического типа эндотелиоциты соединены друг с другом с помощью плотных контактов и образуют сплошную выстилку. Базальная мембрана их также непрерывная. Присутствие подобных капилляров со сплошной эндотелиальной выстилкой в мозгу, например, необходимо для надежности гемато-энцефалического барьера. Гемо-капилляры висцерального типа выстланы эндотелиоцитами с фенестрами. Базальная мембрана при этом непрерывная. Капилляры этого типа характерны для органов, в которых обменно-метаболические отношения с кровью более тесные — эндокринные железы выделяют в кровь свои гормоны, в почках из крови фильтруются шлаки, в желудочно-кишечном тракте в кровь и лимфу всасываются продукты расщепления пищи. В прерывистых (синусоидных) гемокапиллярах между эндотелиоцитами имеются щели, или поры. Базальная мембрана в этих участках отсутствует. Такие гемокапилляры присутствуют в органах кроветворения (через поры в их стенке в кровь поступают созревшие форменные элементы крови), печени, которая выполняет множество метаболических функций и клетки которой “нуждаются” в максимально тесном контакте с кровью. Количество гемокапилляров в разных органах неодинаково: на поперечном срезе в мышце, например, на 1 мм2 площади насчитывается до 400 капилляров, тогда как в коже — всего 40. В обычных физиологических условиях до 50 % гемокапилляров являются нефункционирующими. Количество “открытых” капилляров зависит от интенсивности работы органа. Кровь протекает через капилляры со скоростью 0,5 мм/с под давлением 20-40 мм рт. ст. Посткапилляры, или посткапиллярные венулы, — это сосуды диаметром около 12-30 мкм, образующиеся при слиянии нескольких капилляров. Посткапилляры по сравнению с капиллярами имеют больший диаметр и в составе стенки чаще встречаются перициты. Эндотелий фенестрированного типа. На уровне посткапилляров происходят также активные обменные процессы и осуществляется миграция лейкоцитов. Венулы образуются при слиянии посткапилляров. Начальным звеном венулярного отдела МЦР являются собирательные венулы. Они имеют диаметр около 30-50 мкм и не содержат в структуре стенки гладких миоцитов. Собирательные венулы продолжаются в мышечные, диаметр которых достигает 50-100 мкм. В этих венулах имеются гладкомышечные клетки (численность последних увеличивается по мере удаления от гемокапилляров), которые ориентированы чаще вдоль сосуда. В мышечных венулах восстанавливается четкая трехслойная структура стенки. В отличие от артериол, в мышечных венулах нет эластической мембраны, а форма эндотелиоцитов более округлая. Венулы отводят кровь из капилляров, выполняя отточно-дренажную функцию, выполняют вместе с венами депонирующую (емкостную) функцию. Сокращение продольно ориентированных гладких миоцитов венул создает некоторое отрицательное давление в их просвете, способствующее “присасыванию” крови из посткапилляров. По венозной системе вместе с кровью из органов и тканей удаляются продукты обмена веществ. Гемодинамические условия в венулах и венах существенно отличаются от таковых в артериях и артериолах в связи с тем, что кровь в венозном отделе течет с небольшой скоростью (1-2 мм/с) и при низком давлении (около 10 мм рт. ст.). В составе микроциркуляторного русла существуют также артериоло-венулярные анастомозы, или соустья, обеспечивающие прямой, в обход капилляров, переход крови из артериол в венулы. Путь кровотока через анастомозы короче транскапиллярного, поэтому анастомозы называют шунтами. Различают артериоло-венулярные анастомозы гломусного типа и типа замыкающих артерий. Анастомозы гломусного типа регулируют свой просвет посредством набухания и отбухания эпителиоидных гломусных Е-клеток, расположенных в средней оболочке соединяющего сосуда, образующего нередко клубочек (гломус). Анастомозы типа замыкающих артерий содержат скопления гладких мышечных клеток во внутренней оболочке. Сокращение этих миоцитов и их выбухание в просвет в виде валика или подушечки могут уменьшить или полностью закрыть просвет анастомоза. Артериоло-венулярные анастомозы регулируют местный периферический кровоток, участвуют в перераспределении крови, терморегуляции, регуляции давления крови. Различают еще атипические анастомозы (полушунты), в которых соединяющий артериолу и венулу сосуд представлен коротким гемокапилляром. По шунтам протекает чистая артериальная кровь, а полушунты, будучи гемокапиллярами, передают в венулу смешанную кровь. – Также рекомендуем “Вены. Строение вен. Стенки и структура вен.” Оглавление темы “Сердечно-сосудистая система. Дыхательная система.”: |
Источник
Оглавление темы “Общая ангиология.”:
1. Общая ангиология. Сосудистая система.
