Цилиндрический сосуд радиуса заполненный жидкостью плотностью
В.Л.БУЛЫНИН,
ЦО № 17 ЦАО, г. Москва
Согласно школьной программе, законы гидростатики изучаются лишь в 7-м классе, возвращение к их изучению и закреплению в дальнейшем не предусмотрено. Тем не менее задачи на гидростатику относятся к весьма трудным и, если в старших классах не было решено достаточно подобных задач, то на вступительных экзаменах в технические вузы ученик может столкнуться с очень серьёзными, а то и непреодолимыми трудностями. Предлагаемая подборка задач имеет своей целью дать школьнику и преподавателю физики представление об уровне сложности материала по этой теме.
Задача 1 (МГТУ им. Н.Э.Баумана). Плотность раствора соли с глубиной меняется по закону = 0 + Ah, где 0 = 1 г/см3, А = 0,01 г/см4. В раствор опущены два шарика, связанные нитью такой длины, что расстояние между центрами шариков не может превышать L = 5 см. Объём каждого шарика V = 1 см3, массы m1 = 1,2 г и m2 = 1,4 г. На какой глубине находится каждый шарик?
Решение.
В силу симметрии шариков относительно горизонтальной плоскости, пороходящей через их центры, сила Архимеда для каждого шарика равна gV, где – плотность жидкости на уровне центра шарика. Запишем условие равновесия для каждого из шариков и сложим уравнения:
где
Объединяя все уравнения, находим:
h2 = h1 + L.
Подставляя числовые данные, получаем:
h1 = 27,5 см; h2 = 32,5 см.
Задача 2 (МГТУ им. Н.Э.Баумана). В водоёме укреплена вертикальная труба с поршнем так, что нижний конец её погружён в воду. Поршень, лежавший вначале на поверхности воды, медленно поднимают на высоту H = 15 м. Какую работу пришлось на это затратить, если площадь поршня 1 дм2, атмосферное давление p0 = 105 Па? Массой поршня пренебречь.
Решение. Сила, которую надо прикладывать к поршню, линейно возрастает от 0 до Fmax = p0S. Зависимость этой силы от высоты столба поднятой воды равна F(h) = ghS, где – плотность воды, h – высота столба поднятой воды, S – площадь поршня.
Максимально возможная высота столба воды, поднятой таким способом, h1 = 10 м, при этом gh1 = p0. График зависимости F = F(h) изображён на рисунке. Очевидно, что работа по подъёму поршня равна площади трапеции под графиком F(h):
Подставив числовые данные, получаем A = 104 Дж.
Задача 3. Льдина площадью 1 м2 и толщиной 0,4 м плавает в воде. Какую минимальную работу надо совершить, чтобы полностью погрузить льдину в воду? Плотность льда 900 кг/м3, g = 10 м/с2.
Решение. Пусть в исходном состоянии h – глубина погружения плавающей льдины. Запишем условие равновесия и следствия из него:
где в, л – плотности воды и льда соответственно, Vпогр – объём погружённой части льдины, V – её полный объём, Н – толщина льдины, h – толщина погружённой части.
При погружении льдины сила нажима линейно возрастает от нуля до Fmax, совершая работу
Задача 4. Бетонная однородная свая массой m лежит на дне водоёма глубиной h, большей, чем длины сваи l. Привязав трос к одному концу сваи, её медленно вытаскивают из воды так, что центр тяжести сваи поднимается на высоту H от поверхности воды (H > l). Какая работа совершается при подъёме сваи? Плотность бетона в n раз больше плотности воды. Силами сопротивления пренебречь.
Решение
1-й способ. Разобьём работу на три этапа:
Подъём верхнего конца сваи до поверхности воды:
– центр тяжести поднимается на высоту
– сила натяжения троса постоянна и равна mg – FA;
– работа (плотность бетона, по условию, в n раз больше плотности воды).
Подъём сваи на высоту l – такую, чтобы нижний конец сваи касался поверхности воды:
– сила натяжения троса линейно возрастает от mg – FA до mg, и работа этой силы равна
Наконец, подъём центра тяжести на высоту H над поверхностью воды:
– сила натяжения троса постоянна и равна mg;
– работа (на высоту центр тяжести уже был поднят на предыдущем этапе).
