Чем вызвано искривление поверхности жидкости вблизи стенок сосуда

Чем вызвано искривление поверхности жидкости вблизи стенок сосуда thumbnail

Силы, возникающие на кривой поверхности жидкости.

Молекула находится в равновесии, если эта сила направлена перпендикулярно к поверхности жидкости.

Рис.20.4

При смачивании сила направлена в сторону стенки.

Если жидкость не смачивает стенку, то сила направлена в сторону жидкости.

Искривление поверхности жидкости (например, вблизи стенки сосуда) приводит к появлению сил, действующих на жидкость под этой поверхностью и к повышению давления внутри жидкости.

Рассмотрим сферическую каплю жидкости с радиусом сферы r (рис. 20.5). при умень­шении радиуса капли свободная энергия уменьшается и жидкость под сферической поверхностью всегда испытывает дополнитель­ное давление, направленное внутрь.

Пусть под действием этого давления капля уменьшит свой объем на dV, (рис.). Работа сжа­тия жидкости произведена, очевидно, за счет уменьшения свободной энергии.

Рис.20.5

Работа сжатия dA равна

dA = pdV. (20.14)

где р – давление. Уменьшение свободной энергии

dF =σdS, (20.15)

где dS – уменьшение поверхности шара, соответствующее умень­шению радиуса на dr. Из известных формул для поверхности и объема шара

получим выражения:

.

Подставляя эти значения для dS и dV в уравнения (20.14) и (20.15) и принимая во внимание, что модули dA и dF равны, получим:

.

Отсюда следует выражение для давления, оказываемого на жидкость искривленной сферической по­верхностью:

. (20.16)

Аналогично можно получить выражение для цилиндрической поверхности жидкости:

.

Для поверхности любой формы давление, обусловленное кривизной поверх­ности, выражается уравнением Лапласа:

,

где r1 и r2 – радиусы кривизны любых взаимно перпендикулярных сечений в данной точке поверх­ности/

Если жидкость находится в узком сосуде, влияние стенок простирается на всю поверхность жид­кости. Если размеры сосуда, в котором находится жидкость, или, если расстояние между поверхностями, ограничивающими жидкость, сравнимы с радиусом кривизны по­верхности жидкости, то такие сосуды называются капиллярными.Явления, происходящие в узких сосудах, назы­ваются капиллярными явлениями.

Дополнительное давле­ние Лапласа вызываеткапиллярный подъем.

Рис.20.5

Случай смачивания

Вследствие давления, вызванного кривизной поверхности, жидкость, заполняющая трубку, испытывает давление р, направленное к центру кривизны мениска, т. е. вверх, и равное 2σ/r0. Под дей­ствием этого давления жидкость поднимается по трубке до уров­ня h, при котором гидростатиче­ское давление ρgh столба жидко­сти высотой h уравнове­шивает давление р.

Условие равновесия:

. (20.17)

где ρ – плотность жидкости, а g – ускорение силы тяжести. Это равенство определяет высоту подъема жидкости в капилляре.

Найдем связь между высотой подъема h и ра­диусом трубки r. Центр сферы, частью которой является мениск, на­ходится в точке О. Из чертежа следует

.

Поэтому (20.17) перепишется в виде

.

Отсюда

. (20.18)

Из (20.18) следует, что, высота подъема жидкости в ка­пилляре растет с уменьшением радиуса. капилляра и с увеличением коэффициента поверхностного натя­жения жидкости.

Капиллярным подъемом объясняются такие известные явления как впитывание жидкости фильтровальной бумагой, перенос керосина вдоль фитиля, волокна которого также являют­ся тонкими капиллярами, перенос жидкости в пористых телах. Капил­лярные силы обеспечивают подъем воды из почвы по стволам деревьев, где волокна древесины играют роль тонких ка­пилляров.

Источник

Капиллярные явления

Искривление поверхности жидкости у краев сосуда особенно отчетливо видно в узких трубках, где искривляется вся свободная поверхность жидкости. В трубках с узким сечением эта поверхность представляет собой часть сферы, ее называют мениском. У смачивающей жидкости образуется вогнутый мениск (рис. 1, а), а у несмачивающей – выпуклый (рис. 1, б). Так как площадь поверхности мениска больше, чем площадь поперечного сечения трубки, то под действием молекулярных сил искривленная поверхность жидкости стремится выпрямиться.

