Что такое площадь основания сосуда

Что такое площадь основания сосуда thumbnail

В заданиях ЕГЭ по математике встречаются задачи, в которых речь идёт о погружении детали в жидкость или о переливании жидкости из одного сосуда в другой.

Вопросы в условии связаны с нахождением объёма погружаемого в жидкость тела или с нахождением какого-либо параметра сосуда. Форма сосуда может быть различной: цилиндр, призма.

Что необходимо понимать?

Если жидкость залита в цилиндрический сосуд, то она принимает форму цилиндра. Если она залита в имеющий форму призмы, то соответственно принимает форму призмы. Это означает, что формулы для объёмов цилиндра и призмы работают и для объёмов жидкостей помещённых в такие сосуды.

Формула объёма (цилиндра и призмы):

Если жидкость перливается в аналогичный сосуд с меньшим основанием, уровень (высота) жидкости увеличивается; если в сосуд с большим основанием, то уровень жидкости уменьшается.

Рекомендации!

В задачах на погружение детали в жидкость следует найти объём полученный после её погружения, далее найти разность объёмов до и после (если данные в условии это позволяют). Можно такие задачи решать и другим способом, используя закон Архимеда. Примеры рассмотрены ниже.

В задачах, где идёт речь о переливании жидкости в другой сосуд (с уменьшенной или увеличенной площадью основания) помните о том, что сам объём жидкости остаётся неизменным. Вы можете выразить его через площадь основания и высоту (S1 и H1) одного сосуда и площадь основания и высоту (S2 и H2) другого сосуда, далее полученные выражения приравнять.

При дальнейших преобразованиях получите отношение соответствующих величин – либо площадей оснований, их рёбер, либо высот. Пример такой задачи рассмотрен ниже в статье.

В цилиндрический сосуд налили 5000 см3 воды. Уровень жидкости оказался равным 40 см. В воду полностью погрузили деталь. При этом уровень жидкости в сосуде поднялся на 15 см. Чему равен объем детали? Ответ выразите в см3.

Мы знаем, что объём цилиндра равна произведению площади основания на высоту:

В жидкость погружаем деталь. Её уровень поднимается. Для того, чтобы вычислить объём детали необходимо из полученного объёма (полученного после погружения детали) вычесть объём жидкости, который был изначально.

Высота это есть уровень жидкости.

Итак, из имеющихся данных можем найти площадь основания:

Основание цилиндра у нас величина неизменная, но изменилась высота жидкости (при погружении детали) на 15 сантиметров, то есть она стала

40 +15 = 55 см.

Найдём полученный объём:

Теперь можем вычислить объём детали: 6875 – 5000 = 1875 см3

Можно решать подобные задачи более рациональным способом.

По закону Архимеда объем детали равен объему вытесненной ею жидкости. Объем вытесненной жидкости равен 15/45 исходного объема:

Ответ: 1875

Решить самостоятельно:

Посмотреть решение

В сосуд, имеющий форму правильной треугольной призмы, налили 2500 см3 воды и полностью в нее погрузили деталь. При этом уровень жидкости в сосуде поднялся с отметки 20 см до отметки 24 см. Чему равен объем детали? Ответ выразите в см3.

Принцип решения тот же самый, что и в предыдущей задаче.

Мы знаем, что объём призмы равен произведению площади основания на высоту:

В жидкость погружаем деталь. Её уровень поднимается. Для того, чтобы вычислить объём детали необходимо из полученного объёма (полученного после погружения детали) вычесть объём жидкости, который был изначально.

Из имеющихся данных можем найти площадь основания призмы:

Основание призмы не изменилось, но изменилась высота жидкости (при погружении детали) она стала 24см.

Найдём полученный объём:

Теперь можем вычислить объём детали: 3000 – 2500 = 500 см3

Второй способ:

По закону Архимеда объем детали равен объему вытесненной ею жидкости. Объем вытесненной жидкости равен 4/20 исходного объема:

Ответ: 500

Решить самостоятельно:

Посмотреть решение

В сосуд, имеющий форму правильной треугольной призмы, налили воду. Уровень воды достигает 250 см. На какой высоте будет находиться уровень воды, если ее перелить в другой такой же сосуд, у которого сторона основания в 5 раз больше, чем у первого? Ответ выразите в см.