2. Кровеносная система. Артерии. Стенка артерий. Капилляры. Вены.
3. Схема кровообращения. Микроциркуляция. Микроциркуляторное русло.
4. Малый круг кровообращения.
5. Большой (телесный) круг кровообращения. Регионарное кровообращение.
Кровообращение начинается в тканях, где совершается обмен веществ через стенки капилляров (кровеносных и лимфатических).
Капилляры составляют главную часть микроциркуляторного русла, в колюром происходит микроциркуляция крови и лимфы. К микроциркулятор-ному руслу относятся также лимфатические капилляры и интерстициальные пространства.
Микроциркуляция — это движение крови и лимфы в микроскопической части сосудистого русла. Микроциркуляторное русло, по В. В. Куприянову, включает 5 звеньев: 1) артериолы как наиболее дистальные звенья артериальной системы, 2) прекапилляры, или прекапиллярные артериолы, являющиеся промежуточным звеном между артериолами и истинными капиллярами; 3) капилляры; 4) посткапилляры, или посткапиллярные венулы, и 5) венулы, являющиеся корнями венозной системы.
Все эти звенья снабжены механизмами, обеспечивающими проницаемость сосудистой стенки и регуляцию кровотока на микроскопическом уровне. Микроциркуляция крови регулируется работой мускулатуры артерий и артериол, а также особых мышечных сфинктеров, существование которых предсказал И. М. Сеченов и назвал их «кранами». Такие сфинктеры находятся в пре- и посткапиллярах. Одни сосуды микроциркуляторного русла (артериолы) выполняют преимущественно распределительную функцию, а остальные (прекапилляры, капилляры, посткапилляры и венулы) — преимущественно трофическую (обменную).
В каждый данный момент функционирует только часть капилляров (открытые капилляры), а другая остается в резерве (закрытые капилляры).
Кроме названных сосудов, советскими анатомами доказана принадлежность к микроциркуляторному руслу артериоловенулярных анастомозов, имеющихся во всех органах и представляющих пути укороченного тока артериальной крови в венозное русло, минуя капилляры. Эти анастомозы подразделяются на истинные анастомозы, или шунты (с запирательными устройствами, способными перекрывать ток крови, и без них), и на межарте-риолы, или полушунты.
Благодаря наличию артериоловенулярных анастомозов терминальный кровоток делится на два пути движения крови: 1) транскапиллярный, служащий для обмена веществ, и 2) необходимый для регуляции гемодинамического равновесия внекапиллярный юкстакапиллярный (от лат. juxta — около, рядом) ток крови; последний совершается благодаря наличию прямых связей (шунтов) между артериями и венами (артериовенозные анастомозы) и артериолами и венулами (артериоловенулярные анастомозы).
Благодаря внекапиллярному кровотоку происходят при необходимости разгрузка капиллярного русла и ускорение транспорта крови в органе или данной области тела. Это как бы особая форма окольного, коллатерального, кровообращения (Куприянов В. В., 1964).
Микроциркуляторное русло представляет не механическую сумму различных сосудов, а сложный анатомо-физиологический комплекс, состоящий из 7 звеньев (5 кровеносных, лимфатического и интерстициального) и обеспечивающий основной жизненно важный процесс организма — обмен веществ. Поэтому В. В. Куприянов рассматривает его как систему микроциркуляции.
Строение микроциркуляторного русла имеет свои особенности в разных органах, соответствующие их строению и функции. Так, в печени встречаются широкие капилляры — печеночные синусоиды, в которые поступает артериальная и венозная (из воротной вены) кровь. В почках имеются артериальные капиллярные клубочки. Особые синусоиды свойственны костному мозгу и т. п.