Чем вызвано искривление поверхности жидкости вблизи стенок сосуда

Рис. 1

Силы поверхностного натяжения создают дополнительное (лапласово) давление под искривленной поверхностью жидкости.

Для расчета избыточного давления предположим, что поверхность жидкости имеет форму сферы радиуса R (рис. 2. а), от которой мысленно отсечен шаровой сегмент, опирающийся на окружность радиуса r = R sin α.

Чем вызвано искривление поверхности жидкости вблизи стенок сосуда

Рис. 2

На каждый бесконечно малый элемент длины Δl этого контура действует касательная к поверхности сферы сила поверхностного натяжения, модуль которой (~Delta F = alpha Delta l). Разложим вектор (~Delta vec F) на две составляющие силы (~Delta vec F_1) и (~Delta vec F_2). Из рисунка 2, а видим, что геометрическая сумма сил (~Delta vec F_2) для двух выделенных диаметрально противоположных элементов Δl равна нулю. Поэтому сила поверхностного натяжения направлена перпендикулярно плоскости сечения внутрь жидкости (рис. 2, в) и модуль ее равен

(~F = sum Delta F_1 = sum Delta F sin alpha = sum alpha Delta l frac rR = frac{alpha r}{R} sum Delta l = frac{alpha r}{R} cdot 2 pi r = frac{2 alpha pi r^2}{R} .)

Избыточное давление, создаваемое этой силой[~p = frac FS], где S = πr2 – площадь основания сферического сегмента. Поэтому

(~p = frac{2 alpha pi r^2}{R cdot pi r^2} = frac{2 alpha}{R} .)

Если поверхность жидкости вогнутая, то сила поверхностного натяжения направлена из жидкости (рис. 2, б) и давление под вогнутой поверхностью жидкости меньше, чем под плоской, на ту же величину (~p = frac{2 alpha}{R}) . Эта формула определяет лапласово давление для случая сферической формы свободной поверхности жидкости. Она является частным случаем формулы Лапласа, определяющей избыточное давление для произвольной поверхности жидкости двоякой кривизны:

Читайте также:  Чем образованы стенки кровеносных сосудов

(~p = alpha left( frac{1}{R_1} + frac{1}{R_2} right),)

где R1 и R2 – радиусы кривизны двух любых взаимно перпендикулярных нормальных сечений поверхности жидкости. Радиус кривизны положителен, если центр кривизны соответствующего сечения находится внутри жидкости, и отрицателен, если центр кривизны находится вне жидкости. Для цилиндрической поверхности (R1 = l; R2 = ∞) избыточное давление (~p = frac{alpha}{R}) .

Если поместить узкую трубку (капилляр) одним концом в жидкость, налитую в широкий сосуд, то вследствие наличия силы лапласова давления жидкость в капилляре поднимается (если жидкость смачивающая) или опускается (если жидкость несмачивающая) (рис. 3, а, б), так как под плоской поверхностью жидкости в широком сосуде избыточного давления нет.

Чем вызвано искривление поверхности жидкости вблизи стенок сосуда

Рис. 3

Явления изменения высоты уровня жидкости в капиллярах по сравнению с уровнем жидкости в широких сосудах называются капиллярными явлениями.

Жидкость в капилляре поднимается или опускается на такую высоту h, при которой сила гидростатического давления столба жидкости уравновешивается силой избыточного давления, т.е.

(~frac{2 alpha}{R} = rho gh .)

Откуда (~h = frac{2 alpha}{rho gR}). Если смачивание не полное θ ≠ 0 (θ ≠ 180°), то, как показывают расчеты, (~h = frac{2 alpha}{rho gR} cos theta).

Капиллярные явления весьма распространены. Поднятие воды в почве, система кровеносных сосудов в легких, корневая система у растений, фитиль и промокательная бумага – капиллярные системы.

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. – Мн.: Адукацыя i выхаванне, 2004. – C. 182-184.

