Часть стебля содержащая сосуды и волокна

Стебель
Стебель – это каркас, центральная опора растения, соединяющая его подземные и надземные части. Основные функции стебля:
1) опорная – поддерживает листья, цветки, плоды, почки и развивающиеся из них боковые побеги;
2) проводящая – осуществляет транспортировку веществ между листом и корнем;
На самой верхушке стебля имеется точка роста, которая представлена образовательной тканью. Стебель и каждый его боковой побег имеют конусы нарастания. В точке роста клетки постоянно делятся, образуя новые. Благодаря верхушечной почке растение растет вверх, а боковые почки формируют крону.
По направлению роста стебли бывают прямостоячими (тополь, сосна, береза, пшеница и др.), стелющимися (вербейник монетчатый), лазящими (лианы), ползучими (живучка ползучая, земляника), вьющимися (вьюнок, хмель) (рис.1).
Рис.1 Типы стеблей
Внутреннее строение стебля
На продольном срезе ствола дерева можно рассмотреть его внутреннее строение. Он состоит из 4 слоев: коры, камбия, древесины и сердцевины (рис.2).
Рис.2 Внутреннее строение стебля
Кора – самый наружный слой ствола. Она состоит из слоев кожицы, пробки и луба.
Молодые побеги снаружи покрыты тонкой прозрачной кожицей (эпидермис). С возрастом кожицу заменит пробка. Клетки пробки мертвые, с толстыми оболочками. Они заполнены воздухом. Это надежно защищает растения от неблагоприятных условий окружающей среды. В коре расположены чечевички. Они хорошо заметны на молодых побегах деревьев как черточки или небольшие бугорки. Через межклетники в чечевичках осуществляется газообмен. Под пробкой находится лубяной слой. Лубяные волокна придают стеблям гибкость и прочность. По ситовидным трубкам луба идет передача растворов органических веществ от листьев ко всем частям растения.
Камбий – это слой, расположенный под корой, между лубом и древесиной. Если снять кору с молодого побега, повреждаются оболочки клеток камбия. Потрогав рукой поврежденное место, можно ощутить липкую влагу. Клетки образовательной ткани камбия делятся и откладываются в сторону древесины (больше) и луба (меньше). Прирост древесины за год по толщине стебля называют годичным кольцом (рис.3). В период листопада деление и рост клеток камбия прекращаются. Весной с появлением листьев функции камбия возобновляются. Камбиальное кольцо образуется у деревьев в самом начале формирования стебля. Следовательно, рост стебля в толщину связан с делением клеток камбия.
Рис.3 Образование годовых колец
Древесина (ксилема) залегает под камбием к центру от луба (флоэма). Она занимает большую часть побега. Проводящую функцию в древесине выполняют сосуды и трахеиды. По ним в восходящем потоке – от подземных органов к надземным – идет передача воды и растворенных в ней питательных веществ (минеральных и органических). Узкие длинные клетки, соединяясь, образуют сосуд. Оболочки между члениками сосуда разрушаются, и он становится похож на трубку, по которой движется вода. То есть в сосудах древесины нет перегородок, как в ситовидных трубках луба.
Древесина состоит из сосудов, волокон и живых клеток.
Ежегодно из камбия откладывается новый слой древесины. На поперечном спиле дерева видны чередующиеся кольца более светлой и темной древесины. Подсчитав их число, можно определить возраст дерева. На процесс образования и толщину годовых колец влияют условия окружающей среды (рельеф местности, количество влаги, ветер, лесные пожары и др). Узкие годовые кольца свидетельствуют о засушливом лете, а широкие о дождливом (рис.4).
Рис.4 Влияние условий окружающей среды на образование годовых колец
Сердцевина – центральная часть стебля. Она образована рыхлой паренхимной запасающей тканью. У некоторых видов растений она содержит млечники, смоляные и эфиромасляные ходы. Паренхимные клетки сердцевины запасают питательные вещества. Лубяные и древесные волокна усиливают опорные качества стебля.
Проводящие ткани луба и древесины пересекаются лубо-древесными лучами. Они соединяют все слои стебля друг с другом. По ним питательные вещества доставляются из луба в древесину, из древесины – в луб. В клетках лучей откладываются запасные вещества.