Общая работа A = A1 + A2 + A3:
2-й способ. Применим закон сохранения энергии. Работа равна изменению энергии системы свая-вода. Потенциальная энергия сваи возросла на mg(H + h). Потенциальная энергия воды уменьшилась на – вода из верхнего слоя водоёма опустилась на дно и заняла объём, прежде занятый сваей. Отсюда:
Задача 5 (МГТУ им. Н.Э.Баумана). В сосуде находятся три несмешивающиеся жидкости плотностями (сверху вниз) , 2 и 3. Толщина этих слоёв Н/3, H и H соответственно. На дне сосуда лежит стержень из материала плотностью 6, массой m, длиной H. Какую работу надо совершить, поднимая стержень за один конец вертикально, чтобы его верхний торец коснулся поверхности жидкости плотностью ? Толщиной стержня пренебречь. Трение отсутствует.
Решение
Пусть V – объём стержня, A1 – работа по подъёму стержня в жидкости плотностью 3 в вертикальное положение (подъём центра масс на высоту H/2):
При перемещении стержня из жидкости плотностью 3 до верхнего уровня жидкости плотностью 2 сила линейно изменяется от При этом центр тяжести стержня перемещается на высоту H. Следовательно, работа равна:
A3 – работа по подъёму части стержня длиной внутри жидкости плотностью 2 (при этом нижний конец стержня и соответственно центр тяжести этой части стержня поднимается на ):
A4 – работа по перемещению части стержня длиной из жидкости плотностью 2 в жидкость плотностью :
Полная работа равна:
A = A1 + A2 + A3 + A4 =
где – масса стержня.
Задача 6. Акселерометр представляет собой изогнутую под прямым углом трубку, заполненную маслом. Трубка располагается в вертикальной плоскости, угол При движении трубки в горизонтальном направлении с ускорением a уровни масла в коленах трубки соответственно равны h1 = 8 см и h2 = 12 см. Найдите величину ускорения a.
Решение
Рассмотрим сосуд с жидкостью (аквариум), который движется в горизонтальном направлении с ускорением a. При таком движении поверхность жидкости составляет угол с горизонтальной плоскостью, такой что
Такой же перепад высот имеет и жидкость в трубке акселерометра, движущегося с тем же ускорением. Получаем l = h2 + h1,
т.к., по условию, = 45°.
Задача 7 (НГУ). Вертикальный цилиндрический сосуд радиусом R, частично заполненный жидкостью, вращается вместе с жидкостью вокруг своей оси.
К боковой стенке сосуда на нити длиной l привязан воздушный шарик радиусом r; во время вращения нить образует со стенкой угол . Найдите угловую скорость вращения сосуда.
Решение
Задача 8 (МГТУ им. Н.Э.Баумана). Цилиндрический сосуд с жидкостью плотностью вращается с постоянной угловой скоростью вокруг вертикальной оси ОО1. Внутри сосуда к оси OO1 в точке A прикреплён тонкий горизонтальный стержень AB, по которому без трения может скользить муфта в виде шара радиусом r. Шар связан с концом A стержня пружиной жёсткостью k, длина которой в нерастянутом состоянии равна L0. Определите расстояние до центра шара от оси вращения, если плотность материала шара в четыре раза меньше плотности жидкости.
Решение
Направим ось X по направлению стержня AB, а ось Y по вертикальной оси OO1. По условию задачи, перемещение шара возможно лишь вдоль стержня. Так как плотность шара меньше плотности жидкости, составляющая силы Архимеда вдоль оси X больше составляющей силы mgэфф, и шар будет вытесняться жидкостью к оси вращения, сжимая пружину. Исходное положение центра шара L0 + r. Пусть во время вращения центр шара находится на расстоянии x от оси, при этом пружина сжата на величину L0 + r – x. Уравнение движения шара массой m по окружности радиусом x с угловой скоростью имеет вид m2x = Fц, где сила Fц – результат сложения горизонтальной составляющей силы Архимеда и силы упругости сжатой пружины: Fупр = k(L0 + r – x).
Если – плотность материала шара, то
Отсюда получаем:
По условию, В итоге получаем ответ:
Задача 9 (НГУ). Цилиндрический космический корабль радиусом R вращается вокруг своей оси с угловой скоростью . Бассейн в корабле имеет глубину H, а дном бассейна служит боковая стенка корабля. Определите плотность плавающей в бассейне палочки длиной l < H, если из воды выступает её верхняя часть длиной .
