Что является опасным объектом с сосудами под давлением

Что является опасным объектом с сосудами под давлением thumbnail

Сосуды, работающие под давлением, паровые и водогрейные котлы, трубопроводы пара горячей воды относятся в соответствии с Федеральным законом « О промышленной безопасности опасных производственных объектов» к опасным производственным объектам. Изготовление сосудов и эксплуатации регламентируется: «правилами устройства и безопасной эксплуатации сосудов, работающих под давлением» Эксплуатация – повышенная опасность, (особенно опасны взрывы: котлов, сосудов, трубопроводов пара и горячей воды – большие разрушения, травмы, несчастные случаи, материальный ущерб).

Правила устройства и безопасной эксплуатации сосудов, работающих под давлением, котлов, трубопроводов пара и горячей воды принято называть Правилами котлонадзора, а объекты, на которые они распространяются, – объектами котлонадзора.(контроль – Ростехнадзор РФ; на предприятии и в организациях контроль за соблюдением Правил котлонадзора осуществляется инспекторами котлонадзора, которые проводят технические освидетельствование и обследование объектов котлонадз.- не соблюдение правил карается наложением штрафов .(ответственность за соблюдение правил , состоянием и эксплуатации сосудов отвечают руководители и специалистов, осуществляющих надзор за техническим сос-ем и эксплуатации сосудов. ))

Сосуд – герметически закрытая емкость, предназначена для ведения химических, тепловых и других технологических процессов, а так же хранения , транспортировку газообразных, жидких и других веществ. Границей сосуда являются входные и выходные штуцера.

Пробное давление – давление, при котором проводится испытание сосудов.

Давление рабочее – максимальное внутреннее избыточное или наружное давление, возникающее при нормальном протекании рабочего процесса.

Давление расчетное – давление, используемое при расчете на прочность.

Давление условное – расчетное давление при температуре 20 С, используемое при расчете на прочность стандартных сосудов.

Основные причины аварий сосудов, работ под давлением.

Основные причины аварий:

  • а) значительное превышение давления из-за неисправности предохранительных клапанов, нарушение технологического процесса или воспламенение паров масла в воздухосборниках, отсутствие(неисправность) редуцирующих устройств;
  • б) неисправность или отсутствие предохранительных устройств сосудов с быстросъемными крышками;
  • в) дефекты при изготовлении, монтаже и ремонте сосудов;
  • г) переполнение сосудов сжиженными газами;
  • д) износ стенок сосудов;
  • е) обслуживание сосудов необученным персоналом, нарушение технологической и трудовой дисциплины;
  • ж) нарушение требований Правил из-за их незнания;
  • з) выдача должностными лицами указаний или распоряжений, принуждающих подчиненных им лиц нарушать Правила.

Опасность: – возможность их разрушения при внезапном адиабатическом расширении газов и паров. т.е потеря механической прочности стенок обечайки(коррозия, локальный перегрев, трещины. (взрывы при потере механической прочности сосудов, местный перегрев, удары, превышение рабочего давления(потенциальная энергия – в кинетическую энергию осколков, разрушенного оборудования и ударную волну (травмы людей.))) (k-1)/k

Потенциальная энергия сжатой среды: W= [p1V1/(K-1)]*(1-(p1/p2) ) К – показатель адиабаты. P1 и P2- начальное и конечное давление соответственно.V-начальный объем газа.

Потенциальная энергия сжатой среды пропорциональна произведению начального давления на объем сосуда: W~PV

  • – взрывная волна(поражение оборудования и гибель людей.)
  • – опасны сосуды, содержащие токсическую среду(опасность отравления) и горючую среду (опасность пожара и взрыва)

Область применения «правил устройства и безопасной эксплуатации»:

Правила, распространяются на :

  • – сосуды, работающие под давлением воды с температурой выше 115 С или другой жидкости с температурой, превышающей темпер кипения при давлении 0.07 МПа бег учета гидравлического давления;
  • -сосуды, работающие под давлением пара или газа свыше 0.07 МПа
  • – баллоны, предназначенные для транспортирования и хранения сжатых, сжиженных и растворенных газов под давлением свыше 0.07МПа
  • – цистерны и бочки для транспортирования и хранения сжиженных газов, давление паров которых при температуре до 50С превышает 0.07МПа.
  • – цистерны и сосуды для транспортирования , хранения сжиженных газов, жидкостей и сыпучих тел, в которых давление свыше 0.07МПа создается периодически для опорожнения;