Передача веществ по стеблю осуществляется по проводящей системе, состоящей из ксилемы и флоэмы. Ксилема транспортирует жидкость из корней к листьям, а флоэма доставляет питательные вещества, образованные в листьях, в корни и другие части растения. Вода и растворенные в ней минеральные соли, поглощенные корневой системой, поднимаются в надземные органы по сосудам древесины (ксилемы). В процессе фотосинтеза в листьях растений вырабатываются питательные вещества. Растворяясь в воде, они переносятся от листьев во все части растения по ситовидным трубкам луба (флоэма) (рис.5).
Рис.5 Проводящая система стебля
Стебель – осевая часть растения, ее каркас. Он выполняет опорную и проводниковую функции. Стебли деревьев состоят из 3 слоев: кора (защита и проведение органических веществ по лубу вниз), древесина (прочность и проведение воды от корня вверх) и сердцевина (запас питательных веществ). Рост стебля в длину происходит за счет почки роста на верхушке, у боковых побегов – конуса нарастания; а в толщину за счет камбия – образовательной ткани между корой и древесиной.
Многообразие и видоизменения побегов
Тест на тему: “Стебель”
Проверочное тестовое задание включает в себя вопросы с одним и несколькими правильными ответами
Источник
Стебель – осевой надземный орган растения, способный к неограниченному концевому росту.
Стебель – ось побега, несущая листья и почки.
Функции стебля:
опорная;
проводящая: осуществляет связь между корнями и листьями;
запасающая: например, у кактуса;
вегетативное размножение: например, у шиповника и ;
ассимиляционная (фотосинтез): например, у бамбука.
На начальных этапах развития побега складывается первичная анатомическая структура стебля, сохраняющаяся у однодольных в течение всей жизни.
У двудольных и голосеменных первичная структура замещается на вторичную, образованную вторичными тканями.
строение стебля
Рост стебля в длину осуществляется благодаря деятельности верхушечной меристемы. Её клетки, образующие конус нарастания, непрерывно делятся. Нижние клетки конуса нарастания дифференцируются, превращаясь в первичные ткани стебля (эпидерму, колленхиму и первичную проводящую ткань).
В результате деятельности прокамбия и первичной меристемы конуса нарастания образуется первичное строение стебля.
В первичном стебле обычно различают первичную кору и стелу (центральный цилиндр).
Прокамбий – первичная меристема, дающая начало камбию (у голосеменных и двудольных) и первичным проводящим тканям: первичной флоэме и первичной ксилеме.
В корне из прокамбия также образуется перицикл.
На поверхности стебля образуется эпидерма, отделяющая внутреннее содержимое стебля от окружающей среды. Это однослойная ткань, образованная плотно сомкнутыми бесцветными живыми клетками.
Под эпидермой находится кора, образованная паренхимой. В молодых стеблях под прозрачной эпидермой наружный слой клеток коры обычно содержит хлоропласты (фотосинтезирующая паренхима), что придаёт таким стеблям зелёный цвет.
В середине стебля находится сердцевина, образованная запасающей паренхимой. В ней накапливаются запасные питательные вещества: сахара, крахмал и т.п.
Между корой и сердцевиной располагаются проводящие пучки. Это сложные структуры, образованные несколькими видами тканей. Снаружи (со стороны коры) он защищён механическими волокнами, идущими вдоль стебля. Вначале они состоят из колленхимы, живые клетки которой способны к растяжению в процессе дальнейшего роста стебля, а затем она замещается более прочной склеренхимой. Под склеренхимой проходят ситовидные трубки флоэмы. Далее вглубь стебля находится ксилема, примыкающая непосредственно к сердцевине (рис. 1).
Рис. 1. Строение стебля двудольных растений
камбий
У двудольных растений между флоэмой и ксилемой находится однослойный сосудистый камбий. Благодаря ему происходит образование новых сосудов ксилемы и ситовидных трубок флоэмы (рис. 2).
Рис. 2. Деятельность камбия
Клетки камбия делятся в плоскости, параллельной поверхности стебля. Из двух образовавшихся клеток одна остаётся камбиальной, а вторая начинает превращаться в клетку проводящей системы. Если она находится рядом с флоэмой, то делится ещё раз и из двух полученных клеток одна становится ситовидной клеткой, а вторая – клеткой-спутницей. Клетки-спутницы окружают ситовидные трубки. Они способны к поперечному делению с образованием вертикального ряда клеток вдоль ситовидных трубок (рис. 3).