Решение
Во вращающейся неинерциальной системе отсчёта роль силы тяжести играет центробежная сила инерции Fц = m2r, где r – расстояние элемента массы m от оси вращения. Центр масс погружённой части палочки находится от оси вращения на расстоянии
Сила Архимеда, действующая на погружённую часть палочки длиной l – , равна FA = ж2rц(l – )S, где ж – плотность жидкости (воды), S – площадь поперечного сечения палочки.
Центр масс всей палочки находится от оси вращения на расстоянии
Условие плавания палочки: P = FA, где P – вес палочки.
где – плотность палочки;
Приравняв P и FА, находим плотность палочки:
Вячеслав Леонидович Булынин окончил физический факультет Ленинградского государственного университета в 1964 г. и по 1992 г. работал в научно-исследовательских институтах в области прикладной сверхпроводимости. С 1993 г. преподаёт в школе физику, астрономию, математику; педагогический стаж 15 лет. Учитель высшей квалификационной категории, методист ЦО № 17. Автор двух пособий по физике, изданных «Континентом-Пресс» в 2004 г.: «Физика. Тесты и задачи» и «Физика. Пособие для подготовки к государственному экзамену». Женат, имеет двух дочерей.
Источник
(Все задачи по статике и гидростатике и ответы к ним находятся в zip-архиве (615 кб), который можно скачать и открыть на своем компьютере. Попробуйте решать задачи самостоятельно и только потом сравнивать свои ответы с нашими. Желаем успехов!)
18.30. Деревянный шарик, падая с высоты h1 = 60 см, погрузился в воду на глубину h2 = 60 см. На какую высоту выпрыгнет из воды этот шарик? Сопротивление воды считать постоянным, плотность дерева равна ρд = 0,8 г/см3. [10 см]
18.31. Два цилиндрических сообщающихся сосуда частично заполнены водой. В один из сосудов опускают тело массой m, которое плавает на поверхности. На сколько повысится уровень воды в сосудах? Площади сечения сосудов равны S1 и S2. [ v = vo/2 ]
18.32. В цилиндрический сосуд массой M и площадью дна S налита вода до уровня h. Вода сверху закрыта поршнем, в котором имеется крючок. Каким будет давление под поршнем, если сосуд приподнять за этот крючок? Атмосферное давление равно pa. [ищите ответ в общем файле темы]
18.33. Первый шарик всплывает в воде с постоянной установившейся скоростью vo. Второй такой же по размеру шарик тонет в воде с постоянной установившейся скоростью 2vo. С какой постоянной установившейся скоростью будут тонуть эти шарики, если связать их нитью? Считать, что сила сопротивления пропорциональна скорости. [ищите ответ в общем файле темы]
18.34. Цилиндрический сосуд массой М и высотой h поставлен дном вверх на ровную горизонтальную резиновую поверхность. В дне сосуда имеется маленькое отверстие, в которое вставлена длинная тонкая трубка. Через трубку сосуд заполняется водой. До какой максимальной высоты можно в трубку налить воду? Площадь дна сосуда равна S. [ищите ответ в общем файле темы]
18.35. Полая тонкая полусфера массой М и радиусом R лежит на ровной горизонтальной резиновой поверхности. В верхней части полусферы имеется маленькое отверстие, в которое вставлена длинная тонкая трубка. Через трубку полусфера заполняется водой. До какой максимальной высоты можно налить в трубку воду? [ищите ответ в общем файле темы]
18.36. Легкий стержень свободно висит, касаясь нижним концом поверхности воды. Верхний конец стержня закреплен шарнирно. Вода начинает прибывать и ее уровень поднимается. Как зависит угол отклонения стержня от вертикали от высоты поднятия уровня воды? Длина стержня равна l, плотность стержня в n раз меньше плотности воды. Высота поднятия уровня воды отсчитывается от ее начального уровня. [ищите ответ в общем файле темы]
18.37. Два цилиндрических сообщающихся сосуда соединены двумя трубками с кранами. Сначала краны открыты и в сосуды наливают жидкость. Затем краны закрывают и жидкость в сосуде 2 нагревают, в результате чего уровень жидкости в этом сосуде слегка повысился. Куда потечет жидкость, если открыть: а) кран K1; б) кран К2; в) оба крана? [ищите ответ в общем файле темы]