Источник

Авторы: А. М. Емельяненко, Н. В. Чураев

КАПИЛЛЯ́РНЫЕ ЯВЛЕ́НИЯ, со­во­куп­ность яв­ле­ний, обу­слов­лен­ных по­верх­но­ст­ным на­тя­же­ни­ем на гра­ни­це раз­де­ла не­сме­ши­ваю­щих­ся сред (в сис­те­мах жид­кость – жид­кость, жид­кость – газ или пар) при на­ли­чии ис­крив­ле­ния по­верх­но­сти. Ча­ст­ный слу­чай по­верх­но­ст­ных яв­ле­ний.

Рис. 1.

При от­сут­ст­вии си­лы тя­же­сти жид­кость ог­ра­ни­чен­ной мас­сы под воз­дей­ст­ви­ем по­верх­но­ст­но­го на­тя­же­ния стре­мит­ся за­нять объ­ём с ми­ним. по­верх­но­стью, т. е. при­ни­ма­ет фор­му ша­ра. В ус­ло­ви­ях дей­ст­вия си­лы тя­же­сти не слиш­ком вяз­кая жид­кость дос­та­точ­ной мас­сы при­ни­ма­ет фор­му со­су­да, в ко­то­рый на­ли­та, и её сво­бод­ная по­верх­ность при от­но­си­тель­но боль­шой пло­ща­ди (вда­ли от сте­нок со­су­да) ста­но­вит­ся пло­ской, т. к. роль по­верх­но­ст­но­го на­тя­же­ния ме­нее су­ще­ст­вен­на, чем си­лы тя­же­сти. При взаи­мо­дей­ст­вии с по­верх­но­стью др. жид­ко­сти или твёр­до­го те­ла (напр., со стен­ка­ми со­су­да) по­верх­ность рас­смат­ри­вае­мой жид­ко­сти ис­крив­ля­ет­ся в за­ви­си­мо­сти от на­ли­чия или от­сут­ст­вия сма­чи­ва­ния. Ес­ли име­ет ме­сто сма­чи­ва­ние, т. е. мо­ле­ку­лы жид­ко­сти 1 (рис. 1) силь­нее взаи­мо­дей­ст­ву­ют с мо­ле­ку­ла­ми по­верх­но­сти 3, чем с мо­ле­ку­ла­ми др. жид­ко­сти (или га­за) 2, то под воз­дей­ст­ви­ем раз­но­сти сил меж­мо­ле­ку­ляр­но­го взаи­мо­дей­ст­вия жид­кость 1 под­ни­ма­ет­ся по стен­ке со­су­да – уча­сток жид­ко­сти, при­мы­каю­щий к стен­ке, ис­крив­ля­ет­ся. Дав­ле­ние, вы­зы­вае­мое подъ­ё­мом жид­ко­сти, урав­но­ве­ши­ва­ет­ся ка­пил­ляр­ным дав­ле­ни­ем $Delta p$ – раз­но­стью дав­ле­ний над и под ис­крив­лён­ной по­верх­но­стью раз­де­ла. Ве­ли­чи­на ка­пил­ляр­но­го дав­ле­ния за­ви­сит от сред­не­го ра­диу­са $r$ кри­виз­ны по­верх­но­сти и оп­ре­де­ля­ет­ся фор­му­лой Ла­п­ла­са: $Delta p=2 sigma/r$, где $sigma$ – по­верх­но­ст­ное на­тя­же­ние. Ес­ли гра­ни­ца раз­де­ла фаз пло­ская ($r= infty$), то в ус­ло­ви­ях ме­ха­нич. рав­но­ве­сия сис­те­мы дав­ле­ния с обе­их сто­рон гра­ни­цы раз­де­ла рав­ны и $Delta p=0$. В слу­чае во­гну­той по­верх­но­сти жид­ко­сти ($r lt 0$) дав­ле­ние в жид­ко­сти ни­же, чем дав­ле­ние в гра­ни­ча­щей с ней фа­зе и $Delta p lt 0$; для вы­пук­лой по­верх­но­сти ($r>0$) $Delta p>0$.

