Цилиндрический сосуд высоты и радиуса

Решение №1

  • Давайте посчитаем объём жидкости в первом сосуде: (V = pi r^2 s 16)
  • Посчитаем тот же объём во втором сосуде, предположив, что там вода поднялась на h: (V=pi left(2rright)^2s h=4pi r^2s h)
  • Так как переливали один и тот же объём воды, объёмы, вычисленные выше в обоих сосудах, равны. То есть:

    (begin{eqnarray} pi r^2s 16 &=& 4pi r^2s h \ 16 &=& 4h \ h &=& 4 end{eqnarray})

Таким образом, высота воды во втором сосуде равна 4 см.

Решение №2

Объем цилиндрического сосуда выражается через его диаметр и высоту как:

(V=Hfrac{pi d^2}{4})

При увеличении диаметра сосуда в 2 раза высота равного объёма жидкости уменьшится в 4 раза и станет равна 4.

Ответ: 4

ЕГЭ-Центр «Пять с плюсом» основан в 2008 году. С основания и по настоящий момент Центр возглавляет Елизавета Владимировна Глазова, мать пятерых детей, профессиональный педагог и преподаватель русского языка и литературы.

Запрос успешно отправлен. В ближайшее время расширенный доступ будет предоставлен.

– Oбразование как Стиль Жизни

Присылайте свои колонки

и предложения

У вас есть интересная новость или материал из сферы образования или популярной науки?

Расскажите нам!

© 2014-2021 Newtonew. 12+

Просветительский медиа-проект об образовании, посвящённый самым актуальным и полезным концепциям, теориям и методикам, технологиям и исследованиям, продуктам и сервисам. Мы говорим о том, как развиваются и изменяются образование и наука.

Копирование материалов возможно только с разрешения редакции Newtonew.

Мы используем файлы cookie для улучшения пользовательского опыта. Подробнее вы можете посмотреть в нашем пользовательском соглашении.

Авторизация на сайте

Вход через соц.сети:

Напомнить пароль

Введите , на который вы зарегистрированы:

назад

Пароль выслан

Мы выслали ваш пароль для входа в систему на указанный .

Не забывайте о том, что вы можете авторизоваться в системе через социальные сети. Если при регистрации в соц.сетях вы указывали тот же что и на нашем сайте, то после авторизации вы попадете в свой профиль.

Вход через соц.сети:

Подтвердите регистрацию

На указанный было отправлено письмо со ссылкой. Пожалуйста, перейдите по ссылке для подтверждения.

Вход через соц.сети:

Регистрация подтверждена

Вы успешно зарегистрировались

Источник

В.Л.БУЛЫНИН,

ЦО № 17 ЦАО, г. Москва

Согласно школьной программе, законы гидростатики изучаются лишь в 7-м классе, возвращение к их изучению и закреплению в дальнейшем не предусмотрено. Тем не менее задачи на гидростатику относятся к весьма трудным и, если в старших классах не было решено достаточно подобных задач, то на вступительных экзаменах в технические вузы ученик может столкнуться с очень серьёзными, а то и непреодолимыми трудностями. Предлагаемая подборка задач имеет своей целью дать школьнику и преподавателю физики представление об уровне сложности материала по этой теме.

Задача 1 (МГТУ им. Н.Э.Баумана). Плотность раствора соли с глубиной меняется по закону = 0 + Ah, где 0 = 1 г/см3, А = 0,01 г/см4. В раствор опущены два шарика, связанные нитью такой длины, что расстояние между центрами шариков не может превышать L = 5 см. Объём каждого шарика V = 1 см3, массы m1 = 1,2 г и m2 = 1,4 г. На какой глубине находится каждый шарик?

Решение.

В силу симметрии шариков относительно горизонтальной плоскости, пороходящей через их центры, сила Архимеда для каждого шарика равна gV, где – плотность жидкости на уровне центра шарика. Запишем условие равновесия для каждого из шариков и сложим уравнения:

где

Объединяя все уравнения, находим:

h2 = h1 + L.

Подставляя числовые данные, получаем:

h1 = 27,5 см; h2 = 32,5 см.

Задача 2 (МГТУ им. Н.Э.Баумана). В водоёме укреплена вертикальная труба с поршнем так, что нижний конец её погружён в воду. Поршень, лежавший вначале на поверхности воды, медленно поднимают на высоту H = 15 м. Какую работу пришлось на это затратить, если площадь поршня 1 дм2, атмосферное давление p0 = 105 Па? Массой поршня пренебречь.