Рис. 3. Ситовидная трубка с клеткой-спутницей
В том случае, если дифференцирующаяся клетка находится со стороны ксилемы, она даёт начало клеткам ксилемы или превращается в трахеиду. Накопление ксилемы и флоэмы ведёт к росту стебля в толщину.
Через некоторое время разрастание проводящих пучков приводит в их срастание в кольцевые структуры. В результате на поперечном разрезе стебля мы будем видеть кольцевые слои покровной ткани, паренхимы коры, флоэмы со склеренхимными волокнами, сосудистого камбия, ксилемы, а в центре – сердцевину (рис. 4).
Рис. 4. Срез стебля
Через некоторое время рост стебля в толщину приводит к тому, что эпидерма растягивается и разрывается, её клетки отмирают, а её место занимает нарастающая из-под неё пробка (вторичная покровная ткань). Поскольку в основании пробкового слоя лежит пробковый камбий, она при дальнейшем росте стебля также нарастает, образовывая всё новые слои.
Так формируется вторичное строение стебля, ведущую роль в котором играют вторичные ткани, образованные вторичными меристемами.
У многолетних древесных растений умеренного климата рост идёт неравномерно. Весной и в начале лета стебель растёт быстро, образуя толстые сосуды с большими просветами. На поперечном срезе они кажутся тёмными из-за заполняющего их воздуха. В конце лета и начале осени рост замедляется, образуются мелкие сосуды с узким просветом, которые на срезе кажутся светлыми. Так формируются годичные кольца (рис. 5).
Рис. 5. Годичные кольца древесины
В тропических лесах, где нет смены времён года, у деревьев нет годовых колец. Следует отметить, что нарастание стволов деревьев происходит за счёт увеличения толщины ксилемы, а клетки флоэмы довольно быстро отмирают и разрушаются.
Помимо сосудов, в древесину входят также располагающиеся между ними механические волокна и сердцевинные лучи – цепочки паренхимных клеток, соединяющие сердцевину и кору.
У однодольных проводящие пучки не содержат камбия (рис. 6).
Рис. 6. Сосудистый пучок однодольного растения
Такие пучки называются закрытыми, в противоположность открытым пучкам двудольных. Кроме того, проводящие пучки у двудольных расположены по кругу, а у однодольных разбросаны по всему поперечному сечению стебля (рис. 7).
Рис. 7. Срез стебля однодольного растения
Из-за отсутствия камбия проводящие пучки однодольных рано перестают расти в толщину, поэтому однодольные, в основном – травянистые растения, не способные к вторичному утолщению.
жизненные формы растений
У многих растений в клеточных стенках откладывается вещество лигнин, значительно увеличивающий прочность древесины. Такой процесс называется одревеснением, или лигнификацией. В результате образуются очень прочные стебли древесные стебли.
По строению стеблей выделяют несколько жизненных форм растений.
Травы – растения с неодревесневшими стеблями, живущими один вегетационный период (весна – лето – осень).
Они могут быть прямостоячими, ползучими, лазающими (лианы); однолетними и многолетними.
В некоторых случаях роста стебля в длину почти не происходит. Междоузлия укорачиваются, и образуется прикорневая розетка листьев. В этом случае говорят об укороченном стебле (рис. 8, 9).
Рис. 8. Одуванчик Рис. 9. Молодило
Деревья – растения с многолетним древесным стеблем.
Кустарники – растения, у которых от одного корня отходит большое число относительно тонких одревесневших стеблей.
Кустарнички – невысокие (до 40 см) многолетние растения с частично одревесневающими стеблями (например, брусника и черника).
