Что такое сосуд под вакуумом

Что такое сосуд под вакуумом thumbnail

Очень часто к нам обращаются люди, которые хотят купить вакуумный насос, но слабо представляют, что такое вакуум.

Попытаемся разобраться, что же это такое.

По определению, вакуум – это пространство, свободное от вещества (от латинского слова «vacuus» – пустой).

Существует несколько определений вакуума: технический вакуум, физический вакуум, космический вакуум и т.д.

Мы будем рассматривать технический вакуум, который определяется как сильно разреженный газ.

Рассмотрим на примере, что такое вакуум и как его измеряют.

На нашей планете существует атмосферное давление, принятое за единицу (одна атмосфера). Оно меняется в зависимости от погоды, высоты на уровнем моря, но мы не будем принимать это во внимание, так как это не будет никак влиять на понимание понятия вакуум.

Итак, мы имеем давление на поверхности земли равное 1 атмосфере. Всё, что ниже 1 атмосферы (в закрытом сосуде), называется техническим вакуумом.

Возьмём некий сосуд и закроем его герметичной крышкой. Давление в сосуде будет равно 1 атмосфере. Если мы начнём откачивать из сосуда воздух, то в нём возникнет разряжение, которое и называется вакуумом.

Рассмотрим на примере: в левом сосуде 10 кружочков. Пусть это будет 1 атмосфера.

«откачаем» половину – получим 0,5 атм, оставим один – получим 0,1 атм.

Вакуум в картинках

Так как в сосуде всего одна атмосфера, то и максимально возможный вакуум мы можем получить (теоретически) ноль атмосфер.

“Теоретически” – т.к. выловить все молекулы воздуха из сосуда практически невозможно.

По этому, в любом сосуде, из которого откачали воздух (газ) всегда остается какое-то его минимальное количество. Это и называют “остаточным давлением”, то есть давление, которое осталось в сосуде после откачки из него газов.

Существуют специальные насосы, которые могут достичь глубокого вакуума до 0,00001 Па, но всё равно не до нуля.

В обычной жизни редко когда требуется вакуум глубже 0,5 – 10 Па (0,00005-0,0001 атм).

Есть несколько вариантов измерения вакуума, которые зависят от выбора точки отсчёта:

1. За единицу принимается атмосферное давление. Всё, что ниже единицы – вакуум.

То есть шкала вакуумметра от 1 до 0 атм (1…0,9…0,8…0,7…..0,2…0,1….0).

2. За ноль принимается атмосферное давление. То есть вакуум – все отрицательные числа меньше 0 и до -1.

То есть шкала вакуумметра от 0 до -1 (0, -0,1…-0,2….,-0,9,…-1).

Также шкалы могут быть в кПа, mBar, но это всё аналогично шкалам в атмосферах.

На картинке показаны вакуумметры с различными шкалами, которые показывают одинаковый вакуум:

Вакууметры с разными шкалами

Из всего сказанного выше видно, что величина вакуума не может быть больше атмосферного давления.

К нам почти каждый день обращаются люди, которые хотят получить вакуум -2, -3 атм и т.д.

И они очень удивляются когда узнают, что это невозможно (кстати, каждый второй из них говорит, что “вы сами ничего не знаете”, “а у соседа так” и т.д. и.т.п.)

На самом деле, все эти люди хотят формовать детали под вакуумом, но чтобы прижим детали был более 1 кг/см2 (1 атмосферы).

Этого можно достичь, если накрыть изделие плёнкой, откачать из под неё воздух (в этом случае, в зависимости от созданного вакуума, максимальный прижим составит 1 кг/см2 (1 атм=1 кг/см2)), и после этого поместить это всё в автоклав, в котором будет создано избыточное давление. То есть для создания прижима в 2 кг/см2, достаточно создать в автоклаве избыточное давление в 1 атм.

Вакуумметры с разными шкалами

Теперь несколько слов о том, как многие клиенты измеряют вакуум на выставке ООО “Насосы Ампика”, у нас в офисе:

включают насос, прикладывают палец (ладонь) к всасывающему отверстию вакуумного насоса и сразу делают вывод о величине вакуума.

Обычно, все очень любят сравнивать советский вакуумный насос 2НВР-5ДМ и предлагаемый нами его аналог VE-2100.

