Чему равен объем газа в сосуде

Чему равен объем газа в сосуде thumbnail

19 ноября 2011

Автор КакПросто!

Газ, как и вещества, находящиеся в других агрегатных состояниях, имеет ряд параметров, в число которых входит и объем. Объем газа находится на основании других его характеристик, которые приведены в условии задачи. Любой газ, независимо от вида и состава, имеет объем, который и требуется найти во многих задачах.

Инструкция

Газ, независимо от его состава, имеет три основных параметра: массу, объем и плотность. В большинстве задач оперируют так называемым идеальным газом, поэтому опираться в них необходимо лишь на приведенные в условии значения массы, давления, температуры. Например, в условии задачи может быть указан газ азот N2 с температурой в 60 градусов, давлением в 30 кПа и массой в 0,05 г. Зная эти три параметра и состав газа, по уравнению Менделеева-Клапейрона можно найти его объем. Для этого необходимо переделать данное уравнение следующим образом:

pV=mRT/M.

Осуществив дальнейшее преобразование формулы, найдите объем азота:

V =mRT/pM.

При этом молярную массу M можно найти по таблице Д.И. Менделеева. У азота она равна 12 г/моль. Тогда:

V=0,05*12*8,31*333/30*12≈4,61.

Если известны объем при нормальных условиях, а объем при других условиях является искомым, примените законы Бойля-Мариотта и Гей-Люссака:

pV/T=pнVн/Tн.

В таком случае преобразуйте формулу следующим образом:

pV*Tн=pнVн*T.

Отсюда объем V равен:

V=pнVн*T/p*Tн.

Индекс н означает величину того или иного параметра при нормальных условиях.

Если рассматривать объем газа с точки зрения термодинамики, можно заметить, что на газы могут действовать силы, за счет которых меняется объем. При этом давление газа постоянно, что характерно для изобарных процессов. В ходе таких процессов объем изменяется с одной величины на другую. Их можно обозначить как V1 и V2. В условиях ряда задач описывается некоторый газ, находящийся под поршнем в сосуде. При расширении этого газа поршень передвигается на некоторое расстояние dl, в результате чего осуществляется работа:

A=pdV=p(V2 -V1).

Эта формула связывает изменение объема газа и работу. Как известно, если дан конечный объем V2, то можно найти начальный объем V1:

V1=pV2-A/p.

Наконец, наиболее просто найти объем газа, исходя из двух других физических параметров – массы и плотности. Если в условиях задан газ с некоторой плотностью и массой, то его объем следует вычислять по формуле:

V=m/ρ.

У каждого газа имеется определенная плотность, как и у любого твердого или жидкого вещества. Поэтому, находя объем газа, в первую очередь необходимо учитывать именно этот параметр.

Войти на сайт

или

Забыли пароль?

Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Источник

Random converter

  • Калькуляторы
  • Термодинамика – теплота

Калькулятор закона состояния идеального газа (давление-объем-температура-количество)

Калькулятор закона состояния идеального газа определяет одну из четырех величин, входящих в уравнение состояния (давление, объем, температура или количество), если известны три другие величины.

Пример: Рассчитать давление в паскалях в 70-литровом баке работающего на метане автомобиля, если в нем хранится 800 молей метана при 30 °С.

Еще несколько примеров решения задач о состоянии идеального газа под приводится калькулятором.

Выберите неизвестную величину для решения уравнения состояния идеального газа:

PVTn

Абсолютное давление

P

Объем

V

Температура

T

ИЛИ

Поделиться ссылкой на этот калькулятор, включая входные параметры

Для расчета выберите неизвестную величину и введите три известные величины из четырех имеющихся в уравнении состояния газа (давление, объем, температура, количество). Четвертая величина будет рассчитана после нажатия на кнопку Рассчитать. Количество можно ввести в молях или указать молярную массу и массу газа. Для определения молярной массы любого газа можно использовать калькулятор молярной массы. Если нужно определить молярную массу смеси газов, например, сухого воздуха, нужно определить молярные массы каждого газа и умножить их на процентное содержание по массе каждого газа в воздухе.

