Что имеется в древесине сосуда

Описанные выше особенности макроскопического строения древесины относятся одинаково как к хвойным, так и лиственным породам. Ниже будут рассмотрены еще две особенности, одна из которых присуща древесине только лиственных, а вторая — только древесине хвойных пород. На поперечном разрезе древесины некоторых лиственных пород (дуба, грецкого ореха и др.) можно заметить мелкие отверстия, представляющие собой поперечные разрезы сосудов. Сосуды имеют форму трубок разной величины и являются характерным элементом строения древесины лиственных пород (у хвойных пород сосудов нет). Сосуды делятся на крупные, ясно заметные невооруженным глазом, и мелкие, неразличимые невооруженным глазом. В некоторых породах мелкие сосуды собраны в группы, которые можно обнаружить без микроскопа.
Крупные сосуды чаще сосредоточены в одной ранней зоне годичных слоев, образуя на поперечном разрезе пористое кольцо (например, у дуба); реже крупные сосуды распределены по годичному слою равномерно (например, у грецкого ореха). Собранные в группы мелкие сосуды при наличии крупных сосудов в ранней зоне сосредоточены в поздней зоне, где они заметны благодаря более светлой окраске. Если крупных сосудов нет, мелкие сосуды у большинства пород рассеяны по всему слою; однако их количество и величина несколько уменьшаются по направлению к внешней границе слоя.
Рис. 11. Типы группировки сосудов: а, б, в — кольцесосудистые породы с радиальной (каштан), тангенциальной (ильм) и рассеянной (ясень) группировкой мелких сосудов в поздней зоне; г — раесеяннососудистая порода (орех).
Описанное распределение сосудов позволяет разделить лиственные породы на кольцесосудистые, с кольцом крупных сосудов в ранней зоне годичных слоев, и рассеяннососудистые, у которых сосуды независимо от величины распределены по годичному слою более или менее равномерно (рис. 11). Резкая разница между ранней и поздней зоной делает хорошо заметными годичные слои в кольцесосудистых породах. В то же время у рассеяннососудистых пород нет различия между этими зонами, поэтому годичные слои имеют однородное строение и границы между ними плохо заметны.
Кольцесосудистыми среди наших лиственных пород являются дуб, ясень, каштан съедобный, вяз, ильм, карагач, бархатное дерево, фисташка и некоторые др. К рассеяннососудистым относится большинство лиственных пород, среди них с крупными сосудами — грецкий орех и хурма, а с мелкими — остальные: береза, осина, ольха, липа, бук, клен, платан, тополь, ива, рябина, груша, лещина и др.
По группировке мелких сосудов в поздней древесине кольцесосудистые породы могут быть разделены на три подгруппы: 1) породы с радиальной группировкой мелких сосудов (дуб, каштан съедобный); группы мелких сосудов здесь имеют вид язычков пламени, расположенных в поздней древесине и направленных поперек годичных слоев; 2) породы с тангенциальной группировкой мелких сосудов (ильмовые); в этих случаях группы мелких сосудов имеют вид светлых волнистых линий, направленных параллельно границе годичных слоев; 3) породы с мелкими сосудами, распределенными в поздней зоне без особого порядка (ясень). На рис. 11 показаны схемы четырех типичных группировок сосудов на поперечном разрезе в древесине лиственных пород.
На продольных разрезах сосуды, особенно крупные, бывают заметны в виде бороздок. Сосуды редко проходят в стволе строго вертикально, поэтому на продольных разрезах бороздки обычно бывают короткими, так как в разрез попадает только часть сосуда. Диаметр крупных сосудов колеблется от 0,2 до 0,4 мм, мелких — от 0,016 до 0,1 мм. Длина сосудов обычно не превышает 10 см, но у дуба достигает 3,6 м. Объем сосудов у разных пород колеблется в широких пределах, а для данной породы зависит от условий произрастания. Объем крупных сосудов в древесине дуба из нагорных дубрав и с солонцовых почв примерно одинаков, но объем мелких сосудов во втором случае в 2 раза больше. По радиусу ствола размер сосудов сначала увеличивается по направлению от сердцевины к коре, достигая максимума, после чего остается постоянным или несколько уменьшается. По высоте ствола число сосудов и площадь их сечения возрастает по направлению от комля к вершине. В растущем дереве по сосудам поднимается вода из корней в крону; в срубленной древесине сосуды, являясь слабыми элементами, понижают ее прочность.