В подобных задачах с переливаниями жидкости следует помнить, что объём её остаётся прежним (он не изменен – куда бы её не перелили).

Объем жидкости в данном случае это объём правильной треугольной призмы (в её основании лежит правильный треугольник). Он равен произведению площади основания призмы на высоту:

Суть дальнейших действий сводится к тому, что мы можем выразить объёмы жидкостей в двух призмах: первой и второй (основание которой в 4 раза больше), а затем приравнять полученные выражения, в итоге после преобразований получим отношение двух высот.

Естественно, что высота жидкости уменьшится, если увеличить площадь основания.

Обозначим исходную высоту жидкости Н1, полученную после переливания Н2.

Читайте также:  Пережало сосуд как помочь

Найдём площадь основания призмы, обозначив его сторону как а. Площадь правильного треугольника равна:

Таким образом, объём залитой жидкости в первую призму равен:

Площадь основания второй призмы равна:

Объём залитой жидкости во вторую призму равен:

Найдём отношение высот:

Таким образом, при том же объёме жидкости её высота уменьшится в 25 раз и будет равна 10.

Или можно сказать так:

При увеличении стороны основания а в 5 раз уровень воды уменьшится в 25 раз.

Ответ: 10

Решить самостоятельно:

Посмотреть решение

В цилиндрический сосуд, в котором находится 14 литров воды, опущена деталь. При этом уровень жидкости в сосуде поднялся в 1,1 раза. Чему равен объем детали? Ответ выразите в литрах.

Объём цилиндра равна произведению площади его основания на высоту:

Жидкость в сосуде имеет цилиндрическую объёмную форму.

Уровень жидкости поднялся в 1,1 раза – означает, что высота цилиндра увеличилась в 1,1 раза. Исходя из формулы объёма цилиндра понятно, что при увеличении высоты в 1,1 раза влечёт за собой увеличение объёма также в 1,1 раза (так как зависимость величин прямопропорциональная).

Это означает, что после погружения детали объём будет равен 14∙1,1 = 15,4 литра.

Таким образом, объём детали будет равен: 15,4 – 14 = 1.4 литра.

Ответ: 1,4

Решить самостоятельно:

Посмотреть решение

Если ход решения сразу не увидели, ставьте вопрос – что можно найти исходя из условия?

Например, если дан начальный объём и высота жидкости (в сосуде формы призмы или цилиндра), то мы можем найти площадь основания. Затем, зная площадь основания и высоту жидкости после погружения детали мы можем найти полученный объём.

Далее найти разницу между объёмами не составит труда (это относится к первым двум задачам). В последней задаче для решения требуется немного логики.

Источник

В этом состоянии сохраняется объем, но не сохраняется форма. Например, если перелить молоко из кувшина в стакан – молоко, имевшее форму кувшина, примет форму стакана. Кстати, в корове у молока тоже была другая форма.

Расстояние между молекулами в жидком состоянии чуть больше, чем в твердом, но все равно невелико. При этом частицы не собраны в кристаллическую решетку, а расположены хаотично. Молекулы почти не двигаются, но при нагревании жидкости делают это более охотно.

Вспомните, что происходит, если залить чайный пакетик холодной водой – он почти не заваривается. А вот если налить кипяточку – чай точно будет готов.

Агрегатных состояния точно три?

На самом деле, есть еще четвертое – плазма. Звучит, как что-то из научной фантастики, но это просто ионизированный газ – газ, в котором помимо нейтральных частиц, есть еще и заряженные. Ионизаторы воздуха как раз строятся на принципе перехода из газообразного вещества в плазму.

Сообщающиеся сосуды

Поскольку жидкость принимает форму сосуда, в который ее поместили, имеет место быть такое явление, как сообщающиеся сосуды.

  • Сообщающиеся сосуды – это сосуды, соединенные между собой ниже уровня жидкости (в каждом сосуде). Так жидкость может перемещаться из одного сосуда в другой.

Какую бы форму не имели такие сосуды, на поверхности однородных жидкостей в состоянии покоя на одном уровне действует одинаковое давление.