18.38. Два расширяющихся кверху сосуда соединены трубкой с краном и заполнены жидкостью. Сначала кран открыт. Затем его закрывают и жидкость в сосуде 2 нагревают, в результате чего уровень жидкости в нем слегка повысился. Куда потечет жидкость, если кран открыть? [ищите ответ в общем файле темы]
18.39. Два одинаковых по размеру шарика массами m1 и m2 (m1 < m2) связаны нитью и тонут в воде с постоянной скоростью. Определить силу натяжения нити. [ищите ответ в общем файле темы]
18.40. Однородная палочка, шарнирно прикрепленная к стенке бассейна, высовывается из воды на 0,1 своей длины. Найти плотность материала палочки. [810 кг/м3]
18.41. Какую работу необходимо совершить, чтобы утопить плоскую льдину массой M = 1000 кг и площадью S = 2 м2? [≅ 30.9 Дж]
18.42. В цилиндрический сосуд с площадью дна S налита жидкость плотностью ρ. Сверху непосредственно на жидкости лежит массивный поршень с пробкой. Поршень и пробка сделаны из одного материала, имеют одинаковую толщину h и могут двигаться без зазора и без трения. Какую работу надо совершить, чтобы вытащить пробку? Площадь пробки равна S1. [ищите ответ в общем файле темы]
18.43. До какой высоты надо налить воду в цилиндрический сосуд радиусом R, чтобы силы давления воды на дно и на боковую поверхность были равны? [ h = R ]
18.44. Однородная деревянная рейка массой m и длиной l плавает в воде между двумя вертикальными стенками. Расстояние между стенками d < l, а отношение плотностей рейки и воды равно α < 1. С какой силой рейка давит на стенки? Трения нет. [ищите ответ в общем файле темы]
18.45. Кубик, сделанный из материала, плотность которого вдвое меньше плотности воды, плавает в воде. Какое из двух показанных положений кубика будет устойчивым? [ищите ответ в общем файле темы]
18.46. Внутри вертикального узкого стакана стоит вертикальная пружина, длина которой равна высоте стакана. Если в стакан поставить однородный стержень, длина которого тоже равна высоте стакана, то четвертая часть его будет высовываться из стакана. Если в стакан доверху налить воду, то из стакана будет высовываться половина стержня. Найти плотность материала стержня. [1500 кг/м3]
18.47. Однородный стержень плотностью ρ плавает на границе раздела двух несмешивающихся жидкостей с плотностями ρ1 и ρ2 (ρ1 < ρ < ρ2). При каком соотношении между плотностями устойчивым положением стержня будет вертикальное? [ищите ответ в общем файле темы]
18.48. В воде плавает доска массой М. Плотность доски вдвое меньше плотности воды. Когда на конец доски села лягушка, верхний край доски с этого конца опустился как раз до уровня воды. Найти массу лягушки. [ m = M/4 ]
18.49. Воздушный шар опускается с постоянной скоростью. Когда из него выбросили груз массой m, он начал подниматься с той же постоянной скоростью. Найти силу сопротивления воздуха при этой скорости. [ F = mg/2]
18.50. Воздушный шар опускается с постоянной скоростью. Общая масса оболочки и груза равна М, объем оболочки – V, плотность воздуха – ρв, плотность газа в оболочке – ρ. Какой массы груз надо выбросить, чтобы шар начал подниматься с той же постоянной скоростью? Считать, что сила сопротивления пропорциональна скорости. [ищите ответ в общем файле темы]
18.51. В вертикальном цилиндрическом сосуде, доверху заполненном водой и закрытом крышкой, на нитях висят два шарика: сверху стальной; снизу пробковый. Как будут вести себя шарики, если сосуд начнут медленно раскручивать вокруг его оси? [ищите ответ в общем файле темы]
18.52. Три одинаковых бревна плавают в воде между вертикальными стенками канала. Расстояние между стенками слегка больше удвоенного диаметра бревен, а верхние бревна погружены в воду ровно наполовину. С какой силой бревна давят на стенки канала, если масса каждого бревна равна m? Трения нет. [≅ 0.144mg]
18.53. Большая плоская льдина плавает в воде. В льдине просверлили прорубь площадью S = 300 см2. Вода в проруби оказалась на глубине h = 10 см. Какое максимальное количество масла можно налить в прорубь? Плотность масла равна ρм = 800 кг/м3. [12 кг]