Примеры решения задач по уравнению состояния идеального газа (уравнению Менделеева – Клапейрона)

Задача 1: Плотность воздуха при нормальных условиях (температура 0 °С и атмосферное абсолютное давление 100 кПа) составляет 1,28 кг/м³. Определить среднюю молярную массу воздуха.

Решение: Поскольку плотность воздуха задана, это означает, что в калькулятор можно ввести массу одного кубического метра воздуха, равную 1,28 кг. Введите в калькулятор данные:

  • Выберите n (Количество в молях) в селекторе Выберите неизвестную величину.
  • Введите абсолютное давление P = 100 кПа.
  • Введите объем V = 1 м³.
  • Введите температуру T = 0 °C.
  • Нажмите кнопку Рассчитать.
  • Калькулятор покажет количество молей в 1 м3 воздуха.
  • Введите массу воздуха m = 1,28 кг и нажмите кнопку Рассчитать.
  • Калькулятор рассчитает молярную массу воздуха M = 0,029 кг/моль

Задача 2: Молярная масса газа кислорода (O₂) M = 32 г/моль. Определить абсолютную температуру 128 г. кислорода, находящегося в 10-литровом сосуде под давлением P = 3 МПа.

Решение: Нажмите кнопку Reset и введите в калькулятор данные задачи:

  • Выберите T (Температура) в селекторе Выберите неизвестную величину.
  • Введите молярную массу кислорода N = 32 г/моль.
  • Введите массу кислорода m = 128 г.
  • Калькулятор рассчитает количество кислорода в молях.
  • Введите объем V = 4 л и давление P = 3 МПа.
  • Нажмите кнопку Рассчитать.
  • Считайте температуру в кельвинах.

Задача 3: В сосуде высокого давления находится газ под давлением P = 0.5 МПа при температуре T = 15 °С. Объем газа V = 5 л. Рассчитать объем этой массы газа при нормальных условиях (P = 100 кПа, T = 0 °С).

Решение: Нажмите кнопку Reset и введите в калькулятор данные задачи:

  • Выберите T (Температура) в селекторе Выберите неизвестную величину.
  • Введите давление P = 500 кПа.
  • Введите температуру T = 15 °C.
  • Введите объем V = 5 л.
  • Нажмите кнопку Рассчитать.
  • Калькулятор рассчитает количество в молях, которое будет использовано в следующем шаге.
  • Выберите Объем в селекторе Выберите неизвестную величину.
  • Введите температуру и давление P = 100 kPa, T = 0 °C (нормальные условия) и нажмите кнопку Рассчитать.
  • Калькулятор рассчитает новый объем газа V = 23.69 л при нормальных условиях.

Задача 4: Рассчитать давление в паскалях в 70-литровом баке работающего на метане автомобиля, если в нем хранится 12,8 кг метана (молярная масса 16 г/моль) при 30 °С.

Определения и формулы

Идеальный газ

Идеальный газ – теоретическая модель, в которой газ представляется в виде множества свободно движущихся частиц бесконечно малого размера, которые взаимодействуют друг с другом абсолютно упруго, то есть при столкновении двух частиц их кинетическая энергия не изменяется и не превращается ни в какую другую форму энергию, например, в потенциальную энергию или в тепло. Считается, что суммарный размер частиц настолько мал, что занимаемый ими объем в сосуде пренебрежимо мал. Эта теоретическая модель полезна, так как она упрощает многие расчеты, а также в связи с тем, что идеальный газ подчиняется законам классической механики. Идеальный газ можно представить себе в виде множества абсолютно твердых сфер, которые только сталкиваются друг с другом и больше никак не взаимодействуют.

