Цилиндрический сосуд с жидкостью вращается

Сегодня я заварил себе чай и задумался

Сегодня утром я задумался, пока размешивал два кубика сахара в чашке с только что заваренным чаем. Задумался о форме жидкости, которую она принимает при вращении. Безусловно, все представляют себе что будет, если очень быстро начать размешивать сахар в чашке с чаем. Мне захотелось рассмотреть этот банальный и привычный процесс подробнее и попытаться рассказать Вам немного интересного из физики окружающих нас в быту явлений.

Идея эксперимента

Давайте представим, что мы имеем некоторую цилиндрическую тару, в которой находится некоторая жидкость. Вращаться жидкость можно заставить, как минимум, двумя очевидными способами: размешать её каким-нибудь предметом или начать вращать цилиндрическую тару, что, благодаря силам трения между жидкостью и поверхностью сосуда, приведет к вращению жидкости, увлекаемой содержащим её вращающимся сосудам.

Физическая модель

Остановимся на втором варианте. Итак, у нас есть вращающийся с постоянной циклической частотой сосуд, в котором при динамическом равновесии с постоянной циклической частотой вращается жидкость в том же направлении.

Вырежем из всей жидкости элементарный бесконечно малый объем около поверхности и рассмотрим какие силы на него действуют. В силу симметрии задачи, будем ориентироваться на цилиндрические координаты, что заметно упростит расчеты.

Качественный расчет формы поверхности

Запишем второй закон Ньютона для элементарного кусочка объема жидкости:

К примеру, после размешивания ложкой сахара в чашке только что заваренного чая, жидкость вращается вокруг оси симметрии, отсюда наш элементарный кусочек объема имеет центростремительное ускорение. Поэтому спроецируем наш закон Ньютона на ось, совпадающую с радиусом-вектором от элементарного объема до оси симметрии. Не будем учитывать вязкость и поверхностное натяжение. Сила, сообщающая центростремительное ускорение (в правой части нашего закона движения) возникнет из-за разности давлений столбов жидкости, что можно увидеть на увеличенной части первого рисунка.

Таким образом, у нас получится следующее выражение:

, где , а та самая сила определится как , где площадью эффективного сечения обозначена та площадь нашего элементарного объема, на которую действует разница давлений столбов жидкости .

Получаем силу

Масса нашего элемента объема определяется по знакомой всем формуле , а сам объем будет равен (элементарный объем в цилиндрических координатах).

В итоге, 2 закон Ньютона для нашей маленькой задачки расписывается в следующее выражение:

После небольших сокращений и преобразований получаем:

Теперь проинтегрируем обе части выражения, используя неопределенные интегралы:

Детальный расчет формы поверхности

Теперь мы получили вполне ясную зависимость для формы поверхности и с уверенностью можем сказать, что это параболоид. Но нам неизвестна постоянная величина . Давайте её определим для полного понимания физики процесса.

Так как объем жидкости не меняется (мы считаем, что не пролили ни капли, пока размешивали наш чай ツ), то запишем объемы до вращения и во время вращения с постоянной циклической частотой.

До вращения:

, где – это высота жидкости в цилиндрической поверхности в спокойном состоянии (вращения нет).

Во время вращения:

Данные объемы равны, поэтому:

Отсюда выражается ранее неизвестная постоянная:

И окончательное уравнение формы поверхности вращающейся жидкости имеет вид:

или преобразовав

Некоторые заметки

Хотелось бы обратить внимание на то, что форма поверхности зависит от частоты вращения, ускорения свободного падения, геометрических параметров сосуда, первоначального объема жидкости, но не зависит от плотности жидкости. Это выражение мне показалось довольно интересным, так как с его помощью можно легко смоделировать примерное расположение жидкости внутри вращающегося вокруг своей оси симметрии цилиндрического сосуда. Для этого можно воспользоваться MathCAD’ом и построить несколько графиков.

Графическое представление результатов расчета

Возьмем вполне реальные параметры системы, соизмеримые с размерами чашки или стакана.

Радиус цилиндрической поверхности:

Высота жидкости в цилиндрической поверхности без вращения:

Ускорение свободного падения:

Циклическая частота вращения цилиндрической поверхности:

(Все значения этих величин заданы в системе Си)

Далее перепишем нашу функцию для её отображения в MathCAD.