Пропесс микроциркуляции жидкости не ограничивается микроскопическими кровеносными сосудами. Организм человека на 70 % состоит из воды, которая содержится в клетках и тканях и составляет основную массу крови и лимфы. Лишь xls всей жидкости находится в сосудах, а остальные 4/5 ее содержатся в плазме клеток и в межклеточной среде. Микроциркуляция жидкости осуществляется, кроме кровеносной системы, также в тканях, в серозных и других полостях и на пути транспорта лимфы.
Из микроциркуляторного русла кровь поступает по венам, а лимфа — по лимфатическим сосудам, которые в конечном счете впадают в присердеч-ные вены. Венозная кровь, содержащая присоединившуюся к ней лимфу, вливается в сердце, сначала в правое предсердие, а из него в правый желудочек. Из последнего венозная кровь поступает в легкие по малому (легочному) кругу кровообращения.
– Также рекомендуем “Малый круг кровообращения.”
Источник
Сердечно-сосудистый комплекс органов. Артерии. Виды и строение артерий.
Сердечно-сосудистый комплекс органов включает сердце, артерии, сосуды микроциркуляторного русла, вены, лимфатические сосуды. Сердце и замкнутая сеть сосудов обеспечивают циркуляцию крови в организме и транспорт лимфы к сердцу. Деятельность сердечно-сосудистого комплекса направлена на поддержание метаболизма и постоянства внутренней среды организма — из крови к тканям и клеткам поступают питательные вещества, кислород, биологически активные вещества, регулирующие их развитие и функции; в кровь и лимфу удаляются ненужные клеткам шлаки и продукты их специальной деятельности.
Развитие. Источником развития кровеносных сосудов является мезенхима. Первые сосуды возникают вне организма зародыша — в стенке желточного мешка и хориона в начале 3-й недели эмбриогенеза. Первоначально образуются скопления клеток мезенхимы, именуемые кровяными островками. Периферические клетки островков уплощаются и, соединяясь друг с другом, формируют примитивные сосуды в виде эндотелиальных трубок. Центрально расположенные мезенхимоциты дифференцируются в первичные клетки крови (начальный интраваскулярный этап кроветворения). В теле зародыша сосуды появляются позже, также из мезенхимы путем разрастания ее клеток по стенкам щелевидных пространств зародыша.
В конце 3-й недели устанавливается сообщение между первичными кровеносными сосудами внезародышевых органов и тела зародыша. После начала циркуляции крови структура сосудов заметно усложняется в соответствии с региональными условиями гемодинамики. В составе стенок сосудов, помимо эндотелия, развиваются другие ткани (происходящие также из мезенхимы), которые, объединяясь, формируют внутреннюю, среднюю, и наружную оболочки сосудов.
Закладка сердца возникает в начале 3-й недели развития в виде парных мезенхимных трубок. После их слияния начинается дифференцировка тканей внутренней оболочки сердца — эндокарда. Средняя и наружная оболочки сердца формируются также из парных миоэпикардиальных пластинок — фрагментов правого и левого висцеральных листков спланхнотома. Миоэпикардиальные пластинки приближаются к закладке эндокарда, окружают ее снаружи, и далее, сливаясь, дифференцируются в тканевые элементы мио- и эпикарда.
Артерии. Виды и строение артерий.
Артерии — сосуды, обеспечивающие продвижение крови от сердца к микроциркуляторному руслу. По величине диаметра они подразделяются на артерии малого, среднего и крупного калибра. Стенка всех артерий состоит из трех оболочек: внутренней (tunica intima), средней (tunica media) и наружной (tunica externa). Тканевый состав и степень развития этих оболочек в артериях разного калибра неодинаковы, что связано с гемодинамическими условиями и особенностями функций, выполняемых сосудами тех или иных отделов артериального русла. По количественному соотношению эластических и мышечных элементов в средней оболочке сосуда различают артерии эластического, смешанного (мышечно-эластического) и мышечного типов.
Артерии эластического типа (аорта и легочная артерия) выполняют транспортную функцию и функцию поддержания давления крови в артериальной системе во время диастолы сердца. Стенка их испытывает ритмические изменения кровяного давления. Кровь в эти сосуды поступает под высоким давлением (120-130 мм рт. ст.) и со скоростью около 1 м/с. В этих условиях вполне оправдано сильное развитие эластического каркаса стенки, который позволяет растягиваться сосудам во время систолы и принимать исходное положение во время диастолы. Возвращаясь в исходное положение, эластичная стенка таких сосудов способствует тому, что последовательно выбрасываемые из желудочков сердца порции крови превращаются в непрерывный кровоток.