В обычных условиях, например, при стандартных условиях (при температуре 273,15 К и давлении в 1 стандартную атмосферу) большинство реальных газов ведут себя как идеальный газ. В общем случае, газ ведет себя как идеальный при низком давлении и высокой температуре, когда расстояния между молекулами газа относительно велики. В этих условиях потенциальная энергия вследствие действия межмолекулярных сил намного меньше кинетической энергии частиц. Размер молекул также незначителен по сравнению с расстоянием между ними. Идеальная модель не работает при низких температурах и высоких давлениях, а также для тяжелых газов. При понижении температуры и повышении давления реальный газ может стать жидкостью или даже перейти в твердое состояние, то есть может произойти фазовый переход. В то же время, модель идеального газа не допускает жидкого или твердого состояния.

Закон идеального газа

Идеальный газ, как и любой другой газ, можно охарактеризовать четырьмя переменными и одной константой, а именно:

  • давление (P),
  • объем (V),
  • количество в молях (n),
  • температура (T), and
  • универсальная газовая постоянная (R)

Эти четыре переменные и одна константа объединены в приведенном ниже уравнении, которое называется уравнением состояния идеального газа:

Это уравнение также известно под названием закона идеального газа и уравнения Менделеева – Клапейрона или уравнения Клапейрона, так как уравнение было впервые выведено в 1834 г. французским инженером Эмилем Клапейроном (1799-1864). О вкладе Д. И. Менделеева – чуть ниже. В этом уравнении:

  • P – абсолютное давление, измеряемое в СИ в паскалях (Па),
  • V – объем, измеряемый в СИ в кубических метрах (м³),
  • n – количество вещества (газа) в молях (сокращение моль). Один моль любого вещества в граммах численно равен средней массы одной молекулы в соединении, выраженной в атомных единицах массы. Например, один моль кислорода с атомной массой 16 соответствует 16 граммам. Один моль идеального газа при стандартных условиях занимает 22,4 литра.
  • T – абсолютная температура.
  • R – универсальная газовая постоянная, являющаяся физическим коэффициентом пропорциональности уравнения состояния идеального газа.

Приведенное выше уравнение показывает, что при нулевой абсолютной температуре получается нулевой объем. Однако это не означает, что объем реального газа действительно исчезает. При очень низких температурах все газы становятся жидкостями и уравнение идеального газа к ним неприменимо.

Универсальная газовая постоянная соответствует работе, выполненной при расширении одного моля идеального газа при нагревании на 1 К при постоянном давлении. Размерность постоянной – работа на количество вещества на температуру. Постоянная в точности равна 8,31446261815324 Дж⋅К⁻¹⋅моль⁻¹. Универсальная газовая постоянная также определяется как произведение числа Авогадро NA и постоянной Больцмана k:

Входящая в уравнение состояния идеального газа универсальная газовая постоянная была предложена и введена в уравнение Дмитрием Менделеевым в 1877 г. Поэтому уравнение состояния идеального газа в литературе на русском языке и ее переводах на другие языки, называется уравнением Менделеева – Клапейрона.

Количество газа в молях часто бывает удобно заменить массой газа. Количество газа в молях n, его масса m в граммах и молярная масса M в граммах на моль связаны формулой:

Заменяя в уравнении состояния идеального газа n на m/M, имеем:

Для определения молярной массы элемента, его относительная атомная масса умножается на коэффициент молярной массы в кг/моль

Например, молярная масса кислорода в единицах системы СИ

Если ввести в уравнение состояния идеального газа плотность ρ = m/V, мы получим:

Теперь введем понятие удельной газовой постоянной, которая представляет собой отношение универсальной газовой постоянной R к молярной массе M:

Например, удельная газовая постоянная сухого воздуха приблизительно равна 287 Дж·кг⁻¹·К⁻¹. Подставив удельную газовую постоянную в уравнение состояния идеального газа, получим:

Закон идеального газа объединяет четыре более простых эмпирических газовых закона, открытых в XVII-XIX вв. несколькими учеными, которые аккуратно измеряли свойства газа. Простые газовые законы можно также вывести из уравнения состояния идеального газа (PV=nRT). Поскольку в этом уравнении R является постоянной величиной, можно записать

Поскольку PV/NT – постоянная величина, можно записать это иначе:

Здесь индексы 1 и 2 показывают начальное и конечное состояние газа в системе. Мы будем использовать это уравнение ниже при описании четырех газовых законов.