Источник
«В природе нет ничего бесполезного» – Мишель де Монтень
Только вдумайтесь в мощь проводящей ткани! Ведь ей приходится поднимать воду и растворенные в ней минеральные вещества от тончайших волосков корня
до клеток листа. Самое высокое дерево на нашей планете, вечнозеленая секвойя по имени Гиперион, растет на севере Калифорнии и достигает (на 2017 год) – 117 метров в высоту.
И вода по проводящим тканям преодолевает 117 метров высоты у этого растения, от корней к листьям! Она передвигается по структурам проводящих тканей против
силы тяжести, и сегодня вы узнаете о секрете, который таит это уникальное явление.
Запомните, чтобы глубоко изучить любую науку, нужно восхищаться ей, уметь удивляться и проявлять любопытство в этой сфере. В ботанике это можно делать
самыми разными путями: вы можете посетить ботанический сад, или, к примеру, приобрести микроскоп и рассматривать ткани и органы растений, самостоятельно приготавливая
микропрепараты.
Это действительно важно, поэтому я останавливаюсь на этом. Сам я получаю и всегда призываю своих учеников получать искреннее удовольствие от погружения в науку.
Надеюсь, что и вы разделите эту радость новых интересных знаний, я приложу к этому все усилия. Итак, начнем изучать проводящие ткани.
Проводящие ткани можно сравнить с кровеносной системой человека, которая пронизывает весь наш организм, доставляя питательные вещества к клеткам и удаляя продукты
обмена веществ из них.
Как уже было сказано, эти ткани служат для передвижения по организму растения растворенных питательных веществ. Имеется два направления тока: от корней к листьям
(восходящий ток) и от листьев к корням (нисходящий ток).
Логическим путем можно угадать многие научные факты, даже не зная их. К примеру, чем представлен восходящий ток? Что поднимается от корней к листьям? Это конечно же
вода и растворенные в ней минеральные вещества, они движутся по сосудам и трахеидам проводящей ткани – ксилемы (древесины).
От листьев к корням спускаются органические вещества, образовавшиеся в результате фотосинтеза в листьях, они движутся по ситовидным трубкам проводящей ткани – флоэмы (луба).
Несмотря на то, что настоящие проводящие ткани впервые появились у папоротникообразных, но у мхов в наличии имеются водоносные клетки, благодаря которым они могут накапливать воду, которая в процентном соотношении может составить до 25% от их массы. По этой причине во время Первой мировой войны мох сфагнум использовали в качестве перевозочного материала. Кроме того, он обладает бактерицидными свойствами.
В состав и ксилемы, и флоэмы входят как живые, так и мертвые клетки. Однако отметим, что в ксилеме мертвые клетки преобладают.
Ксилема (древесина)
Обеспечивает восходящий ток (от корней к листьям) воды и растворенных в ней минеральных солей. В толще проводящей ткани находятся отнюдь не только те самые трахеиды и
сосуды, ее пронизывают многочисленные механические волокна – древесинные, обеспечивающие каркасность и прочность. В ксилеме содержатся также запасающие структуры,
представленные древесинной паренхимой, где накапливаются питательные вещества. Давайте разберемся из каких гистологических элементов состоит ксилема.
- Трахеиды
- Сосуды
- Древесинные волокна (либриформ)
- Паренхимные клетки (древесинная паренхима)
Эволюционно наиболее древние структуры. Представлены прозенхимными (вытянутые, с заостренными концами), мертвыми клетками. Через них осуществляется передвижение
и фильтрация растворов из нижележащей трахеиды в вышележащую. Их одревесневшая утолщенная клеточная стенка имеет разнообразные формы: пористую,
спиралевидную, кольчатую.