18.54. Два шарика, сделанные из одного материала, имеют объемы: V и 3V. Шарики связали невесомой нитью, перекинутой через неподвижный блок, и отпустили над поверхностью воды. Когда один из шариков погрузился в воду ускорение системы изменилось на противоположное. Найти плотность материала шариков. Сопротивление воды и трение не учитывать. [750 кг/м3]
18.55. Тело массой m тонет в воде с ускорением a. С какой силой его надо тянуть вверх, чтобы оно поднималось с тем же ускорением? Сопротивление не учитывать. [ F = 2ma]
18.56. Тонкий однородный стержень длиной l = 1 м, сделанный из материала с плотностью ρ = 0,91 г/см3, шарнирно прикреплен к стенке бассейна и опирается на дно так, что составляет угол α = 60° с вертикалью. В бассейн начинают наливать воду. При какой высоте уровня воды стержень перестанет давить на дно? [0.35 м]
18.57. Цилиндрический сосуд радиусом R, заполненный жидкостью с плотностью ρ, вращается вокруг своей вертикальной оси с угловой скоростью w. В сосуде находится маленький шарик радиусом r и плотностью 2ρ (r << R). С какой силой шарик давит на боковую поверхность сосуда? [ищите ответ в общем файле темы]
18.58. Аквариум с водой на колесиках скатывается с наклонной плоскости без трения. Как располагается уровень поверхности воды при установившемся скатывании? [ищите ответ в общем файле темы]
Источник
(Все задачи по статике и гидростатике и ответы к ним находятся в zip-архиве (615 кб), который можно скачать и открыть на своем компьютере. Попробуйте решать задачи самостоятельно и только потом сравнивать свои ответы с нашими. Желаем успехов!)
20.1. Определите давление жидкости на нижнюю поверхность плавающей шайбы сечения S и массы m. [смотрите ответ в общем файле темы]
20.2. На границе раздела двух жидкостей плотностей ρ1 и ρ2 плавает шайба плотности ρ (ρ12). Высота шайбы h. Определите глубину ее погружения во вторую жидкость. [ x = h (? − ?1) / (?2 − ?1) – исправлено 19.11.2010 по замечанию max_ptz ]
20.3. Тонкостенный стакан массы m вертикально плавает на границе раздела жидкостей плотностей ρ1 и ρ2. Определите глубину погружения стакана в нижнюю жидкость, если дно стакана имеет толщину h и площадь S, и стакан заполнен жидкостью плотности ρ1. [ x = (m − hρ1S)/[S(ρ2 − ρ1)] ]
20.4*. В жидкости плотности ρo плавает прямоугольный параллелепипед из материала плотности ρ. Высота параллелепипеда b, ширина и длина a. При каком отношении a к b его положение устойчиво? [смотрите ответ в общем файле темы]
20.5. Деревянный куб с ребром 0,5 м плавает в озере, на 2/3 погруженный в воду. Какую минимальную работу нужно совершить, чтобы утопить куб? [A = 32,5 Дж]
20.6. Кусок железа весит в воде 1 H. Определите его объем. Плотность железа 7,8 г/см3. [V = 147 см3]
20.7. Тело в воде весит в три раза меньше, чем в воздухе. Чему равна плотность тела? [ ρ = 1,5 г/см3 ]
20.8. К коромыслу весов подвешены два груза равной массы. Если один из грузов поместить в жидкость плотности ρ1, а другой в жидкость плотности ρ2, то равновесие сохранится. Найдите отношение плотностей грузов. [ n = ρ1/ρ2 ]
20.9*. В сообщающиеся сосуды диаметров d1 и d2 налита жидкость плотности ρ. На сколько поднимется уровень жидкости в сосудах, если в один из сосудов положить тело массы m из материала, плотность которого меньше ρ? [смотрите ответ в общем файле темы]
20.10. Определите натяжение нижней лески у поплавка, изображенного на рисунке, если поплавок погружен в воду на 2/3 своей длины. Масса поплавка 2 г. [ F = 9,8 × 10−3 H ]
20.11. С какой силой давит тяжелая палочка на дно водоема, если жестко связанный с палочкой пустотелый шарик радиуса r погрузился в жидкость наполовину? Плотность жидкости ρ, длина палочки l. [смотрите ответ в общем файле темы]
20.12. Определите натяжение нити, связывающей два шарика объема 10 см3, если верхний шарик плавает, наполовину погрузившись в воду. Нижний шарик в три раза тяжелее верхнего. [ F = 1.2 × 10 −2 H ]