Правила не распространяются на :

  • – сосуды , изготовляемые в соответствии с «правилами устройства и безопасной эксплуатации оборудования и трубопроводов атомных энергетических установок», (Ростехнадзор), а так же сосуды , работающие с радиоактивной средой ;
  • – сосуды, вместимостью не более 25 литров не зависимо от давления, используемые для научно-экспериментальных целей.
  • – сосуды и баллоны вместимостью не более 25 литров, у которых произведение давления МПа на вместимость в литрах не превышает 200.
  • – сосуды, работающие под давлением, создающие при взрыве внутри них в соответствии с технологическим процессом;
  • – сосуды, работающие под вакуумом;
  • – сосуды, устанавливаемые на морских, речных судах и других плавучих средствах;
  • – сосуды, устанавливаемые на самолетах и других летательных аппаратах;
  • – воздушные резервуары тормозного оборудования подвижного состава железнодорожного транспорта, автомобилей и других средств передвижения;
  • – сосуды специального назначения военного ведомства;
  • -приборы парового и водяного отопления;
  • – трубчатые печи;

ПРЕДОХРАНИТЕЛЬНЫЕ УСТРОЙСТВА ОТ ПОВЫШЕНИЯ ДАВЛЕНИЯ:

  • 1)предохр устр-ва (исключающие возможность включение сосуда под давлением при неполном закрытии крышки, и открытии при наличие давления – замок с ключом -маркой):
    • – редуцирующие устройства,
    • – обратные клапаны,
    • -вентили,
    • – предохранительные клапаны,
    • – мембранные предохранители,
Читайте также:  Дуплексное исследование брахиоцефальных сосудов

При работе на нагнетательной линии между компрессором и аппаратом ставиться автоматические редуцирующие устройства, которое позволяет поддер-ть постоянное давление в аппарате, не зависимо от скачков давления перед аппаратом.

Сосуды для вредных и взрывоопасных веществ обор-ся обратным клапаном, который пропускает среду только в одном направлении. Он устанавливается на подводящей линии между компрессором и аппаратом. При падении давления на со стороны нагнетателя (остановка или неисправность компрессора) клапан автоматически закр-ся со стороны сосуда, и давление из сосуда «обратный удар». Предохранительный клапан – (если медленно поднимается давление) устр-во автоматического действия, предназначенного для предупре. в аппарате и трубопровод давление превышающее допустимое, при повышении Р открывается в клапане сбросное отверстие через которое уходят излишки Р (газа, жид-ти). Но после сброса излишки Р раб восстанавливаются клапан закрывается(рабочий процесс не прерывается.)

Пружины – малые габариты, рассчитаны на различное давление, с помощью сменной пружины, грузовой клапан – за счет груза, рычажно-грузовые – склонны к вибрации(либо пониж Р , либо повыш Р, т е устраняют этот дифект). Все они работают в больших диапазонах Р , но их нельзя применять в вибрационных и движущихся аппаратах. Некоторые клапаны сбрас среду в атмосферу , клапаны закрытого типа – выводятся на сбромную трубу).

Р срабатывания клапана:

Рраб до 3 атм Роткр равно Рраб+0.5 атм4

От 3 до 60 атм Р отк= 1.5 Рраб

^60 атм Роткр=1.1Рраб

Пропускная способность клапана рассчит: G = 1.59бFвv(p1-p2)с

p1,р2 – макс значение давления перед предохранительным клапаном и после него

с – плотность среды для Р1 клапанов, то поперечное сечение не меньше 1.25 суммарного проходного сечения всех клапанов .

б- коэф-т расхода среды;

F – площадь сечения клапанов равное наименьш площади проточной части;

в- коэф-т учитывающий состояние газа(расширение ) при истечении.

Недостатки клапанов:

  • – механическая инерционность;
  • -нарушение герметичности и и утечка среды через затвор в рез-те загрязнения и повреждений
  • – деформация пружины,

Предохранительные клапаны не являются надежн ср-ом защиты(не возможна кристаллизация, затвердевание. сгущение – технолог процессы). Клапан не спасет при быстром росте давления, хлопок =>взрыв. Различают следующие виды: разрывные, ломающиеся, хлопающие, выщелкивающие, отрывные и специальные.