Ес­ли стен­ки со­су­да при­бли­зить друг к дру­гу, зо­ны ис­крив­ле­ния по­верх­но­сти жид­ко­сти об­ра­зу­ют ме­ниск – пол­но­стью ис­крив­лён­ную по­верх­ность. Об­ра­зо­вав­шая­ся сис­те­ма на­зы­ва­ет­ся ка­пил­ля­ром; в нём в ус­ло­ви­ях сма­чи­ва­ния дав­ле­ние под ме­ни­ском по­ни­же­но и жид­кость в ка­пил­ля­ре под­ни­ма­ет­ся (над уров­нем сво­бод­ной по­верх­но­сти жид­ко­сти в со­су­де); вес стол­ба жид­ко­сти вы­со­той $h$ урав­но­ве­ши­ва­ет ка­пил­ляр­ное дав­ле­ние $Delta p$. Не­сма­чи­ваю­щая жид­кость в ка­пил­ля­ре об­ра­зу­ет вы­пук­лый ме­ниск, дав­ле­ние над ко­то­рым вы­ше, и жид­кость в нём опус­ка­ет­ся ни­же уров­ня сво­бод­ной по­верх­но­сти вне ка­пил­ля­ра. Вы­со­та под­ня­тия (опус­ка­ния) жид­ко­сти в ка­пил­ля­ре от­но­си­тель­но сво­бод­ной по­верх­но­сти (где $r= infty$ и $Delta p=0$) оп­ре­де­ля­ет­ся со­от­но­ше­ни­ем: $h=2 sigma cos theta/ Delta rho gr$, где $theta$ – крае­вой угол (угол ме­ж­ду ка­са­тель­ной к по­верх­но­сти ме­ни­ска и стен­кой ка­пил­ля­ра), $Delta rho$ – раз­ность плот­но­стей жид­ко­сти 1 в ка­пил­ля­ре и внеш­ней сре­ды 2, $g$ – ус­ко­ре­ние сво­бод­но­го па­де­ния.

Ис­крив­ле­ние по­верх­но­сти влия­ет на ус­ло­вия рав­но­ве­сия ме­ж­ду жид­ко­стью и её на­сы­щен­ным па­ром: со­глас­но Кель­ви­на урав­не­нию, дав­ле­ние па­ров над ка­п­лей жид­ко­сти по­вы­ша­ет­ся с умень­ше­ни­ем её ра­диу­са, что объ­яс­ня­ет, напр., рост боль­ших ка­пель в об­ла­ках за счёт ма­лых.

Рис. 2.

К ха­рак­тер­ным К. я. от­но­сят­ся ка­пил­ляр­ное впи­ты­ва­ние, по­яв­ле­ние и рас­про­стра­не­ние ка­пил­ляр­ных волн, ка­пил­ляр­ное пе­ре­дви­же­ние жид­ко­сти, ка­пил­ляр­ная кон­ден­са­ция, про­цес­сы ис­па­ре­ния и рас­тво­ре­ния при на­ли­чии ис­крив­лён­ной по­верх­но­сти. Ка­пил­ляр­ное впи­ты­ва­ние ха­рак­те­ри­зу­ет­ся ско­ро­стью, за­ви­ся­щей от ка­пил­ляр­но­го дав­ле­ния и вяз­ко­сти жид­ко­сти. Оно иг­ра­ет су­ще­ст­вен­ную роль в во­до­снаб­же­нии рас­те­ний, дви­же­нии во­ды в поч­вах и др. про­цес­сах, свя­зан­ных с дви­же­ни­ем жид­ко­стей в по­рис­тых сре­дах. Ка­пил­ляр­ная про­пит­ка – один из рас­про­стра­нён­ных про­цес­сов хи­мич. тех­но­ло­гии. В сис­те­мах с не­па­рал­лель­ны­ми стен­ка­ми (или ка­пил­ля­рах ко­нич. се­че­ния) кри­виз­на ме­ни­сков за­ви­сит от рас­по­ло­же­ния в них гра­нич­ных по­верх­но­стей жид­ко­сти, и ка­п­ля сма­чи­ваю­щей жид­ко­сти в них на­чи­на­ет дви­гать­ся к ме­ни­ску с мень­шим ра­диу­сом (рис. 2), т. е. в ту сто­ро­ну, где дав­ле­ние ни­же. При­чи­ной ка­пил­ляр­но­го пе­ре­дви­же­ния жид­ко­сти мо­жет слу­жить и раз­ни­ца сил по­верх­но­ст­но­го на­тя­же­ния в ме­ни­сках, напр. при су­ще­ст­во­ва­нии гра­ди­ен­та темп-ры или при ад­сорб­ции по­верх­но­ст­но-ак­тив­ных ве­ществ, сни­жаю­щих по­верх­но­ст­ное на­тя­же­ние.