Если в колена сообщающихся сосудов налить жидкости, плотности которых будут различны, то меньший объём более плотной жидкости в одном колене уравновесит больший объём менее плотной жидкости в другом колене сосуда.

Другими словами, высота столба жидкости с меньшей плотностью больше, чем высота столба жидкости с большей плотностью. Давайте рассчитаем, во сколько высота столба жидкости с меньшей плотностью больше высоты столба жидкости с большей плотностью, если эти две несмешивающиеся жидкости находятся в сообщающихся сосудах.

p = ρgh, p1 = p2, ρ1 gh1= ρ2 gh2,

Отсюда:

h1/h2 = ρ1/ρ2

ρ2 = (h1/h2) * ρ1

Применение сообщающихся сосудов

На принципе сообщающихся сосудов основано устройство очень простого прибора для определения плотности жидкости. Этот прибор состоит из двух сообщающихся сосудов: двух вертикальных стеклянных трубок, соединенных между собой третьей изогнутой трубкой.

Одна из вертикальных трубок заполняется жидкостью, плотность которой нужно определить, а другая – жидкостью известной плотности (например, водой, плотность которой равна 1000 кг/м^3). Жидкости должны заполнить трубки настолько, чтобы их уровень в изогнутой трубке посередине был на отметке прибора 0. Высоты жидкостей в трубках над этой отметкой измеряют и находят плотность исследуемой жидкости, зная, что высоты обратно пропорциональны плотностям (об этом мы говорили выше).

Также на законе сообщающихся сосудах основаны устройства, которые определяют уровень жидкости в закрытых сосудах: резервуарах, паровых котлах.

Чтобы судно могло переплыть из одной водного бассейна в другой, если уровни воды в них разные, необходимо использовать шлюз. Устройство шлюза также основано на принципе сообщающихся сосудов. В первых воротах шлюза открывается клапан, камера соединяется с водоёмом, они становятся сообщающимися сосудами, уровни воды в них выравниваются. После этого ворота открываются, и судно проходит в первую камеру. Открывается следующий клапан, после выравнивания уровней воды открываются ворота, и так повторяется столько раз, сколько камер имеет шлюз.

Читайте также:  Почему появляются в сосудах бляшки

Давление столба жидкости

Выведем формулу давления столба жидкости через основную формулу давления.

Давление

p = F/S

p – давление [Па]

F – сила [Н]

S – площадь [м^2]

В случае давления жидкости на дно сосуда мы можем заменить силу в формуле на силу тяжести.

p = mg/S

Также мы можем представить массу жидкости, как произведение плотности на объем:

p = ρ*V*g/S

Из геометрии мы знаем, что объем тела вращения (например, цилиндра) – это произведение площади основания на высоту: V = Sh.

Следовательно, высота будет равна h = V/S. Подставляем в формулу высоту вместо отношения объема к площади.

p = ρ*g*V/S

p = ρgh

В сообщающихся сосудах давление жидкости на одном уровне (на одной и той же высоте) будет одинаковым.

А можно сделать так, чтобы давление было разным?

С помощью перегородки можно сделать так, чтобы уровень жидкости, а следовательно, и давления в сообщающихся сосудах отличались.

Перегородка, установленная между сосудами перекроет сообщение. Далее доливая жидкость в один из сосудов мы создаем дополнительное давление. Если затем убрать перегородку, то жидкость начнет перетекать в тот сосуд, где её уровень ниже – до тех пор, пока высота жидкости в обоих сосудах не станет одинаковой.

Этот принцип используют в водонапорной башне. Чтобы создать высокое давление, башню наполняют водой. Затем открывают трубы на нижнем этаже, и вода устремляется в дома в наши краны и батареи.

Задачка

Какой площади необходимо сделать малый поршень в гидравлическом прессе, для того, чтобы выигрыш в силе получился равным 2? Площадь большого поршня равна 10 см^2.

Решение:

Гидравлический пресс – это два цилиндрических сообщающихся сосуда. Площадь большого поршня, с приложенной силой F1, равна 10 см^2.

Площадь малого поршня обозначим Sмал, к нему приложена сила F2.

Давления в сообщающихся сосудах на одинаковой высоте равны: p1 = p2

Подставим формулу давления:

F1/Sбол=F2/Sмал.