Наиболее простые разрывные мембр – изготавливаются из тонкого листа(Ме: медь, латунь, стекло. нерж сталь, эбанит)

Мембр бывают плоскими или выгнутыми(во внутрь аппарата)

При срабатывании выпуклой мембр с треском выворачивается и отрывается и уноситься потоком

Ломающиеся – из хрупких мат-ов, но при некоторой затяжке ее можно сломать.

Нед-ок: давление падает до атмосферного.

Треб-ия:

Мембр разрушение ток при заданном давлении

  • -констр и эксплуат удобная и простая,
  • – легкая замена,
  • -корозионно стойкая,
  • – достаточное проходное сечение для того чтобы давление не повышалось;

РАСЧЕТ МЕМБРАНЫ:

ОБЩАЯ ПЛОЩАДЬ,КОЛИЧЕСТВО, ДИАМЕТР И ТОЛЩИНА.

ПРЕДОХРАНИТЕЛЬНЫЕ МЕМБРАНЫ:

– при быстром росте давления(взрывном) аппарат могут спасти только заранее слабые элементы конструкции – мембраны , которые при резком увеличении давления быстро разрушаются и открывают отверстие для сброса образ-ся газов(снижают давление.)

Давление при взрыве газа-паровоздушной смеси/

Давление при взрыве газа-паровоздушной смеси: Рразр=р0(Твзр*m/T0*n)

Р0 – начальное давление смеси;

Твзр T0 – начальная тем-ра горючей смеси и тем-ра взрыва

m – число молей в смаси после взрыва;

n – число молей до взрыва.

Теоритическая температура взрыва:

Твзр=Q/(Сi* mi) Сi; mi теплоемкость продуктов горения и число молей соответственно

Объем газообразных продуктов: Vt= Vo(Pраб*Tвзр*m/Po *To*n)- при взрыве горючей смеси. ДVt=Vt-Vo(Pраб/Po)

Площадь мембраны:

f= ДVt/ фW f – уд-ая площадь мембр.V-объем газов, отвод из аппар. через мембр. ф – время развития взрыва. W- скорость истечения газов через мембр.

Расчет толщины мембр: S= (P*r/2ф ) (разрывная мембр) S- площадь мембр; Р- давление разрушения; r-радиус кривизны мембр. на растяжения материала. F=f*Vап;

d= v4F/пn толщина мембр: д= Рразd/4у в.ср; у в.ср – временное сопр-ие материала мембр., с учетом тем-го режима.

нед-ки мембр:

  • – после срабатывании давление сниж-ся до атмосф-го
  • – выброс в астмосф вредных вещ-в
  • – иногда происходит выброс языков пламени, что приводит к воспламенению среды.

Источник

Наличие на предприятии рисков, связанных с имеющимися сосудами под давлением требуют особых мер предосторожности при их хранении, использовании и обращении. К этому типу рисков можно также отнести опасности связанные с эксплуатацией систем со сжатым воздухом. А так же хранение и эксплуатацию газовых баллонов.

Остановимся подробнее на оценке профессиональных рисков в данной конкретной области.

Читайте также:  Могут ли лопнуть сосуды на головке

Риски связанные с газовыми баллонами

Опасности, связанные использованием баллонов со сжатыми газами, включают: вытеснение кислорода, воздействие токсичных газов, пожары и взрывы, а также физические опасности, связанные с наличием высокого давления.

Наибольшую опасность представляют газы не имеющие запаха или не имеющие специальных добавок для возможности идентификации их утечки по запаху.

Возьмем к примеру углекислоту (СО2). Баллоны с данным газом широко используются, при этом углекислый газ не имеет цвета и запаха и должен рассматриваться как источник опасности с плохими предупреждающими свойствами. Он в 1,5 раза плотнее воздуха, и высокие концентрации могут долго сохраняться около пола и в технологических ямах.

Углекислый газ является удушающим. Концентрация 10% и более может привести к потере сознания или смерти. Более низкие концентрации могут вызвать головную боль, потливость, учащенное дыхание, учащенное сердцебиение, одышку, головокружение, депрессию, нарушения зрения. Серьезность последних симптомов зависит от концентрации углекислого газа и продолжительности воздействия на человека.

Другой пример. Утечка кислорода (О2) из баллона опасна тем, что может вызвать пожар. В условиях избытка окислителя нужна намного меньшая энергия для воспламенения материала. Так например, масло попавшее в кислород воспламеняется при комнатной температуре. Именно по этой причине следует избегать попадания машинного масла на кислородные баллоны, в том числе пользоваться перчатками со следами масла.