Отметим, что исторически именно эмпирические законы поведения газа, описанные ниже, привели к открытию обобщенного закона состояния идеального газа. Эти законы были открыты несколькими учеными, которые проводили эксперименты, изменяя только две переменные состояния газа и оставляя две другие переменные постоянными.

Закон Бойля – Мариотта (T=const, n=const)

Роберт Бойль

Изменим предыдущее уравнение с учетом, что количество газа в молях n и его температура Т остаются неизменными:

или

Эдм Мариотт

Это закон Бойля – Мариотта, описывающий зависимость объема V фиксированного количества газа в молях n от давления P при постоянной температуре T. Давление фиксированной массы газа при неизменной температуре обратно пропорционально его объему. Закон был сформулирован англо-ирландским химиком и физиком Робертом Бойлем в 1662 г. В России и континентальной Европе это закон называют законом Бойля – Мариотта с учетом вклада в открытие закона французского физика и священника Эдма Мариотта.

Закон Авогадро (T=const, P=const)

Амедео Авогадро

Если температура и давление остаются неизменными, можно записать

Это закон Авогадро, указывающий, что при неизменных температуре и давлении равные объемы любых газов содержат одинаковое количество молекул. Это уравнение показывает, что, если количество газа увеличивается, объем газа пропорционально растет. Иными словами, количество атомов или молекул газа не зависит от их размеров или от молярной массы газа. Закон назван в честь итальянского ученого Амедео Авогадро, который опубликовал гипотезу об отношениях объема газа и его количества в молях в 1811 году. Число Авогадро также носит его имя.

Закон Гей-Люссака (P=const, n=const)

Жак Шарль

При постоянном давлении объем фиксированного количества газа в молях пропорционален абсолютной температуре системы с газом.

В англоязычной литературе этот закон называется законом объемов и законом Шарля. Закон описывает как расширяется любой газ при увеличении его абсолютной температуры. Закон был сформулирован в неопубликованной работе французским ученым Жаком Шарлем в 80-х гг. XVIII в. Его соотечественник Жозеф Луи Гей-Люссак опубликовал этот закон в 1803 г. и указал, что приоритет открытия принадлежит Жаку Шарлю. Поэтому этот закон в литературе не на английском языке часто называют законом Гей-Люссака. В русскоязычной литературе закон носит имя Гей-Люссака. Итальянцы называют этот закон первым законом Гей-Люссака (ит. prima legge di Gay-Lussac).

Закон Шарля (или второй закон Гей-Люссака) (V=const, n=const)

Жозеф Луи Гей-Люссак

Закон Шарля (называемый также вторым законом Гей-Люссака) гласит, что давление фиксированного количества газа в молях при его неизменном объеме прямо пропорционально абсолютной температуре газа:

Закон был сформулирован Гей-Люссаком в 1802 г. В литературе на других языках этот закон также называют законом Амонтона по имени французского ученого Гийома Амонтона, который на сто лет раньше обнаружил количественную зависимость объема газа от его температуры. Иногда закон называют вторым законом Гей-Люссака и законом Шарля, так как сам Гей-Люссак считал, что закон открыт Шарлем. Закон зависимости давления от температуры был также независимо открыт английским физиком Джоном Дальтоном в 1801 г. Итальянцы называют этот закон вторым законом Вольта-Гей-Люссака (ит. seconda legge di Volta – Gay-Lussac), потому что итальянец Алессандро Вольта независимо проводил исследования газов и получил аналогичные результаты.