После такой проверки, всегда говорят одно и тоже – вакуум у 2НВР-5ДМ выше (хотя на самом деле оба насоса выдают одинаковые параметры по вакууму).

В чем же причина такой реакции? А как всегда – в отсутствии знаний законов физики и что такое давление вообще.

Немного ликбеза: давление «P» – это сила, которая действует на некоторую площадь поверхности, направленная перпендикулярно этой поверхности (отношение силы «F» к площади поверхности «S»), то есть P=F/S.

По-простому – это сила, распределённая по площади поверхности.

Из этой формулы видно, что чем больше площадь поверхности, тем меньше будет давление. А также сила, которая потребуется для отрыва руки или пальца от входного отверстия насоса, прямо пропорциональна величине площади поверхности (F=P*S).

Диаметр всасывающего отверстия у вакуумного насоса 2НВР-5ДМ – 25 мм (площадь поверхности 78,5 мм2).

Диаметр всасывающего отверстия у вакуумного насоса VE-2100 – 6 мм (площадь поверхности 18,8 мм2).

То есть для отрыва руки от отверстия диаметром 25 мм, требуется сила в 4,2 раза большая, чем для диаметра отверстия 6 мм (при одинаковом давлении).

Именно по этому, когда вакуум измеряют пальцами, получается такой парадокс.

Давление «P», в этом случае, рассчитывается как разница между атмосферным давлением и остаточным давлением в сосуде (то есть вакуумом в насосе).

Читайте также:  Рисунок сосудов на ногу

Как посчитать силу прижима какой-либо детали к поверхности?

Очень просто. Можно воспользоваться формулой приведенной выше, но попробуем объяснить попроще.

Например, пусть требуется узнать, с какой силой может быть прижата деталь размером 10х10 см при создании под ней вакуума насосом ВВН 1-0,75.

Берём остаточное давление, которое создаёт этот вакуумный насос серии ВВН.

Конкретно у этого водокольцевого насоса ВВН 1-0,75 оно составляет 0,4 атм.

1 атмосфера равна 1 кг/см2.

Площадь поверхности детали – 100 см2 (10см х10 см).

То есть, если создать максимальный вакуум (то есть давление на деталь будет 1 атм), то деталь прижмётся с силой 100 кг.

Так как у нас вакуум 0,4 атм, то прижим составит 0,4х100=40 кг.

Но это в теории, при идеальных условиях, если не будет подсоса воздуха и т.п.

Реально нужно это учитывать и прижим будет на 20…40% меньше в зависимости от типа поверхности, скорости откачки, и т.п.

Теперь пару слов о механических вакуумметрах.

Эти устройства показывают остаточное давление в пределах 0,05…1 атм.

То есть он не покажет более глубокого вакуума (будет всегда показывать «0»). Например, в любом пластинчато-роторном вакуумном насосе, по достижении его максимального вакуума, механический вакуумметр всегда будет показывать «0». Если требуется визуальное отображение значений остаточного давления, то нужно ставить электронный вакуумметр, например VG-64.

Часто к нам приходят клиенты, которые формуют детали под вакуумом (например, детали из композиционных материалов: углепластика, стеклопластика и т.п.), это нужно для того, чтобы во время формовки из связующего вещества (смолы) выходил газ и тем самым улучшались свойства готового продукта, а так же деталь прижималась к форме плёнкой, из-под которой откачивают воздух.

Встаёт вопрос: каким вакуумным насосом пользоваться – одноступенчатым или двухступенчатым?

Обычно думают, что раз вакуум у двухступенчатого выше, то и детали получаться лучше.

Вакуум у одноступенчатого насоса 20 Па, у двухступенчатого 2 Па. Кажется, что раз разница в давлении в 10 раз, то и прижиматься деталь будет гораздо сильнее.

Но так ли это на самом деле?

1 атм = 100000 Па = 1 кг/см2.

Значит разница в прижиме плёнки при вакууме 20 Па и 2 Па составит 0,00018 кг/см2 (кому не лень – посчитает сам).

То есть, практически, разницы никакой не будет, т.к. выигрыш в 0,18 г в силе прижима погоды не сделает.

Расчет времени вакуумирования емкости

Как рассчитать за какое время вакуумный насос откачает вакуумную камеру?