20.13. Два одинаковых бревна расположены так, как показано на рисунке. Нижнее бревно привязано к вертикальной стенке тросами, составляющими с ней угол 45°. Верхнее бревно наполовину погружено в воду. Определите плотность бревен. [ ρ = 2/3 г/см3]
20.14. Определите силу давления бревен массы m на стенки канала. Верхнее бревно погружено в воду наполовину, а нижнее касается верхним участком поверхности воды. [ F = mg/√3 ]
20.15*. Как зависит сила, прижимающая два одинаковых полуцилиндра плавающего батискафа, от глубины его погружения Н, если плоскость соприкосновения полуцилиндров: а) вертикальна; б) горизонтальна? Радиус батискафа R, длина L, плотность жидкости ρ. [смотрите ответ в общем файле темы]
20.16*. Докажите, что сила, с которой прижимаются половины сферического батискафа друг к другу, не зависит от наклона плоскости соприкосновения полусфер батискафа, если он полностью погружен в жидкость. [смотрите ответ в общем файле темы]
20.17. Коническая пробка высоты 10 см с углом при вершине 90° перекрывает отверстие радиуса 5 см. Чему должна быть равна масса этой пробки, чтобы она не всплывала при изменении уровня воды в сосуде? [m = 520 г]
20.18*. Решите предыдущую задачу при условии, что отверстие радиуса r перекрывает шар радиуса R, а плотность жидкости равна ρ. [смотрите ответ в общем файле темы]
20.19*. Наклон кубической коробки, наполовину погруженной в жидкость, равен а. Определите массу каждого из двух противоположных ребер коробки. Массой остальных частей коробки пренебречь. Плотность жидкости ρ, длина ребер коробки a. [смотрите ответ в общем файле темы]
20.20*. Определите минимальное натяжение двух канатов, связывающих широкий плот, состоящий из двух слоев бревен. Масса каждого бревна m. Верхний слой бревен погружен в воду наполовину. [ T = (√3) mg/18 ]
20.21. В цилиндр радиуса R, частично заполненный жидкостью, падает цилиндрическая пробка радиуса r и высоты h. Начальная высота нижнего торца пробки над уровнем жидкости R, начальная скорость равна нулю. Какое количество тепла выделится к моменту окончания движения жидкости и пробки? Плотность пробки ρ, плотность жидкости ρo > ρ. [смотрите ответ в общем файле темы]
20.22. Какое количество тепла выделится в водоеме при всплывании в нем воздушного пузыря радиуса R = 0,1 м с глубины H = 10 м? Плотность воды ρ. [ 410 Дж]
20.23. Какую минимальную работу нужно произвести, чтобы вытащить со дна моря на борт судна батискаф радиуса 2 м? Масса батискафа 35 т, глубина моря 100 м, высота борта судна 3 м. [A = 283 кДж]
20.24*. Для создания искусственной тяжести цилиндрический космический корабль радиуса R вращается вокруг своей оси с угловой скоростью w. Бассейн в корабле имеет глубину H, а дном бассейна служит боковая стенка корабля.
а) Сможет ли космонавт плавать в этом бассейне? Опишите особенность космического бассейна. Определите плотность плавающей в бассейне палочки длины l , если из воды выступает ее верхняя часть длины Δ.
б) В бассейне можно наблюдать следующее интересное явление: два шара разной плотности, связанные нитью, в зависимости от «глубины» движутся или к свободной поверхности, или к стенке космического корабля, если плотность одного шара больше, а другого меньше плотности воды. Объясните это явление. [смотрите ответ в общем файле темы]
20.25. Цилиндрический сосуд радиуса R, заполненный жидкостью плотности ρo, вращается с угловой скоростью со вокруг своей оси. В сосуде находится шарик радиуса r и плотности ρ > ρo. Найдите силу, с которой шарик давит на боковую стенку сосуда. [смотрите ответ в общем файле темы]
20.26. Цилиндрический сосуд радиуса R, частично заполненный жидкостью, вращается вместе с жидкостью вокруг своей оси. К боковой стенке сосуда на нити длины l привязан воздушный шарик радиуса r; во время вращения нить образует со стенкой угол α. Определите угловую скорость вращения. Поле тяжести направлено вдоль оси сосуда. [смотрите ответ в общем файле темы]
Источник