Цикл нагружения сосуда что такое
25859-83
( 3648-82)
Steel vessels and apparatuses. Norms and methods of fatigue strength calculation under low-cyclic loads | 25859-83 ( 3648-82) |
11 1983 . 3046
01.07.84
, , 24306-80, , 103 5 . 105 .
14249-80.
3648-82.
1.
1.1. , , , . . , 14249-80 ( ).
, , 380 , 420 525 .
1.2. , – .
1.3. , – .
2.
2.1. , .
2.2. .
2.3. :
1) , ;
2) ;
3) – ;
4) , .
2.4. :
) ;
) , ;
) , 15 % , 25 % , . – . , 10 % ;
) , , 15 20 . , , D – , s – .
) , 50 .
( , . 1).
2.5. .
2.6. . 10 .
3.
3.1. , .
3.2. . 4 5 , :
1) , , . 2.4;
2) ;
3)
Np < [Np] (1)
. [Np] . 1-3.
(1) ξ η [σ] []. ξ η [σ] [].
3.3. (1) , , . 4 5.
, .
. 1
. = 60 . 103 , = 150 , t = 380 .
. 2
. = 45 . 103 , = 230 , t = 420 .
. 3
. = 60 . 103 , = 270 , t = 525 C
4.
4.1.
. (2)
j- . 6 j- .
4.2. j- :
, (3)
ξ η . 1 2. , .
[] [F] 14249-80, 24757-81 25221-82.
1
, | ξ | |
. . | 1,0 | |
. – . . | 1,2 | |
. . . . . | 1,5 |
. ξ , .
( , . 1).
5.
5.1. , , : . .
1.
5.2. (. 4), , ( ) .
5.3. Δσ, Δσy, Δσz, Δτy, Δτz, Δτyz, Δσ1, Δσ2, Δσ3 , .
2
η | |||
. , | 1,5 | ||
. ( ), . | . , . | 2,0 | |
. | . | ||
. | . | 3,0 | |
, . | , , . | ||
. | . | 3,0 | |
. | . | ||
. | . | ||
. | . | ||
(σ< 540 ) | |||
. | 4,0 | ||
. | . | ||
(σ > 540 ) | |||
. | 4,0 | ||
( ), | |||
( ), | 5,0 |
( , . 1).
. 4
(4)
; (5)
Δσ1 Δσ2
. (6)
5.4. σ
Kσ = 1 + q(ασ – 1), (7)
0 < q < 1 – ;
ασ – .
q ασ .
Kσ = ρξ / φ, (8)
φ – 14249-89;
ξ – . 1.
ρ = 1,0 ;
ρ = 1,1 .
5.5. σA (11) [Nj].
5.6. Nj [Nj] U, (2).
6.
6.1. (9) . 5-8
. (9)
6.2. (10) . 5-8
, (10)
. (11)
, 380
. 5
420
. 6
525
. 7
8
( , . 1).
6.3. . 3.
3
B | ||
0,6 . 105 | 1,43 σ0 – 0,43 σ20 0,66 σ20 – 0,43 σ20 | |
0,45 . 105 | ||
– | 0,6 . 105 | σ0 270 |
( , . 1).
6.4. nN = 10, nσ=2.
6.5. , [σ] [N].
( , . 1).
1
. ( ) . , (, ).
, ( ), .
1.
1.1. , , (. 1), :
)
i = 1; 2;
a11 = f1 + εδ3f2; a= – (1- εδ4);
1
1 | 7 | ||
2 | 8 | ||
3 | 9 | ||
4 | 10 | ||
5 | 11 | ||
6 | 12 |
Δ = a11 a22 – a2;
b1 = -u1 + εδ2u2 + f1q01 + εδ3f2q02;
b2 = υ1 + εδ2υ 2 – q01 + εδ4q02;
fi, ui, υi q0i (i = l; 2) . 2.