В отличии от жидкостей, газы занимают весь имеющийся объем и если вакуумный насос откачал половину воздуха, находящегося в вакуумной камере, то оставшаяся часть воздуха вновь расширится и займет весь объем.

Ниже приведена формула для вычисления этого параметра.

t = (V/S)*ln(p1/p2)*F, где

t – время (в часах) необходимое для откачки вакуумного объема от давления p1 до давления p2

V – объем откачиваемой емкости, м3

S – быстрота действия вакуумного насоса, м3/час

p1 – начальное давление в откачиваемой емкости, мбар

p2 – конечное давление в откачиваемой емкости, мбар

ln – натуральный логарифм

F – поправочный коэффициент, зависит от конечного давления в емкости p2:

– p2 от 1000 до 250 мбар F=1

– p2 от 250 до 100 мбар F=1,5

– p2 от 100 до 50 мбар F=1,75

– p2 от 50 до 20 мбар F=2

– p2 от 20 до 5 мбар F=2,5

– p2 от 5 до 1 мбар F=3

Читайте также:  Узи сосудов нижних конечностей одинцово

В двух словах, это всё.

Надеемся, что кому-нибудь эта информация поможет сделать правильный выбор вакуумного оборудования и блеснуть знаниями за кружкой пива…

Источник

Вакуум — это пространство, лишенное вещества. Технический вакуум — это сильно разреженный газ.

Оглавление:

Что такое вакуум?

Вакуум представляет собой пространство, освобожденное от какого-либо вещества (в переводе с латыни vacuus обозначает «пустой»). Данное понятие имеет ряд определений, в частности технический, физический, космический вакуум и др. При этом в технике под вакуумом подразумевают среду, которая состоит из очень разреженного газа.

На Земле имеется атмосферное давление, принимаемое за единицу (т. е. одна атмосфера). Этот показатель изменяется согласно погодным условиям, высоте относительно уровня моря. Однако это не столь значимо для понимания определения вакуума. При этом техническим вакуумом считают давление менее одной атмосферы. К примеру, если взять какую-либо емкость с давлением в одну атмосферу, закрыть ее герметично, а затем начать откачивать оттуда воздух, в емкости появится разрежение. Это и будет вакуум.

Вакуумная стеклянная камера

Чисто теоретически вакуум, который максимально возможен в таком сосуде, будет составлять ноль атмосфер. Однако на практике нереально устранить оттуда все воздушные молекулы. Ведь в любой емкости, из которой выкачан воздух (газ), в любом случае останется минимальное число молекул. Это именуется остаточным давлением — таким, которое остается в камере после откачивания газа.

Идеального вакуума нереально добиться на практике в макроскопических объемах, потому как при конечной температуре различные материалы отличаются ненулевой плотностью своих насыщенных паров. Помимо этого, многие из них (а именно толстые стенки сосудов из металла либо стекла) пропускают газы. А вот в микроскопическом объеме достичь идеального вакуума, в принципе, можно.

Технический вакуум

Еще одним определением технического вакуума будет состояние, при котором молекулы либо атомы газа в емкости перестают совершать столкновения. При этом выделяют несколько типов вакуума.

1. Низкий (или форвакуум). На один кубический сантиметр приходится 1016 молекул.

2. Высокий. Соответственно, 1011 молекул, или 10–5 мм ртутного столба.

3. Сверхвысокий. Это 10–9 мм ртутного столба и менее (миллиард на кубический сантиметр).

Даже в идеале в вакууме неизбежно присутствует некое тепловое излучение (или газ фотонов). И помещенное туда тело всегда приходит в тепловое равновесие со стенками сосуда. Вакуум — это хороший теплоизолятор, теплопроводность здесь исключаются. Данное свойство успешно применяется в термосах — это емкости с двойными стенками, между ними наблюдается вакуум. Кроме того, на эффекте вакуума основаны разные приборы, к примеру, радиолампы и электронно-лучевые трубки.

Устройство вакуумного насоса

Для образования и поддержания эффекта вакуума используются особые насосы. При различной конструкции данные аппараты имеют единый принцип работы. Оборудование вытесняет воздушные молекулы (или частицы прочих газов) из камеры либо из выходного патрубка агрегата, имеющего более высокое давление (речь идет о последовательном подключении). В ходе устранения воздуха меняется давление, в итоге газовые частицы перемещаются в нужном направлении.