Решение. Сила, которую надо прикладывать к поршню, линейно возрастает от 0 до Fmax = p0S. Зависимость этой силы от высоты столба поднятой воды равна F(h) = ghS, где – плотность воды, h – высота столба поднятой воды, S – площадь поршня.

Максимально возможная высота столба воды, поднятой таким способом, h1 = 10 м, при этом gh1 = p0. График зависимости F = F(h) изображён на рисунке. Очевидно, что работа по подъёму поршня равна площади трапеции под графиком F(h):

Подставив числовые данные, получаем A = 104 Дж.

Задача 3. Льдина площадью 1 м2 и толщиной 0,4 м плавает в воде. Какую минимальную работу надо совершить, чтобы полностью погрузить льдину в воду? Плотность льда 900 кг/м3, g = 10 м/с2.

Решение. Пусть в исходном состоянии h – глубина погружения плавающей льдины. Запишем условие равновесия и следствия из него:

где в, л – плотности воды и льда соответственно, Vпогр – объём погружённой части льдины, V – её полный объём, Н – толщина льдины, h – толщина погружённой части.

При погружении льдины сила нажима линейно возрастает от нуля до Fmax, совершая работу

Задача 4. Бетонная однородная свая массой m лежит на дне водоёма глубиной h, большей, чем длины сваи l. Привязав трос к одному концу сваи, её медленно вытаскивают из воды так, что центр тяжести сваи поднимается на высоту H от поверхности воды (H > l). Какая работа совершается при подъёме сваи? Плотность бетона в n раз больше плотности воды. Силами сопротивления пренебречь.

Решение

1-й способ. Разобьём работу на три этапа:

  • Подъём верхнего конца сваи до поверхности воды:

– центр тяжести поднимается на высоту

– сила натяжения троса постоянна и равна mg – FA;

– работа (плотность бетона, по условию, в n раз больше плотности воды).

  • Подъём сваи на высоту l – такую, чтобы нижний конец сваи касался поверхности воды:

– сила натяжения троса линейно возрастает от mg – FA до mg, и работа этой силы равна

  • Наконец, подъём центра тяжести на высоту H над поверхностью воды:

– сила натяжения троса постоянна и равна mg;

– работа (на высоту центр тяжести уже был поднят на предыдущем этапе).

  • Общая работа A = A1 + A2 + A3:

2-й способ. Применим закон сохранения энергии. Работа равна изменению энергии системы свая-вода. Потенциальная энергия сваи возросла на mg(H + h). Потенциальная энергия воды уменьшилась на – вода из верхнего слоя водоёма опустилась на дно и заняла объём, прежде занятый сваей. Отсюда:

Задача 5 (МГТУ им. Н.Э.Баумана). В сосуде находятся три несмешивающиеся жидкости плотностями (сверху вниз) , 2 и 3. Толщина этих слоёв Н/3, H и H соответственно. На дне сосуда лежит стержень из материала плотностью 6, массой m, длиной H. Какую работу надо совершить, поднимая стержень за один конец вертикально, чтобы его верхний торец коснулся поверхности жидкости плотностью ? Толщиной стержня пренебречь. Трение отсутствует.

Решение

Пусть V – объём стержня, A1 – работа по подъёму стержня в жидкости плотностью 3 в вертикальное положение (подъём центра масс на высоту H/2):

При перемещении стержня из жидкости плотностью 3 до верхнего уровня жидкости плотностью 2 сила линейно изменяется от При этом центр тяжести стержня перемещается на высоту H. Следовательно, работа равна:

A3 – работа по подъёму части стержня длиной внутри жидкости плотностью 2 (при этом нижний конец стержня и соответственно центр тяжести этой части стержня поднимается на ):

A4 – работа по перемещению части стержня длиной из жидкости плотностью 2 в жидкость плотностью :

Полная работа равна:

A = A1 + A2 + A3 + A4 =

где – масса стержня.

Задача 6. Акселерометр представляет собой изогнутую под прямым углом трубку, заполненную маслом. Трубка располагается в вертикальной плоскости, угол При движении трубки в горизонтальном направлении с ускорением a уровни масла в коленах трубки соответственно равны h1 = 8 см и h2 = 12 см. Найдите величину ускорения a.

Решение

Рассмотрим сосуд с жидкостью (аквариум), который движется в горизонтальном направлении с ускорением a. При таком движении поверхность жидкости составляет угол с горизонтальной плоскостью, такой что

Такой же перепад высот имеет и жидкость в трубке акселерометра, движущегося с тем же ускорением. Получаем l = h2 + h1,

т.к., по условию, = 45°.