Источник
7
1 ответ:
0 0
Разнообразие стеблейСтебель – осевая часть побега растения, он проводит питательные вещества и выносит листья к свету. В стебле могут откладываться запасные питательные вещества. На нём развиваются листья, цветки, плоды с семенами.У стебля есть узлы и междоузлия. Узел – участок стебля, на котором находится лист (листья) и почка (почки). Участок стебля между соседними узлами представляет собой междоузлие. Угол, образованный листом и стеблем выше узла, называют листовой пазухой. Почки, занимающие боковое положение на узле, в пазухе листа, называют боковыми или пазушными. На верхушке стебля находится верхушечная почка.Стебли древесных и травянистых растений отличаются по продолжительности жизни. Надземные побеги трав умеренного климата живу, как правило, один год (продолжительность жизни побегов определяется продолжительностью жизни стебля, листья могут сменяться). У древесных растений стебель существует много лет. Главный стебель дерева называется стволом, у кустарников отдельные крупные стебли называют стволиками.Существует несколько типов стеблей.
Читайте также
Гипофиз, щитовидная железа и надпочечники- железы внутренней секреции
Поджелудочная и половые – это железы смешанной секреции
Как установлено учёными, один грамм жира при расщеплении в организме до конечных продуктов (воды и углекислого газа) даёт энергии вдвое больше, чем такое же количество белков или углеводов. Но полностью исключать жиры как растительного, так и животного происхождения из своего рациона всё же не стоит. Дело в том, что при употреблении в пищу жиросодержащих продуктов животного происхождения наш организм получает такое вещество как холестерин. Да, тот самый холестерин, который в избыточном количестве оказывает вредное воздействие на состояние нашего здоровья, и прежде всего нарушает деятельность сердечно-сосудистой системы. Но не стоит также забывать и о том, что этот же холестерин является одним из ключевых компонентов жирового обмена в организме человека. дело в том, что большинство жиров растительного происхождения при комнатной температуре находятся в жидком состоянии, а жиры животного происхождения в твёрдом. Но другое отличие, более важное для нашего здоровья, заключается в разных физиологических функциях этих групп веществ. Оказывается, жиры растительного происхождения содержат в своём составе ненасыщенные жирные кислоты линолевую, линоленовую и арахидоновую, которые являются очень полезными веществами для поддержания нашего здоровья. Этим и обусловлено правило питания, согласно которому наш организм должен обеспечивать необходимое ему количество жиров не только за счёт продуктов животного происхождения, но и за счёт растительных жиросодержащих продуктов питания.
Б) д) г) а) в) ж) е)
Абиотические и биотические факторы средыК числу абиотических факторов относятся любые воздействующие на организм физически поля (свет, электрические и магнитные поля, гравитация, ионизирующая радиация), климатические факторы (температура и влажность воздуха, ветер, атмосферное давление, осадки), свойства воды и почвы (например рН, соленость).
Биотические факторы – это воздействие всего живого, окружающего организм, в том числе и особей своего же вида. Влияние биотических факторов мы рассмотрим в следующих разделах. Здесь только подчеркнем, что влияние абиотических и биотических факторов может быть взаимосвязано. Известно, например, что количество укрытий всегда ограничено. Если все лучшие укрытия уже заняты особями своего или других видов (биотические факторы), то особь вынуждена довольствоваться худшим укрытием, где она более подвержена воздействию абиотических факторов.Абиотические факторы играют громадную роль в жизни насекомых благодаря малым размерам последних. Действие любого фактора зависит не только от его уровня, но также от физиологического состояния организма и сочетания прочих абиотических и биотических факторов.
Ничего , надо еще что-то добавить для реакции
Источник
«В природе нет ничего бесполезного» – Мишель де Монтень
Только вдумайтесь в мощь проводящей ткани! Ведь ей приходится поднимать воду и растворенные в ней минеральные вещества от тончайших волосков корня до клеток листа. Самое высокое дерево на нашей планете, вечнозеленая секвойя по имени Гиперион, растет на севере Калифорнии и достигает (на 2017 год) – 117 метров в высоту. И вода по проводящим тканям преодолевает 117 метров высоты у этого растения, от корней к листьям! Она передвигается по структурам проводящих тканей против силы тяжести, и сегодня вы узнаете о секрете, который таит это уникальное явление.
Запомните, чтобы глубоко изучить любую науку, нужно восхищаться ей, уметь удивляться и проявлять любопытство в этой сфере. В ботанике это можно делать самыми разными путями: вы можете посетить ботанический сад, или, к примеру, приобрести микроскоп и рассматривать ткани и органы растений, самостоятельно приготавливая микропрепараты.