Для 2D отображения сечения:

Для 3D отображения поверхности:

В качестве изменяющегося параметра будем менять циклическую частоту вращения . Результаты можно наблюдать на рисунках ниже:

При циклической частоте

При циклической частоте

При циклической частоте

При циклической частоте

При циклической частоте

При циклической частоте

Выводы

Видно, что если циклическая частота превысит значение , то мы увидим дно вращающегося цилиндрического сосуда, и, начиная с этой частоты, жидкость будет плавно «переходить» на стенки сосуда, всё сильнее оголяя дно. Очевидно, что при очень больших частотах вся жидкость растечется по стенкам сосуда. Теперь мы знаем все параметры такой жидкости. Зная её уравнение, не составит большого труда рассчитать толщину слоя жидкости на стенке сосуда на определенной высоте при определенной частоте.

upd. Отдельно хотелось бы подчеркнуть те противоречащие друг другу допущения, которые были приняты при рассмотрении задачи:

1. Считалось что, жидкость вращается благодаря вращению сосуда, который её содержит. Это может быть только при учете внутреннего трения, вязкости и поверхностного натяжения.

2. Но при выводе формы поверхности эти явления не учитываются для того, чтобы упростить решение и показать только качественный результаты моделирования. Т.е. решение немного противоречит описываемой изначально модели. Учет всех явлений, включая нелинейность процесса при высоких частотах, настолько бы усложнил задачу, что её вряд ли можно было бы решить аналитически и показать примерную и понятную модель для человека, который не связан с математикой/физикой.

Читайте также:  Сосуд в котором пустота а огонь мерцающий в

3. Цель состоялась в том, чтобы показать лишь очень приближенное и самое простое решение, включающее в себя ряд допущений.

Источник

Возьмем открытый цилиндрический сосуд с жидкостью и сообщим ему постоянную угловую скорость w вращения вокруг вертикальной оси. Жидкость постепенно приобретет ту же угловую скорость, что и сосуд, а свободная поверхность ее видоизменится: в центральной части уровень жидкости понизится, у стенок – повысится, и вся свободная поверхность жидкости станет некоторой поверхностью вращения (рис. 2.11).

На жидкость в этом случае будут действовать две массовые силы, сила тяжести и центробежная сила, которые, будучи отнесенными к единице массы, соответственно равны g и w2r. Равнодействующая массовая сила j увеличивается с увеличением радиуса за счет второй составляющей, а угол наклона ее к горизонту уменьшается. Эта сила нормальна к свободной поверхности жидкости, поэтому угол наклона поверхности к горизонту возрастает с увеличением радиуса. Найдем уравнение положения свободной поверхности.

Рис. 2.11

Учитывая, что сила j нормальна к свободной поверхности, получим

отсюда

или после интегрирования

В точке пересечения свободной поверхности с осью вращения C = h, поэтому окончательно будем иметь

(2.10)

т. е. свободная поверхность жидкости является параболоидом вращения.

Максимальную высоту подъема жидкости можно определить исходя из равенства объемов неподвижной жидкости и жидкости во время вращения.

На практике очень часто приходится иметь дело с вращением сосуда, заполненного жидкостью, вокруг горизонтальной оси. При этом угловая скорость w столь велика, что сила тяжести на порядок меньше центробежных сил, и ее действие можно не учитывать. Закон изменения давления в жидкости для этого случая получим из рассмотрения уравнения равновесия элементарного объема с площадью основания dS и высотой dr, взятой вдоль радиуса (рис. 2.12). На выделенный элемент жидкости действуют силы давления и центробежная сила.

Обозначив давление в центре площадки dS, расположенной на радиусе r, через p, а в центре другого основания объема (на радиусе r + dr) через p + dp, получим следующее уравнение равновесия выделенного объема в направлении радиуса

или

Рис. 2.12

После интегрирования

Постоянную C найдем из условия, что при r = r0 p = p0.

Следовательно

Подставив ее значение в предыдущее уравнение, получим связь между p и r в следующем виде:

(2.11)

Очевидно, что поверхностями уровня в данном случае будут цилиндрические поверхности с общей осью – осью вращения жидкости.

Часто бывает необходимо определить силу давления вращающейся вместе с сосудом жидкости на его стенку, нормальную к его оси вращения. Для этого определим силу давления, приходящуюся на элементарную кольцевую площадку радиусом r и шириной dr. Используя формулу (2.11), получим

а затем следует выполнить интегрирование в требуемых пределах.

При большой скорости вращения жидкости получается значительная суммарная сила давления на стенку. Это используется в некоторых фрикционных муфтах, где для сцепления двух валов требуется создание больших сил давления.