Длинные трубки, представляющие собой слияние отдельных мертвых клеток “члеников” в единый “сосуд”. Ток жидкости идет из нижележащих отделов в вышележащие
благодаря отверстиям (перфорациям) между клетками, составляющими сосуд. Так же, как и у трахеид, утолщения клеточных стенок у сосудов бывает самых разных форм.
Во время роста растения проводящие ткани также претерпевают морфологические изменения. Изначальная длина сосуда меняется, благодаря своему строению
он растягивается и обеспечивает ток воды и минеральных солей.
Полагают, что эволюционно эти волокна берут начало от трахеид. Они не проводят воду, имеют более узкий просвет и отличаются хорошо выраженной
клеточной стенкой, которая придает ксилеме механическую прочность.
Эти клетки составляет обкладку вокруг сосуда, имеют одревесневшие оболочки с порами, которым соответствуют окаймленная пора со стороны сосуда. То есть сюда из сосуда могут поступать органические вещества и формировать запасы, которые в дальнейшем пригодятся растению.
Флоэма (луб)
Образовавшиеся в результате фотосинтеза в листьях продукты необходимо доставить в те части растения, где есть потребность в питательных веществах: конусы нарастания,
подземные части, или “складировать” на будущее в семенах и плодах. Флоэма обеспечивает нисходящий ток органических веществ в растении, доставляя их по месту назначения. До 90% всех перемещаемых веществ по флоэме составляет углевод – дисахарид сахароза.
Эта ткань представлена ситовидными трубками, генез (от греч. genesis – происхождение) которых различается: первичная флоэма дифференцируется из прокамбия, вторичная
флоэма – из камбия. Несмотря на различия генеза, клеточный состав описанных тканей идентичен.
Разберемся с компонентами, которые входят в состав флоэмы:
- Ситовидные элементы
- Склеренхимные элементы (лубяные волокна)
- Паренхимные элементы (лубяная паренхима)
Это живые клетки, обеспечивающие основной транспорт. Особо стоит выделить ситовидные трубки, образованные множеством безъядерных клеток – “члеников”, соединенных в единую цепь. Между “члениками” имеются поперечные перегородки с порами, благодаря которым содержимое из вышележащих клеток поступает в нижележащие. Эти перегородки похожи на сито – вот откуда берется название ситовидных трубок 🙂
Клетки-спутницы (сопровождающие клетки) также заслуживают нашего особого внимания. Они примыкают к боковым стенкам ситовидных трубок, из этих клеток через перфорации (поры) АТФ
и нуклеиновые кислоты попадают в ситовидные трубки, создавая нисходящий ток. Таким образом, клетки-спутницы контролируют деятельность
ситовидных трубок.
Пронизывают флоэму, придавая ей опору. Часть клеток отмирает, что характерно для данной группы тканей.
Обеспечивают радиальный транспорт веществ из проводящих тканей в рядом расположенные живые клетки других прилежащих тканей.
По мере старения ситовидные трубки закупориваются каллозой (образующей так называемое мозолистое тело) и затем отмирают.
Отмершие ситовидные трубки постепенно сплющиваются давящими на них соседними живыми клетками.
Ниже вы найдете продольный срез тканей растения, изучите его.
Жилка
Это сосудисто-волокнистый пучок, образованный ксилемой и флоэмой. Ксилема располагается сверху, флоэма – снизу. Над пучком и под ним располагаются уголковая или пластинчатая
колленхима, прилежащая к эпидерме и выполняющая опорную функцию. Склеренхима может располагаться участками или вокруг этих жилок. Жилки развиваются из прокамбия,
располагаются в центральном осевом цилиндре. Существует два вида жилок:
- Открытые
- Закрытые
Ключевой момент: между ксилемой и флоэмой располагается прослойка камбия. Этот факт обуславливает возможность образования дополнительного объема
ксилемы и флоэмы в будущем, для дальнейшего роста и увеличения в объеме пучка. Без камбия невозможно было бы утолщения органа. Такие пучки можно
обнаружить во всех органах двудольных растений.