Читайте также:  Сосуды находящиеся под разряжением

Ка­пил­ляр­ной кон­ден­са­ци­ей на­зы­ва­ют про­цесс кон­ден­са­ции па­ра в ка­пил­ля­рах и мик­ро­тре­щи­нах по­рис­тых тел, а так­же в про­ме­жут­ках ме­ж­ду сбли­жен­ны­ми твёр­ды­ми час­ти­ца­ми или те­ла­ми. Не­об­хо­ди­мое ус­ло­вие ка­пил­ляр­ной кон­ден­са­ции – на­ли­чие сма­чи­ва­ния по­верх­но­сти тел (час­тиц) кон­ден­си­рую­щей­ся жид­ко­стью. Про­цес­су ка­пил­ляр­ной кон­ден­са­ции пред­ше­ст­ву­ет ад­сорб­ция мо­ле­кул па­ра по­верх­но­стью тел и об­ра­зо­ва­ние ме­ни­сков жид­ко­сти. В ус­ло­ви­ях сма­чи­ва­ния фор­ма ме­ни­сков во­гну­тая и дав­ле­ние $p$ на­сы­щен­но­го па­ра над ни­ми ни­же, чем дав­ле­ние на­сы­щен­но­го па­ра $p_0$ при тех же ус­ло­ви­ях над пло­ской по­верх­но­стью. Т. е. ка­пил­ляр­ная кон­ден­са­ция про­ис­хо­дит при бо­лее низ­ких, чем $p_0$, дав­ле­ни­ях.

Ис­крив­ле­ние по­верх­но­сти жид­ко­сти мо­жет су­ще­ст­вен­но вли­ять на про­цес­сы ис­па­ре­ния, ки­пе­ния, рас­тво­ре­ния, за­ро­ды­ше­об­ра­зо­ва­ния при кон­ден­са­ции па­ра и кри­стал­ли­за­ции. Так, свой­ст­ва сис­тем, со­дер­жа­щих боль­шое ко­ли­че­ст­во ка­пель или пу­зырь­ков га­за (эмуль­сий, аэ­ро­зо­лей, пен), и их фор­ми­ро­ва­ние во мно­гом оп­ре­де­ля­ют­ся К. я. Они ле­жат так­же в ос­но­ве мн. тех­но­ло­гич. про­цес­сов: фло­та­ции, спе­ка­ния по­рош­ков, вы­тес­не­ния неф­ти из пла­стов вод­ны­ми рас­тво­ра­ми по­верх­но­ст­но-ак­тив­ных ве­ществ, ад­сорб­ци­он­но­го раз­де­ле­ния и очи­ст­ки га­зо­вых и жид­ких сме­сей и т. п.

Впер­вые К. я. бы­ли ис­сле­до­ва­ны Ле­о­нар­до да Вин­чи. Сис­те­ма­тич. на­блю­де­ния и опи­са­ния К. я. в тон­ких труб­ках и ме­ж­ду пло­ски­ми, близ­ко рас­по­ло­жен­ны­ми стек­лян­ны­ми пла­сти­на­ми про­вёл в 1709 Ф. Хокс­би, де­мон­ст­ра­тор Лон­дон­ско­го ко­ро­лев­ско­го об-ва. Ос­но­вы тео­рии К. я. за­ло­же­ны в тру­дах Т. Юн­га, П. Ла­п­ла­са, а их тер­мо­ди­на­мич. рас­смот­ре­ние осу­ще­ст­вил Дж. Гиббс (1876).