Источник

Вращение сосуда с жидкостью вокруг вертикальной оси

Возьмем открытый цилиндрический сосуд с жидкостью и сообщим ему постоянную угловую скорость w вращения вокруг вертикальной оси. Жидкость постепенно приобретет ту же угловую скорость, что и сосуд, а свободная по­верхность ее видоизменится: в центральной части уровень жидкости понизится, у стенок – повысится, и вся свободная поверхность жидкости станет некоторой поверхностью вращения (рис. 2.15).

Рис. 2.15

На жидкость в этом случае будут действовать две массовые силы, сила тяжести и центробежная сила, которые, будучи отнесенными к единице массы, соответственно равны g и . Равнодействующая массовая сила j увеличивается с увеличением радиуса за счет второй составляющей, а угол наклона ее к горизонту уменьшается. Эта сила нормальна к свободной поверхности жидкости, поэтому угол наклона поверхности к горизонту возрастает с увеличением радиуса. Найдем уравнение положения свободной поверхности.

Учитывая, что сила нормальна к свободной поверхности, получим , отсюда или после интегрирования .

В точке пересечения свободной поверхности с осью вращения C=h и r=0, поэтому окончательно будем иметь

, (2.10)

где .

Таким образом, свободная поверхность жидкости является параболоидом вращения. Максимальную высоту подъема жидкости можно определить, используя выражение (2.10) и исходя из равенства объемов неподвижной жидкости и жидкости во время вращения.

Запишем закон изменения давления во вращающейся жидкости в функции радиуса и глубины относительно верхней точки жидкости (без вывода):

.

Вращение сосуда с жидкостью вокруг горизонтальной оси

При таком вращении угловая скорость w столь велика, что (действие силы тяжести можно не учитывать). Закон изменения давления в жидкости для этого случая получим из рассмотрения уравнения равновесия элементар­ного объема с площадью основания dS и высотой dr, взятой вдоль радиуса (рис. 2.16). На выделенный элемент жидкости действуют силы давле­ния и центробежная сила.

Рис. 2.16

Обозначив давление в центре площадки dS, расположенной на радиусе r, через p, а в центре другого основания объема (на радиусе r + dr) через p + dp (разложили p в ряд Тейлора, но так как в данном случае p зависит только от r, то dr/dr сократился), получим следующее уравнение равновесия выделенного объема в направлении радиуса

Читайте также:  Что нужно перед сканированием сосудов

или .

После интегрирования получим . Постоянную C найдем из условия, что при r = r0p = p0, следовательно, .

Подставив ее значение в предыдущее уравнение, получим связь между p и r в следующем виде:

. (2.11)

Очевидно, что поверхностями уровня в данном случае будут цилиндрические поверхности с общей осью – осью вращения жидкости.

Часто бывает необходимо определить силу давления вращающейся вместе с сосудом жидкости на его стенку, нормальную к его оси вращения. Для этого определим силу давления, приходящуюся на элементарную кольцевую площадку радиусом r и шириной dr. Используя формулу (2.11), получим

,

а затем следует выполнить интегрирование в требуемых пределах:

.

Если равно внешнему давлению, то .

При большой скорости вращения жидкости получается значительная суммарная сила давления Fб на боковую стенку. Это используется в некоторых фрикционных муфтах, где для сцепления двух валов требуется создание больших сил давления.

Приведем выражение для определения силы Fб без вывода:

, где – длина цилиндра.

Источник

В.Л.БУЛЫНИН,

ЦО № 17 ЦАО, г. Москва

Согласно школьной программе, законы гидростатики изучаются лишь в 7-м классе, возвращение к их изучению и закреплению в дальнейшем не предусмотрено. Тем не менее задачи на гидростатику относятся к весьма трудным и, если в старших классах не было решено достаточно подобных задач, то на вступительных экзаменах в технические вузы ученик может столкнуться с очень серьёзными, а то и непреодолимыми трудностями. Предлагаемая подборка задач имеет своей целью дать школьнику и преподавателю физики представление об уровне сложности материала по этой теме.

Задача 1 (МГТУ им. Н.Э.Баумана). Плотность раствора соли с глубиной меняется по закону = 0 + Ah, где 0 = 1 г/см3, А = 0,01 г/см4. В раствор опущены два шарика, связанные нитью такой длины, что расстояние между центрами шариков не может превышать L = 5 см. Объём каждого шарика V = 1 см3, массы m1 = 1,2 г и m2 = 1,4 г. На какой глубине находится каждый шарик?

