Частота столкновений атомов о стенки сосудов

Говоря об идеальном газе, мы исходили из того, что молекулы не взаимодействуют между собой. На самом деле предполагалось, конечно, отсутствие потенциальной энергии взаимодействия между ними. Упругие столкновения между молекулами и молекул со стенками обязательно должны происходить хотя бы потому, что иначе будет отсутствовать механизм, с помощью которого устанавливается равное распределение энергии по степеням свободы, иначе нельзя будет говорить о температуре системы, давлении в ней и т. п. Столкновения молекул происходят случайно. Они приводят к изменению направления и величины скорости частиц, но не меняют распределения молекул по скоростям и координатам в равновесных системах.

Возникает вопрос: а всегда ли молекулы будут сталкиваться друг с другом? Ведь молекулы очень малы, а расстояния между ними в идеальном газе на порядок больше их линейных размеров. Быть может, для сосудов малых размеров они летят без соударений от стенки к стенке? Подсчитаем, сколько раз в единицу времени одна молекула может столкнуться с другими и какое расстояние она пролетает в среднем между столкновениями.

Прежде чем перейти к вычислениям, примем простейшую модель для молекул. Будем представлять их в виде упругих шариков. При столкновении молекул с эффективными диаметрами d1 и d2  их центры сближаются на расстояние (d1 + d2)/2 (рис. 4.2).

Частота столкновений атомов о стенки сосудов

Рис. 4.2. Столкновение двух молекул (1) и траектория движения выделенной молекулы газа (2): направление ее движения меняется, когда какая-то из молекул среды попадает в радиус взаимодействия R = (dt + d2)/2

Если представить себе, что молекула 1 налетает на молекулу 2, то столкновение произойдет; если первая молекула попадет в сферу радиусом

описанную вокруг второй молекулы. Площадь сечения этой сферы

Величина называется эффективным радиусом взаимодействия молекул1 и 2, а  эффективным сечением взаимодействияэтих молекул. При столкновении одинаковых молекул d1 = d2 = d, R = d и

За время между двумя последовательными столкновениями молекула пролетает некоторый путь l. Разумеется, для каждой отдельной молекулы дело чистой случайности, сколь далеко ей удастся продвинуться без столкновений. Но усредняя путь l  по всем молекулам системы, получим физическую величину

называемую средней длиной свободного пробегамолекул. Статистический смысл этой величины таков: отношение малого отрезка длиной dx к дает вероятность столкновения

на пути dx. Пусть Р(х) — вероятность пролететь без столкновений расстояние х. Тогда

вероятность, пролететь без столкновений расстояние х + dx. Последнее событие складывается из двух независимых событий:

частица пролетела без столкновений расстояние х (вероятность чего равна Р(х));

частица также без столкновений преодолела еще и маленький отрезок пути dx (вероятность чего равна 1 – dx/). По теореме об умножении вероятностей имеем тогда

откуда следует уравнение для вероятности Р(х)

Поскольку вероятность преодолеть нулевое расстояние без столкновений равна единице, имеем дополнительно начальное условие Р(0) = 1. Интегрируя дифференциальное уравнение, находим окончательно

(4.1)

Как видно, чем больше путь х, тем меньше вероятность преодолеть его без столкновений.

Убедимся теперь, что действительно средняя длина свободного пробега. Вычислим, с какой вероятностью молекула будет иметь длину свободного пробега l. Это значит, что частица пролетела без столкновений расстояние х = l (вероятность чего есть Р(l))и столкнулась с другой частицей непосредственно за этим — на малом отрезке длиной dl (вероятность чего можно найти как dl/). Вероятность dw такого события по теореме умножения вероятностей равна

 

Находим тогда среднюю длину свободного пробега

(4.2)

He следует думать, конечно, что вероятность преодолеть расстояние l без столкновений равна нулю: часть молекул может пролететь очень большие расстояния, но лишь крайне небольшая их часть. При х = , как следует из (4.1), вероятность пролета без столкновений равна