Источник

КАПИЛЛЯРНЫЕ ЯВЛЕНИЯ – совокупность явлений, обусловленных действием межфазного поверхностного натяжения на границе раздела несмешивающихся сред; к К. я. обычно относят явления в жидкостях, вызванные искривлением их поверхности, граничащей с др. жидкостью, газом или собств. паром. К. я.- частный случай поверхностных явлений. В отсутствие силы тяжести поверхность жидкости искривлена всегда. Под воздействием поверхностного натяжения ограниченный объём жидкости стремится принять форму шара, т. е. занять объём с мин. поверхностью. Силы тяжести существенно меняют картину. Жидкость с относительно малой вязкостью быстро принимает форму сосуда, в к-рый налита, причём её свободная поверхность (не граничащая со стенками сосуда) в случае достаточно больших масс жидкости и большой площади свободной поверхности практически плоская. Однако по мере уменьшения массы жидкости роль поверхностного натяжения становится более существенной, чем сила тяжести. Так, напр., при дроблении жидкости в газе (или газа в жидкости) образуются капли (пузырьки) сферич. формы. Свойства систем, содержащих большое кол-во капель или пузырьков (эмульсии, жидкие аэрозоли, пены), и условия их формирования во многом определяются кривизной поверхности этих образований, то есть К. я. Большую роль К. я. играют и в зародышеобразовании при конденсации пара, кипении жидкостей, кристаллизации. Искривление поверхности жидкости может происходить также в результате её взаимодействия с поверхностью др. жидкости или твёрдого тела. В этом случае существенно наличие или отсутствие смачивания жидкостью этой поверхности. Если имеет место смачивание, т. е. молекулы жидкости 1 (рис. 1) сильнее взаимодействуют с поверхностью твёрдого тела 3, чем с молекулами др. жидкости (или газа) 2, то под воздействием разности сил межмолекулярного взаимодействия жидкость поднимается по стенке сосуда и примыкающий к твёрдому телу участок поверхности жидкости будет искривлён. Гидростатич. давление, вызванное подъёмом уровня жидкости, уравновешивается капиллярным давлением – разностью давлений над и под искривлённой поверхностью, величина к-рого связана с локальной кривизной поверхности жидкости. Если сближать плоские стенки сосуда с жидкостью, то зоны искривления перекроются и образуется мениск – полностью искривлённая поверхность. В таком капилляре в условиях смачивания под вогнутым мениском давление понижено, жидкость поднимается; вес столба жидкости вые. h0 уравновешивает капиллярное давление Dр. В условиях равновесия

где r1 и r2 – плотности жидкости 1 и газа 2, s12 – межфазное поверхностное натяжение, g-ускорение свободного падения, r-радиус средней кривизны поверхности мениска (1/r=1/R1+1/R2, где R1 и R2 – радиусы кривизны мениска в двух взаимно перпендикулярных плоскостях сечения). Для смачивающей жидкости r<0 и h0>0. Несмачивающая жидкость образует выпуклый мениск, капиллярное давление под к-рым положительно, что приводит к опусканию жидкости в капилляре ниже уровня свободной поверхности жидкости (h0<0). Радиус кривизны r связан с радиусом капилляра rк соотношением r=-rк/cosq, где q – краевой угол, образуемый поверхностью жидкости со стенками капилляра. Из ур-ния (1) можно получить т. н. капиллярную постоянную а – величину, характеризующую размеры системы L<а, при к-рых становятся существенными К. я.: Для воды при темп-ре 20 °С а=0,38 см. К К. я. относятся капиллярное впитывание, появление и распространение капиллярных волн, капиллярное передвижение жидкости, капиллярная конденсация, процессы испарения и растворения при наличии искривлённой поверхности. Для капиллярного впитывания важной характеристикой является его скорость v, определяемая величиной капиллярного давления и вязким сопротивлением течению жидкости в капилляре. Скорость v изменяется со временем впитывания t, и для вертикально расположенного капилляра

Читайте также:  Все о сосудах высокого давления

где h(t) – положение мениска в момент времени t (рис. 1), h – коэф. вязкости жидкости. При впитывании в горизонтальный капилляр

При v>10-3 см/с следует учитывать возможную зависимость краевого угла q от v, а в нек-рых случаях – вязкое сопротивление вытесняемого из капилляра газа (или др. жидкости). Скорость капиллярного впитывания играет существ, роль в водоснабжении растений, движении жидкости в почвах и др. пористых телах. Капиллярная пропитка – один из распространённых процессов хим. технологии. Искривление свободной поверхности жидкости под действием внеш. сил (напр., ветра, вибрации) вызывает появление и распространение капиллярных волн (“ряби” на поверхности жидкости). Самопроизвольное образование поверхностных волн – флуктуации толщины тонких слоев жидкости (струи, плёнки) – является причиной их неустойчивости по отношению к состоянию капель или капиллярного конденсата. Разность капиллярного давления, возникающая в результате разл. кривизны поверхностей менисков, может вызывать капиллярное передвижение жидкости (рис. 2).