При нагревании воздуха в оболочке воздушного шара его плотность уменьшается и становится меньше плотности окружающего воздуха; в результате шар приобретает положительную плавучесть

Читайте также:  Материалы и реконструкция сосудов

Источник

Уравнение состояния идеального газа было открыто экспериментально. Оно носит название уравнения Клапейрона – Менделеева. Это уравнение устанавливает математическую зависимость между параметрами идеального газа, находящегося в одном состоянии. Математически его можно записать следующими способами:

Уравнение состояния идеального газаВнимание! При решении задач важно все единицы измерения переводить в СИ.

Пример №1. Кислород находится в сосуде вместимостью 0,4 м3 под давлением 8,3∙105 Па и при температуре 320 К. Чему равна масса кислорода? Молярная масса кислорода равна 0,032 кг/моль.

Из основного уравнения состояния идеального газа выразим массу:

Уравнение состояния идеального газа следует использовать, если газ переходит из одного состояния в другое и при этом изменяется его масса (количество вещества, число молекул) или молярная масса. В этом случае необходимо составить уравнение Клапейрона – Менделеева отдельно для каждого состояния. Решая систему уравнений, легко найти недостающий параметр.

Подсказки к задачам

Давление возросло на 15%p2 = 1,15p1
Объем увеличился на 2%V2 = 1,02V1
Масса увеличилась в 3 разаm2 = 3m1
Газ нагрелся до 25 оСT2 = 25 + 273 = 298 (К)
Температура уменьшилась на 15 К (15 оС)T2 = T1 – 15
Температура уменьшилась в 2 раза
Масса уменьшилась на 20%m2 = 0,8m1
Выпущено 0,7 начальной массы

Важна только та масса, что осталась в сосуде. Поэтому:

m2 = 0,3m1

Какую массу следует удалить из баллона?Нужно найти разность начальной и конечной массы:

m1 – m2

Газ потерял половину молекул
Молекулы двухатомного газа (например, водорода), диссоциируют на атомы
Озон (трехатомный кислород) при нагревании превращается в кислород (двухатомный газ)M (O3) = 3Ar (O)∙10-3 кг/моль M (O2) = 2Ar (O)∙10-3 кг/моль
Открытый сосудОбъем V и атмосферное давление pатм остаются постоянными
Закрытый сосудМасса m, молярная масса M, количество вещества ν, объем V, число N и концентрация n частиц, плотность ρ- постоянные величины
Нормальные условияТемпература T0 = 273 К Давление p0 = 105 Па
Единицы измерения давления1 атм = 105 Па
Читайте также:  Рецепт для сосудов с корицей и медом для

Пример №2. В баллоне содержится газ под давлением 2,8 МПа при температуре 280 К. Удалив половину молекул, баллон перенесли в помещение с другой температурой. Определите конечную температуру газа, если давление уменьшилось до 1,5 МПа.

2,8 МПа = 2,8∙106 Па

1,5 МПа = 1,5∙106 Па

Так как половина молекул была выпущена, m2 = 0,5m1. Объем остается постоянным, как и молярная масса. Учитывая это, запишем уравнение состояния идеального газа для начального и конечного случая:

Преобразим уравнения и получим:

Приравняем правые части и выразим искомую величину:

Задание EF19012 На графике представлена зависимость объёма постоянного количества молей одноатомного идеального газа от средней кинетической энергии теплового движения молекул газа. Опишите, как изменяются температура и давление газа в процессах 1−2 и 2−3. Укажите, какие закономерности Вы использовали для объяснения.

Алгоритм решения

1.Указать, в каких координатах построен график.

2.На основании основного уравнения МКТ идеального газа и уравнения Менделеева – Клапейрона выяснить, как меняются указанные физические величины во время процессов 1-2 и 2-3.

Решение

График построен в координатах (V;Ek). Процесс 1-2 представляет собой прямую линию, исходящую из начала координат. Это значит, что при увеличении объема растет средняя кинетическая энергия молекул. Но из основного уравнения МКТ идеального газа следует, что мерой кинетической энергии молекул является температура:

T=2−Ek3

Следовательно, когда кинетическая энергия молекул растет, температура тоже растет.