При вдыхании кислорода его действие на организм аналогично действию яда и может привести к гипероксии.

В быту и на производстве применяется газ пропан (C3H8). Своей популярностью он обязан свойству не выделять побочных продуктов в процессе горения и потому получил очень широкое распространение именно в процессах связанных с его сжиганием.

Чистый пропан не имеет запаха. Привычный всем запах газа это запах специальных добавок, по которым мы можем судить о его утечке.

Различают несколько стадий отравления пропаном:

  1. Начинает кружиться голова, появляется сонливость, появляется покраснение глаз
  2. Сильно учащается пульс, нарушается координация движений, появляются судороги
  3. Потеря сознания
  4. Смерть

Каждый газ имеет свои уникальные свойства, и воздействие его на организм работников может быть разным. Задача работодателя ознакомить работников с свойствами используемых газов и научить распознавать симптомы от контактов с ними.

Для оценки существующих мер управления рисками, связанными с эксплуатацией газовых баллонов и планирования мероприятий по снижению риска, можно воспользоваться списком контрольных вопросов:

  1. Баллоны хранятся в вертикальном положении и зафиксированы цепями или другими средствами, чтобы предотвратить их опрокидывание?
  2. Баллоны хранятся вдали от легковоспламеняющихся веществ, таких как масло, бензин, растворители или отходы?
  3. Баллоны хранятся вдали от электрических соединений, газового пламени или других источников возгорания?
  4. Ацетиленовые и пропановые баллоны хранятся отдельно от кислородных баллонов, когда они не используются?
  5. Баллоны хранятся вдали от источников тепла?
  6. Баллоны хранятся вдали от агрессивных химикатов?
  7. Баллоны хранятся в сухом помещении? Защищена ли нижняя часть цилиндра от земли для предотвращения ржавчины?
  8. Баллоны со сжатым газом имеют четкую маркировку?
  9. Колпачки клапанов баллонов установлены, когда баллоны не используются?
  10. Баллоны со сжатым газом не мешают проходу?
  11. Заряженные или полные баллоны хранятся отдельно от пустых баллонов?
  12. Баллоны регулярно проверяются на предмет коррозии, выбоин, выпуклостей, дефектов и общих деформаций?
  13. Соблюдаются правила транспортировки баллонов со сжатым газом даже на короткие расстояния?
  14. Все соединения баллонов со сжатым газом, такие как регуляторы давления, коллекторы, шланги, манометры и предохранительные клапаны, поверены на целостность и герметичность (1 раз в 12 месяцев)?
  15. Со сжатыми газами работают только опытные и обученные люди?

Сосуды работающие под давлением

Сосуд под давлением – это резервуар, который был спроектирован для работы при давлении выше 0,07 мегапаскаля (МПа).

К этому типу рисков можно также отнести опасности связанные с эксплуатацией систем со сжатым воздухом. А так же трубопроводов пара и горячей воды.

Безопасное проектирование, установка, эксплуатация и техническое обслуживание сосудов под давлением в соответствии с соответствующими нормами и стандартами имеют важное значение для безопасности и здоровья работников.

При эксплуатации сосудов под давлением существует риск вызванный растрескиванием и повреждением сосуда, что может являться причиной утечки рабочей среды и разрушения сосуда.

Как следствие возможны:

  • Повреждение осколками и травмы в случае разрыва сосуда
  • Удушье или отравление, в зависимости от природы содержащейся жидкости
  • Пожар и взрыв
  • Химические и термические ожоги от контакта с технологическими жидкостями

Анализ опыта обслуживания СРД и информация о авариях позволяет выявить закономерности:

  • Повреждения обнаруживаются после гидравлического удара или внешнего механического воздействия
  • Растрескивание чаще встречается в области сварки
  • Коррозия является основным механизмом образования и роста трещин.
Читайте также:  Лопнули сосуды под губой

Меры управления:

  • Визуальный контроль.
  • Техническое обслуживание и освидетельствование.

Соответственно, расположение сосудов в здании должно быть спроектировано с учетом возможности свободного доступа персонала к сосуду для его полного осмотра. (Не менее 1 м от стен здания). Контрольно-измерительное оборудование должно быть расположено удобно для персонала.

При наличии аварийных клапанов на оборудовании работающем при избыточном давлении, в момент проведения оценки рисков, следует оценить куда отводится среда. Нет ли риска для персонала оказавшегося рядом с оборудованием.