2
( 1:2) | ||||
fi | 1 | |||
ui | 2 – μ 2 | 2 – μ 2 cosβi | 1 – μ 2sinΘi | 1 – μ – 3sin2Θi 2sinΘi |
υi | 3sinβi 2 νρ1cos2βi | |||
q 0i | + νρ1tg βi | + νρ1ctg Θi | + νρ1ctg Θi |
. + q01 (. 1 );
( , . 1).
) Q0i 0 (. 1 ;
;
)
;
,
η = ηφ = 1 – ;
– ;
– ;
– .
+ .
1.2. , (. 2), :
)
;
; (i = 1; 2)
;
;
;
;
;
;
. 1.1, .
) Qi Mi
. 1
. 2
)
;
.
ηx ηφ . 1.1.
l.3. , (. 3), :
. 3
)
;
;
.
u2, f2, n2 q02 . 2 ;
) Q0 M0
;
)
;
.
η ηφ . 1.1, .
:
1)
Θi > 15;
2) – , ;
– ;
3) ,
h b – (. 2).
, , (. 3).
1.4. ( 4).
( Θ = Θ0)
.
.
.
( , . 1).
3
( , . 1).
.
. 4
(λi)
.
λi
.
R2 = 0,5(D + s2),
r0 – ;
Δ1, Δ2 – , .
.
2.
2.1. , (, ),
)
a11 = f1 + εδ3f2;
a12 = -(1 – εδ4); ;
;
) Q0 M0
)
;
.
+ . , (i = 1; 2) fi . 2.
. 1, 2 α1, α2 , . , . 5 .
2.2. :
)
;
;
;
;
*
_____________
14249-80.
1 – ; 2 – .
. 5
) Qi Mi (i = 1; 2)
) (i= 1, 2)
. 1.3 .
2
, (/2) | |
A11, A12, 22, * , 11, a12, 22 | |
, (/2) | |
, () | b |
B1, B2, b, b1, b2 * | |
, () | |
, () | D |
(/2) | , 1, E2, |
, 2 (2) | F |
, () | [F] |
, () | ΔFj |
fi (i = 1, 2) | |
j- (, , . ) | Hj |
ΔHj | |
, () | h |
, () | h0, hi (i = 1, 2) |
, () | h |
, 4 (4) | I |
i | |
( ) | j |
Kσ | |
, () | L |
, () | l1, l2 |
, / ( /) | M0, Mi (i = 1, 2) |
, ( ) | [M] |
, ( ) | ΔMj |
N1 | |
[Nj] | |
Np | |
[Np] | |
nN | |
nσ | |
, (/2); , > 0, , (), < 0 | |
, (/2) | [] |
. (/2) | Δpj |
, / (/) | Q0, Q0i, Qi (i = 1, 2) |
q | |
q0 | |
q0i (i = 1, 2) | |
, () | R |
, () | R0 |
, () | R1, R2 |
, () | r0 |
, () | s0 |
, () | si (i = 1, 2) |
, | ΔTTj |
, | ΔTαj |
, | t, t,t i (i = 1, 2) |
U | |
ui (i = 1, 2) | |
, 1/ | a, a1, a2 |
, … | β, βi(i = 1, 2) |
ν | |
Δ δ | |
ε, ε | |
, | η |
ηi (i = 1, 2) | |
η, ηφ | |
, …. | Θ, Θ0, Θi (i = 1, 2) |
υi (i = 1, 2) | |
, | λi (i = 1, 2) |
μ | |
, | ξ |
ρ, ρi (i = 1, 2) | |
, , (/2) | σ |
20 , (/2) | σ20 |
20 , (/2) | σ20 |
106 , (/2) | σ0 |
, (/2) | σ, σi (i = 1, 2) |
, (/2) | σφ, σφi (i = 1, 2) |
, (/2) | [σ] |
, (/2) | [σA] |
, (/2) | Δσ Δτ |
1, 2 |
Источник
25859-83 ( 3648-82)