то есть 63,2 % частиц испытают столкновения на этом пути. При длине пути х = 2получаем

то есть столкновения суждены уже 86,5 % частиц, при х = 3
в столкновениях участвует уже 95 % частиц, поскольку

Чтобы определить среднее число столкновений n одной молекулы с другими в единицу времени, сделаем следующие допущения:

  • все молекулы одинаковы, то есть мы не рассматриваем смеси газов;

  • все молекулы, за исключением той, за которой мы наблюдаем, неподвижны (в дальнейшем мы покажем, как избавиться от этого заведомо неверного предположения);

  • при столкновениях скорость vОT молекулы не меняется (это предположение, в сущности, того же уровня, что и предыдущее: при упругом столкновении с препятствием, которое остается неподвижным, модуль скорости действительно не меняется (смысл подстрочного индекса «от» станет ясным в дальнейшем)).

Путь нашей молекулы диаметром d остается прямолинейным до тех пор, пока ей не встретится неподвижная молекула, чей центр окажется от линии движения на расстоянии, меньшем R = d. После этого молекула сменит направление движения и будет двигаться прямолинейно до нового соударения. За интервал времени ∆t молекула пройдет ломаный путь vOT ∆t и столкнется со всеми молекулами, попавшими в ломаный цилиндр радиусом и площадью основания = pd 2 (см. рис. 4.1). Объем этого цилиндра равен pd 2 vOT ∆t. Если n-концентрация молекул в системе (их число в единице объема), то легко найти количество неподвижных молекул в цилиндре, то есть число столкновений DN:

Читайте также:  На что может повлиять сосуды

Отсюда следует частота столкновений (то есть число столкновений в единицу времени)

(4.3)

Избавимся теперь от последствий нашего предположения о неподвижности молекул. Пусть мы следим за молекулой 1, которая движется со скоростью v1, и она сталкивается с молекулой 2, имеющей скорость v2. В системе отсчета, связанной со второй молекулой, она неподвижна, зато первая молекула имеет скорость

Ясно теперь, что именно среднее значение относительной скорости молекул играет роль скорости vОТ, использованной нами при выводе соотношения (4.3) для частоты столкновений. Имеем тогда

(4.4)

где ????12 — угол между направлениями движения молекул. Из-за хаотичности движения этот угол равновероятно принимает любые значения, так что среднее значение его косинуса равно нулю. А усреднение квадратов скоростей приводит к появлению среднеквадратичной скорости молекул

знакомой нам по предыдущей главе. Получаем в итоге, что

и формула (4.3) записывается в окончательном виде

(4.5)

Заметим, что, перейдя от скорости молекулы к ее среднеквадратичной скорости, мы на самом деле избавились и от третьего допущения, поскольку vKB постоянна при заданной температуре.

Зная частоту столкновений, можно найти среднюю длину свободного пробега. Действительно, среднее время между двумя последовательными соударениями = 1/n, и за это время частица в среднем проходит путь = vKBt. Таким образом, средняя длина свободного пробега молекулы газа равна

(4.6)

Поскольку при постоянной температуре концентрация частиц пропорциональна давлению, то с ростом давления длина свободного пробега уменьшается. Это и понятно, так как уменьшается среднее расстояние между частицами. На самом деле молекула не является твердым шариком. Поэтому ее эффективный диаметр d-величина не совсем постоянная: он уменьшается при увеличении температуры, хотя и незначительно. Поэтому средняя длина свободного пробега слегка растет с повышением температуры.