Это действительно важно, поэтому я останавливаюсь на этом. Сам я получаю и всегда призываю своих учеников получать искреннее удовольствие от погружения в науку. Надеюсь, что и вы разделите эту радость новых интересных знаний, я приложу к этому все усилия. Итак, начнем изучать проводящие ткани.
Проводящие ткани можно сравнить с кровеносной системой человека, которая пронизывает весь наш организм, доставляя питательные вещества к клеткам и удаляя продукты обмена веществ из них. Как уже было сказано, эти ткани служат для передвижения по организму растения растворенных питательных веществ. Имеется два направления тока: от корней к листьям (восходящий ток) и от листьев к корням (нисходящий ток).
Логическим путем можно угадать многие научные факты, даже не зная их. К примеру, чем представлен восходящий ток? Что поднимается от корней к листьям? Это конечно же вода и растворенные в ней минеральные вещества, они движутся по сосудам и трахеидам проводящей ткани – ксилемы (древесины). От листьев к корням спускаются органические вещества, образовавшиеся в результате фотосинтеза в листьях, они движутся по ситовидным трубкам проводящей ткани – флоэмы (луба).
Несмотря на то, что настоящие проводящие ткани впервые появились у папоротникообразных, но у мхов в наличии имеются водоносные клетки, благодаря которым они могут накапливать воду, которая в процентном соотношении может составить до 25% от их массы. По этой причине во время Первой мировой войны мох сфагнум использовали в качестве перевозочного материала. Кроме того, он обладает бактерицидными свойствами.
В состав и ксилемы, и флоэмы входят как живые, так и мертвые клетки. Однако отметим, что в ксилеме мертвые клетки преобладают.
Ксилема (древесина)
Обеспечивает восходящий ток (от корней к листьям) воды и растворенных в ней минеральных солей. В толще проводящей ткани находятся отнюдь не только те самые трахеиды и сосуды, ее пронизывают многочисленные механические волокна – древесинные, обеспечивающие каркасность и прочность. В ксилеме содержатся также запасающие структуры, представленные древесинной паренхимой, где накапливаются питательные вещества. Давайте разберемся из каких гистологических элементов состоит ксилема.
- Трахеиды
Эволюционно наиболее древние структуры. Представлены прозенхимными (вытянутые, с заостренными концами), мертвыми клетками. Через них осуществляется передвижение и фильтрация растворов из нижележащей трахеиды в вышележащую. Их одревесневшая утолщенная клеточная стенка имеет разнообразные формы: пористую, спиралевидную, кольчатую.
- Сосуды
Длинные трубки, представляющие собой слияние отдельных мертвых клеток “члеников” в единый “сосуд”. Ток жидкости идет из нижележащих отделов в вышележащие благодаря отверстиям (перфорациям) между клетками, составляющими сосуд. Так же, как и у трахеид, утолщения клеточных стенок у сосудов бывает самых разных форм.
Во время роста растения проводящие ткани также претерпевают морфологические изменения. Изначальная длина сосуда меняется, благодаря своему строению он растягивается и обеспечивает ток воды и минеральных солей.
- Древесинные волокна (либриформ)
Полагают, что эволюционно эти волокна берут начало от трахеид. Они не проводят воду, имеют более узкий просвет и отличаются хорошо выраженной клеточной стенкой, которая придает ксилеме механическую прочность.
- Паренхимные клетки (древесинная паренхима)
Эти клетки составляет обкладку вокруг сосуда, имеют одревесневшие оболочки с порами, которым соответствуют окаймленная пора со стороны сосуда. То есть сюда из сосуда могут поступать органические вещества и формировать запасы, которые в дальнейшем пригодятся растению.
Флоэма (луб)
Образовавшиеся в результате фотосинтеза в листьях продукты необходимо доставить в те части растения, где есть потребность в питательных веществах: конусы нарастания, подземные части, или “складировать” на будущее в семенах и плодах. Флоэма обеспечивает нисходящий ток органических веществ в растении, доставляя их по месту назначения. До 90% всех перемещаемых веществ по флоэме составляет углевод – дисахарид сахароза.