11 1983 . 3046 01.07.84 , , 24306-80, , 103 5 . 105 . 14249-80. 3648-82. 1.1. , , , . . , 14249-80 ( ). , , 380 , 420 525 . 1.2. , – . 1.3. , – . 2.1. , . 2.2. . 2.3. : 1) , ; 2) ; 3) – ; 4) , . 2.4. : ) ; ) , ; ) , 15 % , 25 % , . – . , 10 % ; ) , , 15 20 . , , D – , s – . ) , 50 . ( , . 1). 2.5. . 2.6. . 10 . 3.1. , . 3.2. . 4 5 , : 1) , , . 2.4; 2) ; 3) Np < [Np] (1) . [Np] . 1-3. (1) ξ η [σ] []. ξ η [σ] []. 3.3. (1) , , . 4 5. , . . 1 . = 60 . 103 , = 150 , t = 380 . . 2 . = 45 . 103 , = 230 , t = 420 . . 3 . = 60 . 103 , = 270 , t = 525 C 4.1. . (2) j- . 6 j- . 4.2. j- : , (3) ξ η . 1 2. , . [] [F] 14249-80, 24757-81 25221-82. 1
. ξ , . ( , . 1). 5.1. , , : . . 1. 5.2. (. 4), , ( ) . 5.3. Δσ, Δσy, Δσz, Δτy, Δτz, Δτyz, Δσ1, Δσ2, Δσ3 , . 2
( , . 1). . 4 (4) ; (5) Δσ1 Δσ2 . (6) 5.4. σ Kσ = 1 + q(ασ – 1), (7) 0 < q < 1 – ; ασ – . q ασ . Kσ = ρξ / φ, (8) φ – 14249-89; ξ – . 1. ρ = 1,0 ; ρ = 1,1 . 5.5. σA (11) [Nj]. 5.6. Nj [Nj] U, (2). 6.1. (9) . 5-8 . (9) 6.2. (10) . 5-8 , (10) . (11) , 380 . 5 420 . 6 525 . 7 8 ( , . 1). 6.3. . 3. 3
( , . 1). 6.4. nN = 10, nσ=2. 6.5. , [σ] [N]. ( , . 1). . ( ) . , (, ). , ( ), . 1. 1.1. , , (. 1), : ) i = 1; 2; a11 = f1 + εδ3f2; a= – (1- εδ4); 1
Δ = a11 a22 – a2; b1 = -u1 + εδ2u2 + f1q01 + εδ3f2q02; b2 = υ1 + εδ2υ 2 – q01 + εδ4q02; fi, ui, υi q0i (i = l; 2) . 2. 2
. + q01 (. 1 ); ( , . 1). ) Q0i 0 (. 1 ; ; ) ; , η = ηφ = 1 – ; – ; – ; – . + . 1.2. , (. 2), : ) ; ; (i = 1; 2) ; ; ; ; ; ; . 1.1, . ) Qi Mi . 1 . 2 ) ; . ηx ηφ . 1.1. l.3. , (. 3), : . 3 ) ; ; . u2, f2, n2 q02 . 2 ; ) Q0 M0 ; ) ; . η ηφ . 1.1, . : 1) Θi > 15; 2) – , ; – ; 3) , h b – (. 2). , , (. 3). 1.4. ( 4). ( Θ = Θ0) . . . ( , . 1). 3 ( , . 1). . . 4 (λi) . λi . R2 = 0,5(D + s2), r0 – ; Δ1, Δ2 – , . . 2. 2.1. , (, ), ) a11 = f1 + εδ3f2; a12 = -(1 – εδ4); ; ; ) Q0 M0 ) ; . + . , (i = 1; 2) fi . 2. . 1, 2 α1, α2 , . , . 5 . 2.2. : ) ; ; ; ; * _____________ 14249-80. 1 – ; 2 – . . 5 ) Qi Mi (i = 1; 2) ) (i= 1, 2) . 1.3 .
|
Источник