Следует отметить, что среднее расстояние между частицами далеко не совпадает со средней длиной свободного пробега. Ранее мы оценили эффективный диаметр молекулы водяного пара d = 3·10–10 м и среднее расстояние между молекулами при нормальных условиях L = 3·10–9 м. Отсюда находим концентрацию молекул

Подставляя найденное n в выражение для длины свободного пробега, находим

Мы видим, что длина свободного пробега в 200 раз больше диаметра молекулы и в 20 раз больше среднего расстояния между молекулами. Для полноты картины оценим также частоту столкновений. Кинетическая энергия поступательного движения молекулы

Зная массу молекулы воды

получаем оценку среднеквадратичной скорости

Наконец, определяем

Иначе говоря, молекула испытывает 10 млрд соударений в секунду! Линейный размер сосуда, содержащего один литр газа, равен l = 10 см = 0,1 м. При скорости 630 м/с молекула могла бы пролететь путь от стенки до стенки за время

но за это время она испытает

столкновений с другими молекулами.

У нас осталось без обсуждения первое допущение об одинаковости всех молекул. Оно было нужно не по принципиальным соображениям, а для упрощения вывода и окончательных выражений. Если это не так, если мы рассматриваем смесь газов, то компоненты имеют разные концентрации частиц, различные среднеквадратичные скорости, а их молекулы — разные массы. Как следствие, изменится формула для средней длины свободного пробега, причем результаты будут отличаться для молекул различных сортов.

Пример. Найдем, как изменится формула (4.6) для средней длины свободного пробега молекул, если они представляют собой плоские диски, двигающиеся в материале тонкой пленки, будучи не в состоянии из нее вылететь?

Как и прежде, для столкновения молекул диаметрами d1 и d2они должны сблизиться на расстояние

Поэтому при движении молекулы по плоскости пленки она заденет все другие молекулы, которые попадут в ломаный прямоугольник (в отличие от цилиндра в трехмерном случае) шириной 2R и длиной vOT ∆t. Площадь этого прямоугольника

При поверхностной концентрации n молекул (в этом случае n — их число на единицу площади) произойдет ∆N = Sn столкновений. Отсюда для частоты столкновений находим

где мы учли, что, как и прежде, относительная скорость

Отсюда длина свободного пробега для движущихся в плоскости плоских молекул получается равной

При одинаковых молекулах (d1 = d2 = d)

Свидание в лесу, ежик в тумане и атомная бомба. Идея длины свободного пробега может быть использована для оценки видимости в лесу, в тумане или даже для грубой оценки критической массы урана в атомной бомбе.

Читайте также:  Что делают сосуды ксилемы

Представьте себе, что у вас назначено свидание в лесу. С какого максимального расстояния R вы заметите своего партнера (а партнер — вас)? Положим, вы включаете фонарик, чтобы подать ему/ей сигнал. Если не учитывать рассеяние света, то все деревья отбрасывают тени, линейный размер которых можно считать примерно равным диаметру d деревьев. На рис. 4.3 ваше место нахождения отмечено красным кружком, вокруг проведена окружность радиусом R, деревья показаны зелеными кружками, а их тени на окружности отмечены оранжевыми дугами.

Частота столкновений атомов о стенки сосудов

Рис. 4.3. Оценка максимального расстояния Rвидимости в лесу

Определим, какую часть окружности покрывают тени. Пусть n плотность посадки деревьев (их число на единицу площади). Если l — среднее расстояние между деревьями, то

Внутрь окружности попадает pR2n деревьев. Полная длина тени на окружности равна поэтому pR2nd. Мы видим, что полная длина тени растет как квадрат радиуса и при каком-то значении R превысит длину окружности 2pR. Но если вся окружность покрыта тенями, то свет дальше не пройдет. Это значение R и будет максимальным расстоянием видимости в лесу. Теперь понятно, что оно определяется из равенства

то есть мы получили оценку

Для численного примера можно взять значения, исходя из своего жизненного опыта. Скажем, свидание назначено среди березок со средним диаметром ствола d = 0,25 м и средним расстоянием между деревьями l = 10 м. Тогда находим R = 800 м.

Установим теперь связь полученного результата с формулой для средней длины свободного пробега. У нас одна молекула (световой луч) не имеет размера (d1 = 0), размер прочих молекул равен среднему диаметру ствола (d2 = d) и, наконец, молекулы (стволы) — покоятся, то есть надо отбросить множитель . Получаем в результате — применительно к нашей задаче — выражение

Таким образом, найденный нами радиус видимости

Вероятность свету преодолеть это расстояние без «столкновений» с деревьями равна

Иными словами, с вероятностью 86.5 % свет будет задержан деревьями.