Внутренняя оболочка сосудов эластического типа (на примере аорты) состоит из эндотелия, подэндотелиального слоя и сплетения эластических волокон. В подэндотелиальном слое определяются малодифференцированные звездчатые клетки рыхлой соединительной ткани, отдельные гладкие мышечные клетки, большое количество гликозаминогликанов. С возрастом здесь отмечается накопление холестерина. В средней оболочке аорты имеется до 50 эластических окончатых мембран (точнее — эластических окончатых цилиндров разных диаметров, вставленных друг в друга), в отверстиях которых располагаются гладкие мышечные клетки и эластические волокна. Наружная оболочка состоит из рыхлой волокнистой соединительной ткани, содержащей сосуды сосудов и нервные стволики.
Артерии смешанного (мышечно-эластического) типа характеризуются примерно равным количеством мышечных и эластических элементов в составе средней оболочки. Между гладкими миоцитами лежат густые сети эластических фибрилл.
На границе внутренней и средней оболочек отчетливо выражена внутренняя эластическая мембрана. В наружной оболочке содержатся пучки гладких мышечных клеток, а также коллагеновых и эластических волокон. К артериям данного типа относятся сонная, подключичная и другие.
Артерии мышечного типа выполняют не только транспортную, но и распределительную функции, регулируя приток крови к органам в условиях разных физиологических нагрузок (это, так называемые, органные артерии). Артерии мышечного типа содержат в средней оболочке гладкие миоциты. Это позволяет артериям регулировать приток крови к органам и поддерживать нагнетание крови, что важно для кровоснабжения органов, расположенных на большом удалении от сердца. Артерии мышечного типа могут быть крупного, среднего и малого калибров. Внутреннюю оболочку стенки этих артерий образуют эндотелий, лежащий на базальной мембране, подэндотелиальный слой и внутренняя эластическая мембрана, однако в мелких артериях внутренняя эластическая мембрана выражена слабо.
Средняя оболочка образована гладкой мышечной тканью с небольшим количеством фибробластов, коллагеновых и эластических волокон. Гладкие миоциты располагаются в средней оболочке по пологой спирали. Вместе с радиально и дугообразно расположенными эластическими волокнами миоциты создают единый пружинящий каркас, который препятствует спадению артерий, обеспечивая их зияние и непрерывность кровотока. На границе между средней и наружной оболочками имеется наружная эластическая мембрана. Последняя относится к наружной оболочке, состоящей из рыхлой соединительной ткани. Коллагеновые волокна имеют косое и продольное направление. В наружной оболочке артерий мышечного типа проходят питающие их кровеносные сосуды и нервы.
С помощью растровой электронной микроскопии показано, что внутренняя поверхность эндотелия артерий имеет многочисленные складки и углубления, разнообразные по форме микроскопические выросты. Это создает неровный и сложный микрорельеф внутренней (люминальной) поверхности сосудов. Такой микрорельеф увеличивает свободную поверхность соприкосновения эндотелия с кровью, что имеет трофическое значение и создает благоприятные условия для гемодинамики.
– Также рекомендуем “Сосуды микроциркуляторного русла. Артериолы. Прекапилляры. Посткапилляры. Венулы.”
Оглавление темы “Сердечно-сосудистая система. Дыхательная система.”:
1. Желчевыводящие пути и желчный пузырь. Строение желчного пузыря.
2. Сердечно-сосудистый комплекс органов. Артерии. Виды и строение артерий.
3. Сосуды микроциркуляторного русла. Артериолы. Прекапилляры. Посткапилляры. Венулы.
4. Вены. Строение вен. Стенки и структура вен.
5. Лимфатические сосуды. Строение лимфатических сосудов. Стенки лимфатических сосудов.
6. Сердце. Эндокард. Миокард. Строение сердца.
7. Дыхательный комплекс органов. Развитие дыхательной системы.
8. Гортань. Слизистая гортани. Стенки гортани. Трахея. Стенки трахеи. Слизистая трахеи.
9. Легкие. Внутрилегочные бронхи. Строение внутрилегочных бронхов.
10. Респираторный отдел легких. Строение респираторного отдела легких.
Источник