Откачивание газа осуществляется за счет того, что объем камеры периодически изменяется.

Устройство вакуумного водокольцевого насоса

Ключевые условия, которые должен обеспечивать вакуумный насосный аппарат, — сформировать вакуум заданного уровня, откачав для этого из определенного пространства всю газовую среду, и выполнить эту операцию в течение конкретного времени. Когда же не выполняется одно из этих условий, например не поддерживается нужное давление, подключается специальный форвакуумный насос: он дополнительно уменьшает давление. Данный принцип работы базируется на последовательном подключении. Когда же насос обеспечивает заданную величину вакуума, но не дает необходимой скорости откачивания, то используется уже другой вспомогательный аппарат. Здесь подключение будет напоминать параллельное.

Степень вакуума, который формирует насос, определяет герметичность рабочего пространства, которое создают элементы агрегата. Для необходимой герметичности используется специальное масло. Такой насос называют масляным. Аппараты же, которые работают без масла, именуются сухими.

Классификация вакуумных насосных аппаратов

Вакуумные насосы подразделяют по типу вакуума, а также по устройству. Общая зона давления, с которой работают такие агрегаты, составляет диапазон 105–10−12 Па. Агрегаты классифицируют на низко-, средне-, высоко- и сверхвысоковакуумные.

Согласно принципу действия вакуумное оборудование бывает механическим и физико-химическим. Первое включает такие типы:

Читайте также:  Произведение давления на объем сосуд

  • поршневые;
  • диафрагменные;
  • пластинчато-роторные;
  • винтовые;
  • крыльчатые;
  • спиральные;
  • золотниковые.

Среди физико-химических аппаратов выделяются магниторазрядные, струйные (паромасляные диффузные и бустерные), криогенные, сорбционные.

Спиральный вакуумный насос

В вакуумных насосных устройствах выделяется две ключевые технологии работы с газовой средой: ее перекачивание или улавливание. Аппараты, функционирующие по первой технологии, делят на кинетические и устройства объемного действия. Первые не обладают герметичной вакуумной камерой, однако способны при небольшом давлении добиваться высокого коэффициента сжатия. Устройства же объемного вытеснения функционируют посредством механического улавливания воздуха и транспортировки его через насос. В герметичной камере газ уменьшается до меньшего объема, после чего удаляется в атмосферу либо в другой насосный аппарат.

Как правило, кинетические и объемные аппараты работают последовательно, что обеспечивает создание вакуумного пространства более высокого уровня, а также расхода. К примеру, кинетический (его также называют «турбомолекулярный») насос поставляют в комплекте с винтовым.

Оборудование, которое функционирует по методу улавливания газа, поглощает молекулы на поверхности. Такие агрегаты характеризуются меньшим расходом, нежели перекачивающие. Работают они посредством криогенной конденсации, химической либо ионной реакции, лишены движущихся элементов.

Проверка насоса на вакуум

Вакуумный насос работает под непрерывной нагрузкой. И для бесперебойной службы его состояние постоянно контролируется. Для этой цели используются специальные приборы — вакуумметры и течеискатели. Первые контролируют давление, создаваемое аппаратом, вторые отыскивают в системе течь.

Вакуумметры бывают разных типов (классические, мембранные, терморезисторные, изоляционные и др.). Конкретный тип определяется принципом действия насосного аппарата.

Применение вакуумного оборудования

Если раньше эффект вакуума применяли лишь в научных лабораториях при проведении исследований, то с развитием технологий, оборудования он стал востребован для разнообразных целей. Соответственно, вакуумные насосные аппараты сегодня используют в следующих сферах промышленности и науки.

1. В ходе лабораторных исследований и физических экспериментов, при изучении элементарных частиц, при испытаниях, в процессе которых имитируются космические условия.

2. В нефтедобывающей сфере и производстве нефтепродуктов. Специализированное мощное вакуумное оборудование дает возможность перегонять нефть более качественно, синтезировать эфиры, регенерировать растворители.

3. В целлюлозно-бумажном производстве. Для выделения целлюлозы, формирования бумажного полотна необходим эффект вакуума.

4. В пищевой промышленности, при создании вакуумной упаковки. Современное пищевое производство трудно представить без герметичной упаковки, она в разы повышает срок хранения продуктов.