Свидание в лесу происходило на плоскости. Сейчас мы вернемся в объемный мир. Тот же рисунок изображает теперь сферу радиусом R и препятствия в виде шариков диаметром d. Например, мы хотим оценить видимость для ежика, заблудившегося в тумане, и роль деревьев теперь исполняют водяные капли. Если концентрация капель равна п (их число в единице объема), то внутри сферы находится

Их тени на сфере представляют собой окружности площадью pd2/4. При максимальном расстоянии видимости тени покрывают всю сферу:

Отсюда находим расстояние видимости в тумане

Снова сравним этот результат с формулой (4.6) для длины свободного пробега молекулы в газовой среде, где надо отбросить фактор  и взять

Получаем

Вероятность преодолеть путь R = 3l без столкновений равна

Стало быть, с вероятностью 95 % столкновение на этом пути произойдет.

Получим численную оценку. Наши рассуждения годятся, если размер капель заметно (скажем, на один-два порядка) превышает длину световой волны. Так как видимый диапазон имеет длины волн 0,40–0,76 мкм, то для диаметра капель примем оценку d = 10–4 м. Для концентрации капель возьмем значение n = 3·107 м–3(о происхождении этого числа см. чуть ниже). Тогда видимость в тумане будет

Концентрацию капель мы оценили следующим образом. Давление насыщенного водяного пара при, скажем, 20 °С (Т = 293 К) равно рН = 2,3·103 Па. Применяя уравнение Клапейрона — Менделеева, находим плотность водяного пара при 100 % влажности:

При резком понижении температуры весь пар конденсируется в капли указанного размера — образуется густой туман. Масса одной капли равна

Количество образовавшихся капель в объеме V находим как отношение массы пара m к массе капли mКАП. Тогда концентрация капель определится из соотношения

При d = 10–4 м получаем использованное выше значение n = 3·10–7 м–3.

Зависимость расстояния видимости в тумане от размера капель дается, таким образом, соотношением

При предельно малых капельках с диаметром порядка десяти длин световой волны d = 10–5 м видимость сокращается до одного метра. Что называется, «не видно дальше своего носа». При еще меньших размерах капель наша модель становится неверной, так как свет уже нельзя рассматривать просто как совокупность частиц с ничтожно малым размером. Начинают играть роль эффекты дифракции, и выражение для эффективного сечения взаимодействия света с каплями уже не будет определяться чисто геометрическим сечением капель.

Решенная задача имеет также отношение к вопросу о критической массе урана-235, применяемого для изготовления атомных бомб. Вместо света в этой задаче мы имеем нейтроны, а вместо капель — ядра 235U. При столкновении с ядрами нейтроны расщепляют их на осколки, и при этом вылетает еще 3–4 нейтрона. При критическом радиусе Rкрит количество нейтронов не будет уменьшаться и возникнет самоподдерживающаяся цепная реакция — произойдет атомный взрыв. За основу определения критического радиуса можно взять радиус видимости

Читайте также:  Давление воздуха в сосуде равно 97

уменьшенный в kраз (k = 3,5 — коэффициент размножения нейтронов). Поскольку

получаем

Радиус ядра

где r0 = 1,4·10-15 м — радиус ядра с массовым числом А = 1, то есть протона (нейтрона). Поэтому эффективный диаметр взаимодействия равен

В справочнике (например, Российском энциклопедическом словаре) находим плотность урана rU = 19·103 кг/м3. Массу ядра урана-235 определяем по массе протона

Отсюда находим концентрацию ядер

Теперь мы можем оценить критический радиус Rкрит

критический объем Vкрит

и критическую массу Мкрит

Отметим, что никаких секретов производства ядерного оружия мы не выдаем: слишком грубы эти оценки. Единственная наша цель — продемонстрировать еще раз единство законов физики, действующих в самых разнообразных системах.