Запишем уравнение Менделеева – Клапейрона:

pV=νRT

Так как количество вещества одинаковое для обоих состояния 1 и 2, запишем:

νR=p1V1T1=p2V2T2

Мы уже выяснили, что объем и температура увеличиваются пропорционально. Следовательно, давление в состояниях 1 и 2 равны. Поэтому процесс 1-2 является изобарным, давление во время него не меняется.

Процесс 2-3 имеет график в виде прямой линии, перпендикулярной кинетической энергии. Так как температуры прямо пропорциональна кинетической энергии, она остается постоянной вместе с этой энергией. Следовательно, процесс 2-3 является изотермическим, температура во время него не меняется. Мы видим, что объем при этом процессе уменьшается. Но так как объем и давление – обратно пропорциональные величины, то давление на участке 2-3 увеличивается.

Ответ:

• Участок 1-2 – изобарный процесс. Температура увеличивается, давление постоянно.

• Участок 2-3 – изотермический процесс. Температура постоянно, давление увеличивается.

pазбирался: Алиса Никитина | обсудить разбор | оценить

Задание EF22473

На высоте 200 км давление воздуха составляет примерно 10-9 от нормального атмосферного давления, а температура воздуха Т – примерно 1200 К. Оцените плотность воздуха на этой высоте.

Ответ:

а) 8,31⋅ 10-11 кг/м3

б) 1,38⋅ 10-9 кг/м3

в) 3⋅ 10-10 кг/м3

г)29⋅ 10-8 кг/м3

Алгоритм решения

1.Записать исходные данные.

2.Записать уравнение Менделеева – Клапейрона.

3.Выразить из уравнения плотность.

4.Подставить известные данные и сделать вычисления.

Решение

Запишем исходные данные:

• Давление воздуха на высоте 200 км: p = 10-9∙105 Па. Или p = 10-4 Па.

• Температура воздуха на этой же высоте: T = 1200 К.

Запишем уравнение Менделеева – Клапейрона:

pV=mMRT

Плотность определяется формулой:

ρ=mV

Следовательно, масса равна произведению плотности на объем. Перепишем уравнение состояния идеального газа, учитывая, что объем сократится слева и справа:

p=ρMRT

Молярная масса воздуха – табличная величина, равная 28,97 г/моль. Переведем в СИ и получим 28,97∙10-3 кг/моль.

Выразим и вычислим плотность:

Ответ: в

pазбирался: Алиса Никитина | обсудить разбор | оценить

Задание EF22749 Одноатомный идеальный газ в количестве ν моль помещают в открытый сверху сосуд под лёгкий подвижный поршень и начинают нагревать. Начальный объём газа V0, давление p0. Масса газа в сосуде остаётся неизменной. Трением между поршнем и стенками сосуда пренебречь. R- универсальная газовая постоянная.

Установите соответствие между физическими величинами, характеризующими газ, и формулами, выражающими их зависимость от абсолютной температуры T газа в условиях данной задачи.

К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

Читайте также:  Укрепить сосуды после 40 лет

Алгоритм решения

1.Записать уравнение состояния идеального газа и выразить из него объем. Выбрать из таблицы соответствующий номер формулы.

2.Определить, от чего зависит внутренняя энергия идеального газа.

3.Записать основное уравнение МКТ и выразить внутреннюю энергию идеального газа. Выбрать из таблицы соответствующий номер формулы.

Решение

Уравнение состояния идеального газа имеет вид:

pV=mMRT

Учтем, что отношение массы к молярной массе есть количество вещества.Отсюда объем равен:

V=νRTp

Следовательно, первой цифрой ответа будет «1».