Основное отличие в том, что между ксилемой и флоэмой отсутствует камбий. Невозможно образования новых элементов проводящих тканей, ксилемы и флоэмы.
Закрытые сосудисто-волокнистые пучки встречаются в стеблях однодольных растений.
Верхняя часть жилки представлена ксилемой, нижняя флоэмой. Вокруг пучка в виде кольца располагается механическая ткань
– склеренхима. Над пучком и под ним механическая ткань – колленхима – выполняет опорную функцию.
Как вода поднимается от корней к листьям, против силы тяжести?
Запомните, что вода и растворенные в ней минеральные соли поступают в растение благодаря слаженной работе двух концевых двигателей: нагнетающего корневого и
присасывающего листового.
- Корневое давление
- Транспирация
Силу, поднимающую воду вверх по сосудам, называют корневым давлением. Величина его обычно составляет от 30 до 150 кПа. В основе этого явления лежит осмос:
клетки корня выделяют минеральные и органические вещества в сосуды, что создает более высокое давление, чем в почвенном растворе, и последний начинает притягиваться
в сосуды.
Работа верхнего концевого двигателя заключается в транспирации – испарении воды с поверхности листа. Представим себе длинный сосуд с жидкостью от корневых
волосков до клеток листа. Далее проведите следующий мысленный эксперимент: из верхнего конца трубки жидкость все время удаляется путем испарения, то есть место
освобождается и это создает притягивающую силу для жидкости расположенной ниже, она поднимается наверх, на место испарившейся жидкости.
Присасывающее действие транспирации передается корням в форме гидродинамического натяжения, которое связывает между собой работу обоих двигателей.
© Беллевич Юрий Сергеевич 2018-2020
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.
Источник
На свежем спиле ветви покрытосеменного двудомного деревянистого растения легко различимы особенности строения стебля: кора, камбий, древесина, сердцевина.
Покровные ткани
Кожица – первичная покровная ткань, покрывающая молодые стебли этого года. Со временем кожица замещается пробкой – вторичной покровной тканью, которая состоит из мертвых клеток и воздуха и образуется за счет деления клеток пробкового камбия (феллогена). Кожица и пробка выполняют защитную функцию.
В кожице имеются устьицы, через которые происходит транспирация. В пробке развиваются чечевички – маленькие бугорки с отверстиями. Хорошо заметны они у бузины, дуба, черемухи, образуются клетками основной ткани с большими межклетниками. Через них осуществляется газообмен.
Корка – третичная покровная ткань (корковый дуб). Состоит из чередующихся слоев пробки и других отмерших тканей растения.
Кора
Клетки коры расположены под кожицей и пробкой. Внешнюю часть коры образует механическая ткань (колленхима). Внутреннюю часть образует паренхима, клетки могут содержать хлорофилл.
Луб – внутренний слой коры. Состоит из ситовидных трубок, лубяных волокон, клеток основной ткани.
Ситовидная трубка – вертикальный ряд вытянутых клеток, у которых поперечные стенки пронизаны отверстиями. Это проводящая ткань, по которой перемещаются растворы питательных веществ из листьев в стебли и корни. Клетки не имеют ядер. Вместе с клетками основной ткани образуют мягкий луб.
Лубяные волокна – отмершие клети с одревесневшими стенками. Представляют собой механическую ткань стебля. В стеблях льна, липы и др. лубяные волокна сильно развиты и прочны. Это обуславливает их использование в рукоделии и изготовлении тканей. Образуют твердый луб.
Древесина
Плотный, самый широкий слой, лежащий под корой. Древесина – основная часть древесного ствола. Состоит из клеток проводящей ткани (сосуды), механической ткани (волокна), основной ткани.