5. В металлургии. Эффект вакуума здесь — настоящая находка. Плавка металлов при разном давлении позволяет корректировать механические характеристики сплавов, готовых изделий.

6. В деревообработке, стекольной промышленности, в том числе для производства высококачественной оптики.

7. В медицинских лабораториях забор крови производится вакуумной пробиркой. За счет этого процесс стал почти безболезненным, более стерильным, улучшились стандарты качества.

8. В фармацевтике.

Рыба в вакуумной упаковке

При этом каждый тип насосного оборудования выполняет свои определенные функции. К примеру, для эффективного откачивания воздуха, чтобы не загрязнялась смесь, оптимально применение сухих пластинчато-роторных и диафрагменных агрегатов, в которых не требуется вакуумное масло. В лабораториях же, где необходимо создание небольшого остаточного давления (т. е. невысокого вакуума) и обеспечение невысокой скорости откачивания, востребованы диафрагменные вакуумные насосы. Они могут работать с агрессивными газами, при этом не загрязняя окружающую среду.

#ФОРМА#

Источник

T„F”,ç5³ Œô:18ýÙF±ÏOºÓTIô¶ßք­ð ¨h³›šB–`—^Ñ8HØÛ¹®M¢®f9ÁJ€cb±
!+U܇Bâã2{5«Y|h€¹³OÏa‘¥˜Xq¢S¬ÿŽ:ݲ Ì1m+AŠ^¥eïG(R…D‚älˆíKÜrÈíñÒLæ6…E‘ö…3}»Ó},š8l’Ü´ñnÑÛÌo€í•Í7f]½Úâk„)%CTˆw[e¤*Ö!³®lrF¢fÝȼ>1/ZÜ>²tæçX3𢷓Á—xºI3º)ƒWrŠÊoÒÞS“½Ü 6QúY¯6Ö/ÖmÒë/”˜£œ©8ÜùØ·%ÙòîÄn9»^ÓQ Ý 3 Ë^;ªätÌv‘—¶£;³½L…5:x6fû5A…n;S1;y1ç(š³-Ztø1S-
-”š} .w[ÒºWÂrk¶ƒn;}~[}*Ÿóœ”jj-ám²ô΢톲#õtQ£û}ÊÊæ˜]Rˆ›3³•.ì)ú!RkiB¡wz@.õZ׏oö•ç!¬¡|ww½[•šÕoÕ:¤xQ‡²`õ£UªT¾õô¶á½òVM˜èÁr˜qŸB-Rm«“FËæ3ãjØ4} ݋ZŽxIÁ4–6ÙòÓ¿¦¬Ý£éû…EZ,¹[¥_Em.P!©Hµí ¢‰s ±¤owe¬ƒ^“ñnán ·MçÑʝ”•€£Âµ×Z·› ?ʨ”gÐ=މ³j6Φ³8ÙÒ|›ùÆ*íè™Wôƒñw•‹¶Ý|Óñw
hÐÁ“ñW »lv¹çè»^0ðvt¨o¨-¡}c ˆ–Lˆæµ¼„¾†#§û)îf
K¿8÷™Xe’÷B¡þ€G»ûÖoZµþ඼ÀÃn  ¢@‡½šXÄÎo¦¡[]„ÜùGVã ap«],w1?ßä=×êš$§ÇRU