Решение.

В силу симметрии шариков относительно горизонтальной плоскости, пороходящей через их центры, сила Архимеда для каждого шарика равна gV, где – плотность жидкости на уровне центра шарика. Запишем условие равновесия для каждого из шариков и сложим уравнения:

где

Объединяя все уравнения, находим:

h2 = h1 + L.

Подставляя числовые данные, получаем:

h1 = 27,5 см; h2 = 32,5 см.

Задача 2 (МГТУ им. Н.Э.Баумана). В водоёме укреплена вертикальная труба с поршнем так, что нижний конец её погружён в воду. Поршень, лежавший вначале на поверхности воды, медленно поднимают на высоту H = 15 м. Какую работу пришлось на это затратить, если площадь поршня 1 дм2, атмосферное давление p0 = 105 Па? Массой поршня пренебречь.

Решение. Сила, которую надо прикладывать к поршню, линейно возрастает от 0 до Fmax = p0S. Зависимость этой силы от высоты столба поднятой воды равна F(h) = ghS, где – плотность воды, h – высота столба поднятой воды, S – площадь поршня.

Максимально возможная высота столба воды, поднятой таким способом, h1 = 10 м, при этом gh1 = p0. График зависимости F = F(h) изображён на рисунке. Очевидно, что работа по подъёму поршня равна площади трапеции под графиком F(h):

Подставив числовые данные, получаем A = 104 Дж.

Задача 3. Льдина площадью 1 м2 и толщиной 0,4 м плавает в воде. Какую минимальную работу надо совершить, чтобы полностью погрузить льдину в воду? Плотность льда 900 кг/м3, g = 10 м/с2.

Решение. Пусть в исходном состоянии h – глубина погружения плавающей льдины. Запишем условие равновесия и следствия из него:

где в, л – плотности воды и льда соответственно, Vпогр – объём погружённой части льдины, V – её полный объём, Н – толщина льдины, h – толщина погружённой части.

При погружении льдины сила нажима линейно возрастает от нуля до Fmax, совершая работу

Задача 4. Бетонная однородная свая массой m лежит на дне водоёма глубиной h, большей, чем длины сваи l. Привязав трос к одному концу сваи, её медленно вытаскивают из воды так, что центр тяжести сваи поднимается на высоту H от поверхности воды (H > l). Какая работа совершается при подъёме сваи? Плотность бетона в n раз больше плотности воды. Силами сопротивления пренебречь.

Решение

1-й способ. Разобьём работу на три этапа:

  • Подъём верхнего конца сваи до поверхности воды:

– центр тяжести поднимается на высоту

– сила натяжения троса постоянна и равна mg – FA;

– работа (плотность бетона, по условию, в n раз больше плотности воды).

  • Подъём сваи на высоту l – такую, чтобы нижний конец сваи касался поверхности воды:

– сила натяжения троса линейно возрастает от mg – FA до mg, и работа этой силы равна

  • Наконец, подъём центра тяжести на высоту H над поверхностью воды:

– сила натяжения троса постоянна и равна mg;

– работа (на высоту центр тяжести уже был поднят на предыдущем этапе).

  • Общая работа A = A1 + A2 + A3:

2-й способ. Применим закон сохранения энергии. Работа равна изменению энергии системы свая-вода. Потенциальная энергия сваи возросла на mg(H + h). Потенциальная энергия воды уменьшилась на – вода из верхнего слоя водоёма опустилась на дно и заняла объём, прежде занятый сваей. Отсюда:

Задача 5 (МГТУ им. Н.Э.Баумана). В сосуде находятся три несмешивающиеся жидкости плотностями (сверху вниз) , 2 и 3. Толщина этих слоёв Н/3, H и H соответственно. На дне сосуда лежит стержень из материала плотностью 6, массой m, длиной H. Какую работу надо совершить, поднимая стержень за один конец вертикально, чтобы его верхний торец коснулся поверхности жидкости плотностью ? Толщиной стержня пренебречь. Трение отсутствует.