Годичное кольцо прироста – все слои клеток древесины, образовавшиеся весной, летом и осенью данного года. Осенние клетки мельче весенних, поэтому для деревьев умеренных широт отчетливо видна граница между 2 годичными кольцами.
По количеству годичных колец можно оценить возраст спиленного дерева. По толщине кольца можно судить об условиях роста дерева в данном году. Чем толще годичное кольцо, тем более благоприятны были условия. При совсем неблагоприятных условиях годичные кольца соседних лет могут сливаться между собой. У деревьев с очень медленно растущим стволом годичные кольца могут сливаться. При быстром росте ствола (бальзовое дерево) годичные кольца также не видны.
Древесина входит в состав травянистых стеблей.
Камбий
Расположен между корой и древесиной. Состоит из узких длинных клеток меристемы. Визуально не отличим.
Весной клетки камбия делятся, что приводит к образованию новых клеток луба (в сторону коры) и новых клеток древесины (в сторону древесины). Так происходит рост стебля в толщину. Новые клетки зрелого стебля образуются только путем деления камбия. Зимой деление клеток прекращается.
Сердцевина
Наиболее рыхлый слой, расположенный в центре стебля. Служит для отложения питательных веществ. Хорошо заметна у бузины, осины.
Состоит из крупных клеток основной ткани с тонкими оболочками.
От сердцевины в радиальном направлении через древесину и луб проходят сердцевинные лучи, состоящие из клеток основной ткани.
У некоторых растений с возрастом клетки сердцевины разрушаются, и внутри ствола образуется полость – дупло.
Источник
Трахеальные элементы представляют
собой наиболее высокоспециализированные клетки
ксилемы. Как правило, они вытянуты в длину и в
зрелом состоянии мертвы. Для них характерны
лигнифицированные оболочки со вторичными
утолщениями и порами.
Процесс отложения вторичной оболочки
и пропитывание ее лигнином осуществляется еще в
живой клетке. При этом на первых этапах развития
растения все клетки растущих частей удлиняются
(вытягиваются). Однако такое удлинение было бы
невозможным при сплошной жесткой оболочке. В
этом отношении у высших растений выработалось
оптимальное приспособление: вторичная оболочка
не одевает клетку сплошь, а расположена кольцами
или спиралью. Подобные кольчатые и спиральные
утолщения позволяют молодым трахеальным
элементам вытягиваться в длину и в то же время
препятствуют из сдавливанию. Кроме того, этот тип
вторичного утолщения является чрезвычайно
экономичным.
При всех достоинствах кольчатых и
спиральных элементов как путей для проведения
воды, их механическая прочность оставляет желать
лучшего. Поэтому, как только у молодого растения
заканчиваются ростовые процессы, связанные с
удлинением клеток, в ксилеме начинают
формироваться трахеальные элементы со сплошной
вторичной одревесневшей оболочкой. Когда
формирование сплошной оболочки заканчивается,
клетки очень быстро отмирают.
Однако и в этом случае оболочка
водопроводящего элемента не может быть
совершенно сплошной. Обычно в ней имеются
многочисленные углубления в виде пор. Поэтому
зрелые водопровдящие элементы называют
точечно-поровыми. Итак, в процессе онтогенеза
(индивидуального развития растения) наблюдается
ряд взаимопревращения трахеальных элементов:
кольчатые, спиральные, сетчатые, лестничные,
точечно-поровые.
Различают два типа проводящих
элементов: 1) трахеиды и 2) членики сосудов.
Отличаются они главным образом тем, что членики
сосудов имеют сквозные отверстия ≈ перфорации, в
то время как трахеиды являются
неперфорированными элементами. Поэтому по
сосудам растворы продвигаются значительно
легче, чем по трахеидам.
Трахеиды ≈ это основной
водопроводящий элемент высших растений с
момента их появления на суше и по сей день.