H”%x©VñT‹–ÒÁ#ݲ¨s¦çf+Yóílù†z°I·9¥kÂ,Æ1þÏꚔ©× “Ü=¯ó ÅS~YÍ׏”û(”3iÒ|V¢«’æó^Êâa©”ñžèV#ú—áŽæ=|öM{¦þ”ä¨hƒUË{”`øjBvbMJõUc~ÚùãáéãÏ 1“‡ƒJËôqUXÓ”eû£gÏ«Ô*Rr_Ï«Ö³,=ª¡ŒI5ž¨–²1c îPkì|eÝ,W¢Ì£ N²  0q¼Õq:zÐ=dsõÞcŨÓu*
Ž£
ÕÍ4´Œ&KȨ»PFl¹ZIy`Ýx¨Ê軪R«—’°ûî«%k¥à7†:4Y´Ä]×oñÅ4dhªÒå¡ï;›‰Ú˜ô½ßŒ¶æÚ
xï+*ív l®Qe}ˆG;‰FÓZH•Ê.Ãêñˆ£Î£-g‡G ˜ÙÎ#euê®?n¦Â’BÇîuT%÷§šÎ7VÉÚؽ=}¹Öœe,Fy]5m ᥆ßíÚúX!”³Hu.k”s­”ƈTí¤B™ÄiƊTaíÅIñ)k:ö–Ç]CʶÞ×0m+7ÅûÍái,+çŠÐ¹–Ó
ïáNó¿ÝJµzx:²êýZ÷Ȱ҂tH ]¼2¯
Û{>vº£i[يq>}‹À…2[F0Þ¤4ŽžUÏ`S¦×R›¾,p 3]ÐR1½r˜3‹èú…û#üN,³;.›!]èffN©”£š…›wö-~KíëQÉÂHYLýœÅP_—â‡×å°»PCÔàm°Þ!Ùi:÷wkïs¦ÜøucíÏø¥Hÿ¬XÖ så>¼wBԃŸÞ~!guªë‡Z˜Ž¯BÓÂJí½Õúºc’¯Ø ;}ÞÃWQ¯b†ß­ÔqðV³C‰H”ö¢°6¼Y+-ZÀ£;G¨|68¦ƒ»ºNFôob8þÜ “€œŸãù Ÿ€ƒÄDîÜÉÔS8Tq’Jnq
7ˆHÍ¢™üô1&¯-ˆãíæbÝڐ.íY;ŒQ’ÄìÒa=ÿ™DŸAßxS7hÙÞ=ól¿hØíiUbö=ÐÞDuá±ö&iÔZ>þP]A@1wݜ}bNýܙj’Á>mÈכ’fOkV³hÇxp’xÚéà©”éVn4¸`ñr;ñëþ¡ûD̈$‡±s6^ªˆæeè—ÛŸÒçœ÷†—õû4¢ð˜$å§VLÜq7Žiõó¼¬,DѬ.ýÝfbÇ.XØ%Œû;7压¨­Y¾UÙÇ N±ƒªJ!…­@ uŸ¥‹Û‘‡q¦2±&0ŠÑ÷pqP;¸àëݹ­ÃB¢¸—?äOä:#l–õóŽ}òñÍùS­SםtöøÂļ#Б’±¨ä”ÿý£qôP‚_t00ÇíT–ï.è®ïãæ¶A§*T´Ò(»Ûï¿9™ÀŽ’ôƘX“2″‘3X(µN+XTe®_tWÍ-{ˆÉÐi)pg.KþoüÕ¢2‘ç£y†Å9ÓGåVÞå…û=¨s¿•¹2·
ïó(¹¦ïO肷!ôýËêA
endstream
endobj
5 0 obj
>
endobj
6 0 obj
[ 7 0 R]
endobj
7 0 obj
>
endobj
8 0 obj
>
endobj
9 0 obj
>
endobj
10 0 obj
>
endobj
11 0 obj
>
endobj
12 0 obj
>
endobj
13 0 obj
[ 14 0 R]
endobj
14 0 obj
>
endobj
15 0 obj
>
endobj
16 0 obj
>
endobj
17 0 obj
>
endobj
18 0 obj
>
endobj
19 0 obj
>
endobj
20 0 obj
[ 21 0 R]
endobj
21 0 obj
>
endobj
22 0 obj
>
endobj
23 0 obj
>
endobj
24 0 obj
>/ProcSet[/PDF/Text/ImageB/ImageC/ImageI] >>/MediaBox[ 0 0 595.2 841.92] /Contents 25 0 R/Group>/Tabs/S/StructParents 1>>
endobj
25 0 obj
>
stream
xœ½Én¹õnÀÿÐGˆ8ܗDh eYAƒo39HNùÿk¸ó=.%V«’0d©»ÈGòíëòË?.//¿üúýooz½^^ß¾_^~ýòË»º0A¿üü÷×/ìBý?vaœ%.Æp”.?ÿûõ½ü’ü÷ׯ_~{¡:ÊõÍÿðë3£þîö%~–á—ñ_‹ðµ
Ÿ)×çðX}÷ÏØõÙ¼¤ééqúÚÆßqh„¨_¯ÏDxPÿ~K¿Õö¬Lruù¶Ü«ÿ »T×ç¸-@škƒpýçåçß¿~ùáёP”‘(ŠcJ~{úó70ôòã×CôàôP’PA>/VgêðØË·þˆlºŠ%όÔh̘ÏÔSïù»ïW°ž¦h•l•Q®ÀDk•†ÚVÐ:Ò÷8¾ÍããêË«hõÌ”‹¥GF`f8§ù€æ†—b?¦˜ÑE8F˜Xãz 5¤î‰+r“¸pì9ₙ€ZI¯YN2JoO‰