Внутренняя энергия идеального газа равна сумме кинетических энергий всех молекул этого газа:

E=N−Ek

Запишем основное уравнение МКТ:

p=nkT

Отсюда температура газа равна:

T=pnk

Но температура прямо пропорциональна средней кинетической энергии молекул газа:

T=2−Ek3k

Следовательно:

pnk=2−Ek3k

−Ek=3p2n

E=N−Ek=N3p2n

Но концентрация определяется отношением количества молекул к объему. Следовательно:

E=N3pV2N=3pV2

А произведение давления на объем можно выразить через уравнение Менделеева – Клапейрона. Следовательно:

E=32νRT

Вторая цифра ответа будет «3».

Ответ: 13

pазбирался: Алиса Никитина | обсудить разбор | оценить

Задание EF22795 На рисунке показан график зависимости давления газа в запаянном сосуде от его температуры. Объём сосуда равен 0,25 м3. Какое приблизительно количество газообразного вещества содержится в этом сосуде? Ответ округлите до целых.

Алгоритм решения

1.Записать исходные данные.

2.Выбрать любую точку графика и извлечь из нее дополнительные данные.

3.Записать уравнение состояния идеального газа.

4.Выполнить решение задачи в общем виде.

5.Подставить известные данные и вычислить искомую величину.

Решение

Запишем исходные данные. Объем сосуда равен: V = 0,25 м3. На графике выберем точку, соответствующую температуре T = 300 К. Ей соответствует давление p = 2∙104 Па.

Запишем уравнение состояния идеального газа:

pV=νRT

Отсюда количества вещества равно:

ν=pVRT=2·104·0,258,31·300≈2 (моль)

Ответ: 2

pазбирался: Алиса Никитина | обсудить разбор | оценить

Задание EF17664

Зависимость объёма идеального газа от температуры показана на VТ-диаграмме (см. рисунок). В какой из точек давление газа максимально? Масса газа постоянна.

Ответ:

A

B

C

D

Алгоритм решения

1.Записать уравнение состояния идеального газа.

2.Установить, как зависит давление от объема и температуры газа.

3.На основании графика, отображающего изменение температуры и объема газа, установить, в какой точке давление газа максимально.

Решение

Запишем уравнение состояния идеального газа:

pV=νRT

Отсюда видно, что давление прямо пропорционально температуре. Это значит, что с ростом температуры давление увеличивается.

Также видно, что давление обратно пропорционально объему. Следовательно, давление увеличивается с уменьшением объема.

Отсюда следует, что давление будет максимальным в той точке, в которой температура максимальна, а объем минимален. Такой точкой является точка D.

Ответ: D

pазбирался: Алиса Никитина | обсудить разбор | оценить

Задание EF18093

В камере, заполненной азотом, при температуре

К находится открытый цилиндрический сосуд (см. рис. 1). Высота сосуда см. Сосуд плотно закрывают цилиндрической пробкой и охлаждают до температуры К. В результате расстояние от дна сосуда до низа пробки становится равным h (см. рис. 2). Затем сосуд нагревают до первоначальной температуры T0. Расстояние от дна сосуда до низа пробки при этой температуре становится равным см (см. рис. 3). Чему равно h? Величину силы трения между пробкой и стенками сосуда считать одинаковой при движении пробки вниз и вверх. Массой пробки пренебречь.

Алгоритм решения

1.Записать исходные данные и перевести единицы измерения физических величин в СИ.

2.Записать уравнение Менделеева – Клапейрона и применить его ко всем состояниям газа.

3.Определить условие равновесия пробки.

4.Выполнить решение задачи в общем виде.

5.Вычислить искомую величину.

Решение

Запишем исходные данные:

• Начальная температура азота: T0 = 300 К.

• Высота сосуда: L = 50 см.

• Температура азота после охлаждения: T1 = 240 К.

• Высота столба азота после нагревания: H = 46 см.