Выразим Sмал, получим:

Sмал = (F2/F1) * Sбол

Так как по условию выигрыш в силе F2/F1 равен 2, то:

Sмал=2*Sбол= 2*10 = 20 см^2

Ответ: малый поршень необходимо сделать с площадью равной 20 см^2

Понимать и любить этот мир гораздо проще, когда разбираешься в физике. В этом помогут небезразличные и компетентные преподаватели онлайн-школы Skysmart.

Чтобы формулы и задачки ожили и стали более дружелюбными, на уроках мы разбираем примеры из обычной жизни современных подростков. Приходите на бесплатный вводный урок по физике и начните учиться в удовольствие уже завтра!

Источник

1. Площадь полной поверхности куба

a – сторона куба

Формула площади поверхности куба,(S):

2. Найти площадь поверхности прямоугольного параллелепипеда

a, b, c – стороны параллелепипеда

Формула площади поверхности параллелепипеда, (S):

3. Найти площадь поверхности шара, сферы

R – радиус сферы

π ≈ 3.14

Формула площади поверхности шара (S):

4. Найти площадь боковой и полной поверхности цилиндра

r – радиус основания

h – высота цилиндра

π ≈ 3.14

Формула площади боковой поверхности цилиндра, (Sбок):

Формула площади всей поверхности цилиндра, (S):

5. Площадь поверхности прямого, кругового конуса

R – радиус основания конуса

H – высота

L – образующая конуса

π ≈ 3.14

Формула площади боковой поверхности конуса, через радиус (R) и образующую (L), (Sбок):

Формула площади боковой поверхности конуса, через радиус (R) и высоту (H), (Sбок):

Формула площади полной поверхности конуса, через радиус (R) и образующую (L), (S):

Формула площади полной поверхности конуса, через радиус (R) и высоту (H), (S):

6. Формулы площади поверхности усеченного конуса

R – радиус нижнего основания

r – радиус верхнего основания

L – образующая усеченного конуса

π ≈ 3.14

Формула площади боковой поверхности усеченного конуса, (Sбок):

Формула площади полной поверхности усеченного конуса, (S):

7. Площадь поверхности правильной пирамиды через апофему

L – апофема (опущенный перпендикуляр OC из вершины С, на ребро основания АВ)

P – периметр основания

Sосн – площадь основания

Формула площади боковой поверхности правильной пирамиды (Sбок):

Формула площади полной поверхности правильной пирамиды (S):

8. Площадь боковой поверхности правильной усеченной пирамиды

m – апофема пирамиды, отрезок OK

P – периметр нижнего основания, ABCDE

p – периметр верхнего основания, abcde

Формула площади боковой поверхности правильной усеченной пирамиды, (S):

Читайте также:  В сосуде находится смесь льда и воды

9. Площадь поверхности шарового сегмента

R – радиус самого шара

h – высота сегмента

π ≈ 3.14

Формула площади поверхности шарового сегмента, (S):

10. Площадь поверхности шарового слоя

h – высота шарового слоя, отрезок KN

R – радиус самого шара

O – центр шара

π ≈ 3.14

Формула площади боковой поверхности шарового слоя, (S):

11. Площадь поверхности шарового сектора

R – радиус шара

r – радиус основания конуса = радиус сегмента

π ≈ 3.14

Формула площади поверхности шарового сектора, (S):

Источник

Понятие объёма

Можно провести аналогию понятия объема сосуда с понятием площади. Напомним, что понятие площади применимо к плоскости. Любой многоугольник имеет свою площадь.

В качестве единицы измерения площади принято брать квадрат со стороной, равной единице. В случае объёма за единицу измерения берут куб с ребром, равным единице. Этот куб называют кубическим сантиметром (метром, миллиметром и т. д.) и обозначают $1 см^3$ (соответственно, $1 м^3, 1 мм^3$ и т.п.).

Другую аналогию между площадью и объёмом можно провести в самой процедуре их измерения. Объём выражается положительным числом, показывающим количество единиц измерения объёмов и частей, которые укладываются в данном теле. Число единиц объёма тела зависит от выбранной единицы измерения, то есть меняется в зависимости от того, выбраны $cм^3, м^3$ и т.п. Единицу измерения традиционно указывают после числа.