w€´ÃT«„æé3ÿ$sD]ãI÷ÄӃH^–à¨Bw—þÚÁ4–ð[Ø¢¤•D+ŒØ¿¬äÛZ”ˆ0P]PibÅ&ÕáØsT33N«Hgtý¤ƒÔz»F¡¬Ëݚ&ñÌ%³ýQe93
”À¶a£H¶ÝuA6M‰Õ. *+¬“´@ÃIÕ$a•v’Ìó†Áûýi‹d’9âČdňZU2Þª>͂Ì÷¶ì’Õjë^ž)¡^·]~þËïþÛJ•„s4‘Æ)‡2!×2¡%BíÉ{J&àL¨Ê²lð³.d£òK— P©¤€“ÒÔg“-ÀÚ¬LÄ,?àé(lI9€ûkö„[Å*˚Íf•¦‚0ª(‚c²ýM,¹ÇwÆÃî!¤´‚ÖòcEå÷—ÜÑ­ý)aƒã‡ö·É‰µë³R ¤ÀãŚM)€c7¥@è ¡àLÀáÁ¸jY€ÄJ3`V3v½ç8Ý#Ÿ³Aw­®”«¬Z؈£G@}õ
¯’9À¼°r§Ãsf-„¶ü.VIiŠ½Ü4½”€v¢ˆb¶Lë 5«çߓ¥8qúB{ÇÆYyњᶥ¤zV{Ûc±@‹,…„I{($ú@H¼À9¶)$pì9Sf~ì4ǯ{[â°öò™{ÐܕŸ5˲é¡myÃÂÇ5ðØJFýO{˜^k
!LïÐÁ²÷ý
%ÑØ4Bdäiø“Ð$Áà¯ÇûeJu¤è㜠öL#–c†[šEðæ æ@¸$rWàØ]‹áOÅÐL̙§ÂA.ø>Ï*

U«³ÂCÎÑ&ûÂîA‘ª(¢qeæFc6q×KÛN²qh¢ú´ÌJî=x‡A¡-ÛVqƒŒ!‚Àà s{»ÃÌQÿ•½õŠQbÌÛÊ|’ö¹œ³IU° (J˜EŒ³cù,’.Rò‘·¬ªQÄ(´‡µU
žÀc‰]+e
ᛊÝU$þ+ƒfåø_×±w¤:=”,J+$ûÏ~ÎZ¸9c»A½ŸG´Å’Þê½1#GîSi Ïåñ͞íI¦,tÞt{%¦,‘Õ@0Ÿƒh›tþj$™HÅæ†ÉÑ9Å9ÝRwÊj>uNiQjzΙ…i¦è¼Vc6džîÅ
1#ß8€»M¾PÒ¡?…°¬•#:Æhîoa‰æ¾m•qZàä™7ÝÞN÷XªV6›äX|Ɂû ahÓÜÛ wðÛùölŸ~ÿöM=ý)üµw.iÈ/C@Ѝ-‘:MU.ï4Ëë^-:U
?2²iš$sδ«@Þ³Ó“²M¸Sù¯ä Þۘ⶧zy•ÚO$râv?4æJѐ©¬¨„ùéy½å¬OP,$‚Zð ÖÄ)Ëíµ¿Ù,”¡±§âa8³7c·†7ÃsE¦z>À¼
e% :’ÃœL oˆ‡Ñœ 33á®jù­q’ÊFœMKíÆ!NC8#«úpA¬Ð;ÖqA~ŽøD^ÿ„·Ò¬ôžx)•RÈ&€ {…ÑÑÓeKÉ1¸lè´ªæ^U;‰AU
Ò#(f§%‘7h‘šiÜ£f¨Y|j÷‚ó~÷¡B
/gˆé™U-*qÓäè(g?uWW.ñ–ÛDy(s~æà’³8ž’­„¬ECw|F÷ö¨}$Ë>·G«ÂÜéaâÈå

Источник