50 см = 0,5 м

46 см = 0,46 м

Запишем уравнение Менделеева – Клапейрона:

pV=νRT

Так как количество азота не меняется, можем принять, что:

pVT=const

Применим уравнение Менделеева – Клапейрона для всех трех состояний азота. Учтем, что

p0V0T0=p1V1T1=p2V2T2

Пусть S – площадь поперечного сечения сосуда. Тогда объемы столба азота для каждого из состояний будут равны:

V0=SL

V1=Sh

V2=SH

Известно, что в состоянии 3 температура азота поднимается до первоначальной. Поэтому уравнение Менделеева – Клапейрона примет вид:

p0SLT0=p1ShT1=p2SHT0

p0LT0=p1hT1=p2HT0

Неизвестными остались только давления. Их можно определить, записав условие равновесия пробки.

В состоянии 1 сила давления азота на пробку определяется формулой:

p0S=pатмS

В состоянии 2 на пробку действует сила давления со стороны азота и атмосферного давления, я а также сила трения, направленная вверх. Следовательно:

p1S=pатмS−Fтр=p0S−Fтр

В состоянии 3 на пробку действуют те же силы, но сила трения теперь действует не вверх, а вниз. Поэтому:

p2S=pатмS+Fтр=p0S+Fтр

Выразим из этих уравнений силу трения:

Fтр=p0S−p1S

Fтр=p2S−p0S

Приравняем правые части и получим:

p0S−p1S=p2S−p0S

Отсюда:

p0−p1=p2−p0

2p0=p2+p1

p0=p2+p12

Подставим это значение в уравнение Менделеева – Клапейрона и получим:

p2+p12LT0=p1hT1=p2HT0

Отсюда:

p2+p12L=p2H

p2L+p1L=2p2H

p1L=2p2H−p2L=p2(2H−L)

p1=p2(2H−L)L

Отсюда:

p2(2H−L)LhT1=p2HT0

Давление слева и справа взаимоуничтожается. Остается:

T0(2H−L)Lh=HT1

Отсюда выразим h:

pазбирался: Алиса Никитина | обсудить разбор | оценить

Задание EF18873 В сосуде неизменного объёма при комнатной температуре находилась смесь неона и аргона, по 1 моль каждого. Половину содержимого сосуда выпустили, а затем добавили в сосуд 1 моль аргона. Как изменились в результате парциальное давление неона и давление смеси газов, если температура газов в сосуде поддерживалась неизменной?

Для каждой величины определите соответствующий характер изменения:

  1. увеличилась
  2. уменьшилась
  3. не изменилась

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Алгоритм решения

1.Записать исходные данные.

2.Установить характер изменения парциального давления неона.

3.Применить закон Менделеева – Клапейрона, чтобы установить характер изменения общего давления смеси газов.

Решение

Исходные данные:

• Количество неона: ν1 = 1 моль.

• Количество аргона: ν2 = 1 моль.

• Количество впущенного аргона: ν4 = 1 моль.

Сначала парциальное давление неона и аргона равно. Это объясняется тем, что давление газов при неизменном количестве вещества зависит только от объема и температуры. Эти величины постоянны.

Когда из сосуда выпустили половину газовой смеси, в нем оказалось по половине моля каждого из газов. Затем в сосуд впустили 1 моль аргона. Следовательно, в сосуде стало содержаться 0,5 моль неона и 1,5 моль аргона. Запишем уравнение Менделеева – Клапейрона:

pV=νRT

Из уравнения видно, что давление и количество вещества – прямо пропорциональные величины. Следовательно, если количество неона уменьшилось, то его парциальное давление тоже уменьшилось.

Общая сумма количества вещества равна сумме количеств вещества 1 (неона) и 2 (аргона): 0,5 + 1,5 = 2 (моль). Изначально в сосуде тоже содержалось 2 моль газа. Так как количество вещества, температура и объем сохранились, давление тоже осталось неизменным.

Ответ: 23

pазбирался: Алиса Никитина | обсудить разбор | оценить

Алиса Никитина | ???? Скачать PDF | Просмотров: 1.3k | Оценить:

Источник