Приведём простейший пример. $V=3 мм^3$ – эта запись означает, что объём некоторого сосуда равен 3-м, если в качестве единицы измерения взят кубический миллиметр.

Основные свойства объёмов:

  1. У равных сосудов равные объёмы.
  2. В случае, когда сосуд состоит из нескольких сосудов, то его объём равен сумме всех этих сосудов.

Эти свойства аналогичны свойствам длин отрезков и площадей многоугольников.

Часто требуется найти объём параллелепипеда, пирамиды, цилиндра, конуса и шара. Параллельно с формулами объёма дадим ключевые определения. Чтобы рассмотреть такую фигуру как параллелепипед, необходимо дать два важных определения:

  1. Многогранник – это тело, ограниченное несколькими многоугольниками (гранями). Стороны граней называют рёбрами, а концы рёбер – вершинами.
  2. Призма – это многогранник, который составлен из двух параллельных многоугольников (оснований призмы), вершины которых соединены параллельными и равными друг другу отрезками (боковыми ребрами призмы), образующими параллелограммы (боковые грани призмы).

Нахождение объёма параллелепипеда

Параллелепипед – это многогранник, составленный из 6-ти прямоугольников. Или это четырёхугольная призма, в которой основания – параллелограммы. Форму параллелепипеда имеют коробки, комнаты и многие другие предметы из нашей повседневной жизни.

В случае, когда у параллелепипеда боковые ребра перпендикулярны к плоскостям оснований, а боковые грани и основания – прямоугольники, то этот параллелепипед называют прямоугольным (прямым).

Для нахождения объёма прямоугольного параллелепипеда необходимы его измерения. Измерения параллелепипеда – это длины трёх рёбер с общей вершиной. В речи мы называем измерениями “длину”, “ширину” и “высоту” (например, при измерении комнаты).

Определение 1

Объём прямоугольного параллелепипеда равен произведению трёх его измерений: $V=abc$.

Если площадь основания $S=ac$, а высота $h=b$, то формула объёма может быть следующей: $V=Sh$.

Нахождение объёма пирамиды

Пирамида – это многогранник, образованный из $n$-угольника (в качестве основания) и треугольников (в качестве боковых граней), построенных путем соединения одной точки (вершины пирамиды) отрезками (боковыми рёбрами) с вершинами многоугольника.

Рисунок 1. Пирамида. Автор24 – интернет-биржа студенческих работ

Определение 2

Объём пирамиды равен одной трети произведения площади основания на высоту. В данном случае высота представляет собой перпендикулярный к плоскости основания отрезок, который соединяет вершину пирамиды с плоскостью её основания.

$V=frac{Sh}{3}$.

Нахождение объёма цилиндра

Цилиндр – некоторое тело (или сосуд), полученное в результате вращения некоторого прямоугольника вокруг своей оси (одной из сторон прямоугольника).

Рисунок 2. Цилиндр. Автор24 – интернет-биржа студенческих работ

Определение 3

Объём цилиндра равен произведению площади основания на высоту: $V=Sh$.

Нахождение объёма конуса

Конус – это некоторое тело (сосуд), полученное в результате вращения прямоугольного треугольника вокруг его катета.

Рисунок 3. Конус. Автор24 – интернет-биржа студенческих работ

Определение 4

Объём конуса равен одной трети произведения площади основания на высоту: $V=frac{Sh}{3}$.

Нахождение объёма шара

Сфера – это поверхность, состоящая из всех точек пространства, расположенных на равном расстоянии (радиусе) от данной точки (центра).

Рисунок 4. Сфера. Автор24 – интернет-биржа студенческих работ

Шар – это некоторое тело (сосуд), которое ограничено сферой. Другой вариант определения: шар – это тело (сосуд), полученное в результате вращения полукруга вокруг диаметра этого полукруга.

Рисунок 5. Шар. Автор24 – интернет-биржа студенческих работ

Определение 5

Объём шара: $V=frac{4}{3}pi R^3$, где $R$ – радиус шара.

Таким образом, мы перечислили все основные формулы объёма основных фигур в стереометрии.

Источник