Для смачивающих жидкостей поток жидкости направлен к мениску с меньшим радиусом кривизны (т. е. в сторону меньшего давления). Причиной капиллярного передвижения может быть не только градиент кривизны, но и градиент поверхностного натяжения жидкости Так, градиент темп-ры приводит к разности поверхностного натяжения и, следовательно, к разности капиллярного давления в жидкости (термокапиллярное течение). Этим же объясняется движение капель жидкости и пузырьков газа в неравномерно нагретой среде: под влиянием градиента поверхностного натяжения приходит в движение поверхность пузырьков или капель. Аналогичный эффект наблюдается и при изменении s12 при адсорбции поверхностно-активных веществ (ПАВ): ПАВ снижают s12 и жидкость перемещается в том направлении, где адсорбция ПАВ на поверхности жидкости меньше (эффект Марангони – Гиббса). Искривление поверхности раздела фаз приводит к изменению величины равновесного давления пара р над ней или растворимости твёрдых тел. Так, напр., над каплями жидкости р выше, чем давление насыщ. пара ps над плоской поверхностью жидкости при той же темп-ре Т. Соответственно растворимость с мелких частиц в окружающей среде выше, чем растворимость cs плоской поверхности того же вещества. Эти изменения описываются Кельвина уравнением ,полученным из условия равенства хим. потенциалов в смежных фазах в состоянии термодинамич. равновесия:

где V – молярный объём жидкости или твёрдого тела. Для шарообразных частиц г по абс. величиче равно их радиусу. Понижение или повышение р и с зависит, в соответствии с (4), от знака r (r>0 для выпуклых, и r<0 для вогнутых поверхностей). Так, в отличие от рассмотренного выше случая давление пара в пузырьке или над поверхностью вогнутого мениска понижено: p<ps.

Ур-ние (4) определяет направление переноса вещества (от больших значений р и с к меньшим) в процессе перехода системы к состоянию термодинамич. равновесия. Это приводит, в частности, к тому, что крупные капельки (или частицы) растут за счёт испарения (растворения) более мелких, а неровные поверхности (при условии постоянства межфазного натяжения) сглаживаются за счёт испарения (растворения) выступов и заполнения впадин. Заметные отличия давления и растворимости имеют место лишь при достаточно малых r (для воды, напр., при |r|[0,1 мкм). Поэтому ур-ние Кельвина часто используется для характеристики состояния малых объектов (коллоидные системы, тонкопористые тела, зародыши новой фазы). Капиллярная конденсация – процесс перехода пара в жидкость, заполняющую капилляры, щели или промежутки между частицами, с образованием вогнутых капиллярных менисков. Необходимое условие капиллярной конденсации – смачивание жидкостью поверхности конденсации, ей предшествует адсорбция молекул пара на поверхности. Степень заполнения капилляров или пористых тел капиллярно-конденсированной жидкостью описывается ур-нием Кельвина (подробнее см. в ст. Капиллярная конденсация ).Отрицат. капиллярное давление (Dр<0) может удерживать смачиваемые жидкостью частицы (рис. 3). Если яастицы дисперсного тела не связаны прочно, возможна его объёмная деформация под действием капиллярных сил – капиллярная контракция. Так, напр., рост капиллярного давления при высушивании может приводить к значит, усадке материалов. К. я. впервые были открыты и исследованы Леонардо да Винчи (Leonardo da Vinci), Б. Паскалем (В. Pascal) и Дж. Жюреном (J. Jurin) в опытах с капиллярными трубками. Теория К. я. развита в работах П. С. Лапласа (P. S. Laplace), Т. Юнга (Th. Young), И. С. Громеки и Дж. У. Гиббса (J. W. Gibbs). Лит.: Громека И. С., Собр. соч., М., 1952; Адамсон А., Физическая химия поверхностей, пер. с англ., М., 1979; Современная теория капиллярности, под ред. А. И. Русанова, Ф. Ч. Гудрича, Л., 1980; Дерягин Б. В., Чураев Н. В., Смачивающие пленки, М., 1984; Роулинсон Д ж., Уидом Б., Молекулярная теория капиллярности, пер. с англ., М., 1986. Н. В. Чураев.

Предметный указатель >>

Источник