Источник

Рассмотрим находящийся в равновесии газ, заключенный в некотором сосуде. Возьмем элемент поверхности сосуда и подсчитаем число ударов молекул об этот элемент за время

Выделим из N молекул, заключенных в сосуде, те молекул, величина скорости которых заключена в пределах от v до

Из числа этих молекул направления движения, заключенные внутри телесного угла будет иметь количество молекул, равное

(см. ). Из выделенных таким образом молекул долетят за время до площадки и ударятся о нее J) молекулы, заключенные в косом цилиндре с основанием и высотой (рис. 95.1).

Рис. 95.1.

Количество этих молекул равно

(V — объем сосуда). Чтобы получить полное число ударов молекул о площадку , нужно просуммировать выражение (95.2) по телесному углу (отвечающему изменениям от 0 до и изменениям от 0 до ) и по скоростям в пределах от 0 до , где — наибольшая скорость, которой могут обладать молекулы в данных условиях (см. предыдущий параграф).

Начнем с суммирования по направлениям. Для этого представим в виде (см. (94.4)) и произведем интегрирование выражения (95.2) по 0 в пределах от 0 до и по в пределах от 0 до

Интегрирование по дает интеграл по равен 1/2. Следовательно,

Это выражение дает число ударов о площадку AS за время молекул, летящих в направлениях, заключенных в пределах телесного угла и имеющих величину скорости от v до .

Суммирование по скоростям дает полное число ударов молекул о площадку за время

Выражение

представляет собой среднее значение величины скорости V. Заменив в (95.4) интеграл произведением получим, что

Здесь есть число молекул газа в единице объема.

Наконец, разделив выражение (95.5) на и найдем число ударов молекул газа об единицу поверхности стенки в единицу времени:

Полученный результат означает, что число ударов пропорционально количеству молекул в единице объема («концентрации» молекул) и среднему значению величины Заметим, что величина (95.6) представляет собой плотность потока молекул, падающего на стенку.

Представим себе в газе воображаемую единичную площадку. Если газ находится в равновесии, через эту площадку будет пролетать в обоих направлениях в среднем одинаковое количество молекул, причем количество молекул, пролетающих в единицу времени в каждом из направлений, также определяется формулой (95.6).

С точностью до числового коэффициента выражение (95.6) может быть получено с помощью следующих упрощенных рассуждений. Допустим, что молекулы газа движутся только вдоль трех взаимно перпендикулярных направлений. Если в сосуде содержится N молекул, то в любой момент времени вдоль каждого из направлений будет двигаться молекул, причем половина из них (т. е. молекул) движется вдоль данного направления в одну сторону, половина в другую. Следовательно, в интересующем нас направлении (например, по нормали к данному элементу стенки сосуда) движется 1/6 часть молекул.

Предположим, кроме того, что все молекулы движутся с одинаковой скоростью, равной Тогда за время до элемента стенки долетят все движущиеся по направлению к нему молекулы, заключенные в объеме цилиндра с основанием и высотой (рис. 95.2). Число этих молекул равно Соответственно число ударов об единичную площадку в единицу времени оказывается равным

Полученное выражение отличается от (95.6) лишь значением числового множителя (1/6 вместо 1/4).

Сохранив предположение о движении молекул в трех взаимно перпендикулярных направлениях, но отказавшись от допущения об одинаковости скоростей молекул, следует выделить из числа молекул в единице объема те молекул, скорости которых лежат в интервале от v до

Рис. 95.2.

Количество молекул, имеющих такие скорости и долетающих до площадки за время равно

Полное число ударов получим, проинтегрировав выражение (95.8) по скоростям:

Наконец, разделив на и , получим формулу (95.7). Таким образом, предположение об одинаковости скоростей молекул не влияет на результат, получаемый для числа ударов молекул о стенку. Однако, как мы увидим в следующем параграфе, это предположение изменяет результат вычислений давления.

Источник