Как отдельный риск рассматривается риск ошибки персонала при обслуживании сосудов. Для минимизации этого риска на трубопроводы наносится маркировка в виде стрелок с указанием направления движения среды и ее состава. Используются системы «Lockout/Tagout»

маркировка трубопроводов

Использование компрессоров, помимо перечисленного, связано с риском передачи вибрации на конструкцию здания. Для минимизации данного риска компрессор устанавливают на гасящие вибрацию основание. Между выходом с компрессора и трубопроводом должен иметься участок с гибким шлангом.

Источник

Основная опасность при эксплуатации сосудов заключается в возможности их разрушения при внезапном адиабатическом расширении газов и паров (физический взрыв). При физическом взрыве потенциальная энергия сжатой среды в течение малого промежутка времени реализуется в кинетическую энергию осколков разрушенного сосуда и ударную волну.

Особенно опасны взрывы сосудов, содержащих горючие вещества, так как при этом возникает химический взрыв, являющийся причиной пожара.

При взрывах сосудов развиваются большие мощности, что и является причиной сильных разрушений. Так, например, при разрыве сосуда V = 1 со сжатым до Р = 1,2 МПа воздухом с длительностью физического взрыва 0,1 с развивается мощность, равная 28 МВт.

Наиболее частыми причинами аварий сосудов, работающих под давлением, являются:

– несоответствие конструкции максимально допустимым давлению и температуре;

– превышение давления сверх предельного для данного сосуда;

– потеря механической прочности в результате внутренних дефектов, коррозии, местных перегревов и др.;

– несоблюдение установленного режима работы;

– низкая квалификация обслуживающего персонала;

– отсутствие технического надзора.

Так как наиболее часто на производствах топливно-энергетического комплекса используются баллоны для транспортирования, хранения и использования сжатых, сжиженных и растворённых газов, рассмотрим подробнее опасности, возникающие при их эксплуатации.

Взрывы баллонов возможны при повреждении корпуса в случае падения или удара по баллону, особенно при температуре < –30 оС, т. к. при этом повышается хрупкость стали. Взрыв может произойти и при повышении температуры из-за роста давления среды в баллоне.

Причиной взрыва может быть также переполнение баллона сжиженными газами из-за резкого повышения давления при росте температуры, что объясняется следующим образом. При повышении температуры баллона, полностью заполненного сжиженным газом, величина возросшего при этом давления рассчитывается по формуле

р = ∆t ·α/β (15)

где: ∆t – диапазон повышения температуры содержимого баллона, град.;

α – коэффициент объёмного теплового расширения газа, содержащегося в баллоне;

β – коэффициент объёмного теплового сжатия сжиженного газа, содержащегося в баллоне;

Для большинства газов, использующихся в промышленности, величина α больше β на порядок, что при повышении ∆t на 10 градусов даёт прирост давления на 100 атм.

Взрывы баллонов, содержащих сжатый кислород возможны при попадании масел и других жировых веществ во внутреннюю полость вентиля или баллона за счёт применения, например, необезжиренных уплотняющих прокладок. В кислородной среде масла и жиры окисляются до пероксидов, которые разлагаются взрывным способом, кроме того масла и жиры в струе кислорода способны самовоспламеняться, что также приводит к взрыву баллонов.

Баллоны с водородом представляют опасность при загрязнении водорода, содержащегося в них, кислородом в количестве > 1 % об., т. к. при этом образуется взрывоопасная смесь, воспламеняющаяся в взрывной форме при наличии соответствующего импульса.

Баллоны с ацетиленом представляют опасность из-за возможности этого вещества разлагаться со взрывом в отсутствии кислорода при давлении > 0,2 МПа. Из-за этого обстоятельства баллоны с ацетиленом заполнены активированным углём, который пропитан ацетоном, что позволяет повысить давление газа в баллоне до 1,6 МПа.

Аварии баллонов происходят также по причине отсутствия сведений о веществе, содержавшемся в них при полном расходовании его, а также отсутствия опознавательной окраски поверхности баллона и соответствующих надписей, в результате чего внутрь баллона может быть закачан или воздух или горючее вещество, что приведёт к образованию взрывоопасной смеси и взрыву при наличии соответственного импульса воспламенения.

Поскольку в баллонах могут содержаться и токсические вещества, при их разгерметизации существует также опасность отравления персонала токсическими веществами.

Источник