Трахеиды имеют замкнутую со всех сторон
первичную оболочку. Поэтому вода по трахеидам
должна проходить через окаймленные поры,
просачиваясь через первичные оболочки и
склеивающий их межклеточный слой. Понятно, что
подобная структура не является оптимальной для
быстрой подачи воды.
Поэтому в процессе эволюции в ряде
групп высших растений возник новый более
совершенный проводящий элемент ≈ членик сосуда.
Для члеников сосудов характерно наличие в концах
клеток перфораций. Соединяясь между собой
перфорациями, сотни и тысячи члеников образуют
сосуды ≈ длинные сквозные трубки, по которым
вода перемещается практически беспрепятственно.
Водопроводящие элементы, обладающие
достаточно толстой оболочкой, инкрустированной
лигнином, играют в теле растения также и
механическую роль.
Поэтому специализация трахеальных
элементов в процессе эволюции шла в направлении
разделения механической и проводящей функций.
Примитивная древесина большинства
хвощей, папоротников, голосеменных имеет гомогенную
(однородную) ксилему и состоит исключительно из
трахеид и небольшого количества древесинной
паренхимы. В такой древесине узкопросветные
толстостенные трахеиды выполняют
преимущественно механическую функцию, а
широкопросветные и тонкостенные ≈
водопроводящую.
Более совершенная гетерогенная
древесина покрытосеменных состоит из сосудов,
трахеид, волокон – либриформа и запасающей
паренхимы.
Членики сосудов у цветковых растений
морфологически довольно разнообразны и образуют
четкий эволюционный ряд. Этот эволюционный ряд,
построенный на работах выдающегося
американского ботаника И. Бэйли, помещается во
всех учебниках, как одна из ярких и бесспорных
демонстраций эволюционных преобразований.
Эволюционный ряд члеников сосудов
начинается с длинных трахеид, имеющих лестничную
поровость и косые заостренные концы. Постепенно
клетки укорачиваются, становятся более широкими,
а их концевые стенки все менее наклонными и в
конце концов оказываются поперечными.
В наиболее примитивных члениках
лестничная перфорационная пластинка имеет
множество перегородок. В процессе эволюции они
сокращаются и исчезают совсем, так что остается
одна сквозная крупная перфорация.
Характерно, что с появлением сосудов
цветковых растений не исчезли трахеиды,
поскольку совершенный водопроводящий аппарат не
всегда является преимуществом. Так, в условиях
высокой влажности и затенения способность
быстро проводить воду не имеет особого значения.
У таких растений процент трахеид и примитивных
члеников сосудов с лестничной перфорацией
заметно выше, чем у растений, произрастающих в
засушливых условиях.
Получается, что соотношение
проводящих элементов четко обусловлено
экологическими условиями и определяет водный
баланс растения.
Мы уже говорили, что сочетание в одном
клеточном элементе ≈ трахеиде ≈ и способности
проводить воду и механической прочности было
важным эволюционным приспособлением. Появление
сосудов, с их все увеличивающейся полостью и
относительно тонкими стенками, несколько
ослабило бы механическую роль ксилемы, если
сосуды остались бы единственным элементом этой
ткани. В связи с этим наметился второй
эволюционный ряд специализации в сторону
повышения механической прочности, и трахеиды,
через промежуточную стадию волокнистой трахеиды
превратились в волокна либриформа.
При этом происходило утолщение
оболочек клеток, сужение полостей, все большая
редукция окаймления пор. Поры у волокон
либриформа стали узкие, щелевидные. Вместе с тем,
сократилось и количество пор.
Паренхимные клетки, входящие в состав
древесины, запасают крахмал, жиры и многие другие
эргастические вещества.
В ходе онтогенеза у растения из
первичной латеральной меристемы прокамбия
появляется первичная ксилема. У некоторых
растений со временем начинает работать
вторичная боковая меристема ≈ камбий, дающая
начало вторичной ксилеме.
Обычно первичная ксилема отчетливо
подразделяется на два структурных типа: 1) протоксилему
и 2) метаксилему
Источник