Решение

Пусть V – объём стержня, A1 – работа по подъёму стержня в жидкости плотностью 3 в вертикальное положение (подъём центра масс на высоту H/2):

При перемещении стержня из жидкости плотностью 3 до верхнего уровня жидкости плотностью 2 сила линейно изменяется от При этом центр тяжести стержня перемещается на высоту H. Следовательно, работа равна:

A3 – работа по подъёму части стержня длиной внутри жидкости плотностью 2 (при этом нижний конец стержня и соответственно центр тяжести этой части стержня поднимается на ):

A4 – работа по перемещению части стержня длиной из жидкости плотностью 2 в жидкость плотностью :

Полная работа равна:

A = A1 + A2 + A3 + A4 =

где – масса стержня.

Задача 6. Акселерометр представляет собой изогнутую под прямым углом трубку, заполненную маслом. Трубка располагается в вертикальной плоскости, угол При движении трубки в горизонтальном направлении с ускорением a уровни масла в коленах трубки соответственно равны h1 = 8 см и h2 = 12 см. Найдите величину ускорения a.

Решение

Рассмотрим сосуд с жидкостью (аквариум), который движется в горизонтальном направлении с ускорением a. При таком движении поверхность жидкости составляет угол с горизонтальной плоскостью, такой что

Такой же перепад высот имеет и жидкость в трубке акселерометра, движущегося с тем же ускорением. Получаем l = h2 + h1,

т.к., по условию, = 45°.

Задача 7 (НГУ). Вертикальный цилиндрический сосуд радиусом R, частично заполненный жидкостью, вращается вместе с жидкостью вокруг своей оси.

К боковой стенке сосуда на нити длиной l привязан воздушный шарик радиусом r; во время вращения нить образует со стенкой угол . Найдите угловую скорость вращения сосуда.

Решение

Задача 8 (МГТУ им. Н.Э.Баумана). Цилиндрический сосуд с жидкостью плотностью вращается с постоянной угловой скоростью вокруг вертикальной оси ОО1. Внутри сосуда к оси OO1 в точке A прикреплён тонкий горизонтальный стержень AB, по которому без трения может скользить муфта в виде шара радиусом r. Шар связан с концом A стержня пружиной жёсткостью k, длина которой в нерастянутом состоянии равна L0. Определите расстояние до центра шара от оси вращения, если плотность материала шара в четыре раза меньше плотности жидкости.

Решение

Направим ось X по направлению стержня AB, а ось Y по вертикальной оси OO1. По условию задачи, перемещение шара возможно лишь вдоль стержня. Так как плотность шара меньше плотности жидкости, составляющая силы Архимеда вдоль оси X больше составляющей силы mgэфф, и шар будет вытесняться жидкостью к оси вращения, сжимая пружину. Исходное положение центра шара L0 + r. Пусть во время вращения центр шара находится на расстоянии x от оси, при этом пружина сжата на величину L0 + r – x. Уравнение движения шара массой m по окружности радиусом x с угловой скоростью имеет вид m2x = Fц, где сила Fц – результат сложения горизонтальной составляющей силы Архимеда и силы упругости сжатой пружины: Fупр = k(L0 + r – x).

Если – плотность материала шара, то

Отсюда получаем:

По условию, В итоге получаем ответ:

Задача 9 (НГУ). Цилиндрический космический корабль радиусом R вращается вокруг своей оси с угловой скоростью . Бассейн в корабле имеет глубину H, а дном бассейна служит боковая стенка корабля. Определите плотность плавающей в бассейне палочки длиной l < H, если из воды выступает её верхняя часть длиной .

Решение

Во вращающейся неинерциальной системе отсчёта роль силы тяжести играет центробежная сила инерции Fц = m2r, где r – расстояние элемента массы m от оси вращения. Центр масс погружённой части палочки находится от оси вращения на расстоянии

Сила Архимеда, действующая на погружённую часть палочки длиной l – , равна FA = ж2rц(l – )S, где ж – плотность жидкости (воды), S – площадь поперечного сечения палочки.

Центр масс всей палочки находится от оси вращения на расстоянии

Условие плавания палочки: P = FA, где P – вес палочки.

где – плотность палочки;

Приравняв P и FА, находим плотность палочки:

Вячеслав Леонидович Булынин окончил физический факультет Ленинградского государственного университета в 1964 г. и по 1992 г. работал в научно-исследовательских институтах в области прикладной сверхпроводимости. С 1993 г. преподаёт в школе физику, астрономию, математику; педагогический стаж 15 лет. Учитель высшей квалификационной категории, методист ЦО № 17. Автор двух пособий по физике, изданных «Континентом-Пресс» в 2004 г.: «Физика. Тесты и задачи» и «Физика. Пособие для подготовки к государственному экзамену». Женат, имеет двух дочерей.

Источник