Эта ткань представлена ситовидными трубками, генез (от греч. genesis – происхождение) которых различается: первичная флоэма дифференцируется из прокамбия, вторичная флоэма – из камбия. Несмотря на различия генеза, клеточный состав описанных тканей идентичен.
Разберемся с компонентами, которые входят в состав флоэмы:
- Ситовидные элементы
Это живые клетки, обеспечивающие основной транспорт. Особо стоит выделить ситовидные трубки, образованные множеством безъядерных клеток – “члеников”, соединенных в единую цепь. Между “члениками” имеются поперечные перегородки с порами, благодаря которым содержимое из вышележащих клеток поступает в нижележащие. Эти перегородки похожи на сито – вот откуда берется название ситовидных трубок 🙂
Клетки-спутницы (сопровождающие клетки) также заслуживают нашего особого внимания. Они примыкают к боковым стенкам ситовидных трубок, из этих клеток через перфорации (поры) АТФ и нуклеиновые кислоты попадают в ситовидные трубки, создавая нисходящий ток. Таким образом, клетки-спутницы контролируют деятельность ситовидных трубок.
- Склеренхимные элементы (лубяные волокна)
Пронизывают флоэму, придавая ей опору. Часть клеток отмирает, что характерно для данной группы тканей.
- Паренхимные элементы (лубяная паренхима)
Обеспечивают радиальный транспорт веществ из проводящих тканей в рядом расположенные живые клетки других прилежащих тканей.
По мере старения ситовидные трубки закупориваются каллозой (образующей так называемое мозолистое тело) и затем отмирают. Отмершие ситовидные трубки постепенно сплющиваются давящими на них соседними живыми клетками.
Ниже вы найдете продольный срез тканей растения, изучите его.
Жилка
Это сосудисто-волокнистый пучок, образованный ксилемой и флоэмой. Ксилема располагается сверху, флоэма – снизу. Над пучком и под ним располагаются уголковая или пластинчатая колленхима, прилежащая к эпидерме и выполняющая опорную функцию. Склеренхима может располагаться участками или вокруг этих жилок. Жилки развиваются из прокамбия, располагаются в центральном осевом цилиндре. Существует два вида жилок:
- Открытые
Ключевой момент: между ксилемой и флоэмой располагается прослойка камбия. Этот факт обуславливает возможность образования дополнительного объема ксилемы и флоэмы в будущем, для дальнейшего роста и увеличения в объеме пучка. Без камбия невозможно было бы утолщения органа. Такие пучки можно обнаружить во всех органах двудольных растений.
- Закрытые
Основное отличие в том, что между ксилемой и флоэмой отсутствует камбий. Невозможно образования новых элементов проводящих тканей, ксилемы и флоэмы. Закрытые сосудисто-волокнистые пучки встречаются в стеблях однодольных растений.
Верхняя часть жилки представлена ксилемой, нижняя флоэмой. Вокруг пучка в виде кольца располагается механическая ткань – склеренхима. Над пучком и под ним механическая ткань – колленхима – выполняет опорную функцию.
Как вода поднимается от корней к листьям, против силы тяжести?
Запомните, что вода и растворенные в ней минеральные соли поступают в растение благодаря слаженной работе двух концевых двигателей: нагнетающего корневого и присасывающего листового.
- Корневое давление
Силу, поднимающую воду вверх по сосудам, называют корневым давлением. Величина его обычно составляет от 30 до 150 кПа. В основе этого явления лежит осмос: клетки корня выделяют минеральные и органические вещества в сосуды, что создает более высокое давление, чем в почвенном растворе, и последний начинает притягиваться в сосуды.
- Транспирация
Работа верхнего концевого двигателя заключается в транспирации – испарении воды с поверхности листа. Представим себе длинный сосуд с жидкостью от корневых волосков до клеток листа. Далее проведите следующий мысленный эксперимент: из верхнего конца трубки жидкость все время удаляется путем испарения, то есть место освобождается и это создает притягивающую силу для жидкости расположенной ниже, она поднимается наверх, на место испарившейся жидкости. Присасывающее действие транспирации передается корням в форме гидродинамического натяжения, которое связывает между собой работу обоих двигателей.
© Беллевич Юрий Сергеевич 2018-2021
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.
Источник