Задача 7 (НГУ). Вертикальный цилиндрический сосуд радиусом R, частично заполненный жидкостью, вращается вместе с жидкостью вокруг своей оси.

К боковой стенке сосуда на нити длиной l привязан воздушный шарик радиусом r; во время вращения нить образует со стенкой угол . Найдите угловую скорость вращения сосуда.

Решение

Задача 8 (МГТУ им. Н.Э.Баумана). Цилиндрический сосуд с жидкостью плотностью вращается с постоянной угловой скоростью вокруг вертикальной оси ОО1. Внутри сосуда к оси OO1 в точке A прикреплён тонкий горизонтальный стержень AB, по которому без трения может скользить муфта в виде шара радиусом r. Шар связан с концом A стержня пружиной жёсткостью k, длина которой в нерастянутом состоянии равна L0. Определите расстояние до центра шара от оси вращения, если плотность материала шара в четыре раза меньше плотности жидкости.

Решение

Направим ось X по направлению стержня AB, а ось Y по вертикальной оси OO1. По условию задачи, перемещение шара возможно лишь вдоль стержня. Так как плотность шара меньше плотности жидкости, составляющая силы Архимеда вдоль оси X больше составляющей силы mgэфф, и шар будет вытесняться жидкостью к оси вращения, сжимая пружину. Исходное положение центра шара L0 + r. Пусть во время вращения центр шара находится на расстоянии x от оси, при этом пружина сжата на величину L0 + r – x. Уравнение движения шара массой m по окружности радиусом x с угловой скоростью имеет вид m2x = Fц, где сила Fц – результат сложения горизонтальной составляющей силы Архимеда и силы упругости сжатой пружины: Fупр = k(L0 + r – x).

Если – плотность материала шара, то

Отсюда получаем:

По условию, В итоге получаем ответ:

Задача 9 (НГУ). Цилиндрический космический корабль радиусом R вращается вокруг своей оси с угловой скоростью . Бассейн в корабле имеет глубину H, а дном бассейна служит боковая стенка корабля. Определите плотность плавающей в бассейне палочки длиной l < H, если из воды выступает её верхняя часть длиной .

Решение

Во вращающейся неинерциальной системе отсчёта роль силы тяжести играет центробежная сила инерции Fц = m2r, где r – расстояние элемента массы m от оси вращения. Центр масс погружённой части палочки находится от оси вращения на расстоянии

Сила Архимеда, действующая на погружённую часть палочки длиной l – , равна FA = ж2rц(l – )S, где ж – плотность жидкости (воды), S – площадь поперечного сечения палочки.

Центр масс всей палочки находится от оси вращения на расстоянии

Условие плавания палочки: P = FA, где P – вес палочки.

где – плотность палочки;

Приравняв P и FА, находим плотность палочки:

Вячеслав Леонидович Булынин окончил физический факультет Ленинградского государственного университета в 1964 г. и по 1992 г. работал в научно-исследовательских институтах в области прикладной сверхпроводимости. С 1993 г. преподаёт в школе физику, астрономию, математику; педагогический стаж 15 лет. Учитель высшей квалификационной категории, методист ЦО № 17. Автор двух пособий по физике, изданных «Континентом-Пресс» в 2004 г.: «Физика. Тесты и задачи» и «Физика. Пособие для подготовки к государственному экзамену». Женат, имеет двух дочерей.

Источник

4.1. Найти скорость v течения углекислого газа по трубе, если известно, что за время t = 30 мин через поперечное сечение трубы протекает масса газа m = 0,51 кг. Плотность газа р = 7,5 кг/м3. Диаметр трубы D = 2 см.

Решение:

4.2. В дне цилиндрического сосуда диаметром D = 0,5 м име круглое отверстие диаметром d = 1см. Найти зависимость скорости понижения уровня воды в сосуде от высоты h этого уровня. Найти значение этой скорости для высоты h = 0,2 м.

Решение:

4.3. На столе стоит сосуд с водой, в боковой поверхности которого имеется малое отверстие, расположенное на рас h1 от дна сосуда и на расстоянии h2 от уровня воды. Уровень воды в сосуде поддерживается постоянным. На каком расстоянии l от сосуда ( по горизонтали) струя воды падает на стол в случае, если: a) h1 = 25 см, h2=16см ; б) h1 =16 см, h2 = 25 см?

Решение:

4.4. Сосуд, наполненный водой, сообщается с атмосферой через стеклянную трубку, закрепленную в горлышке сосуда. Кран К находится на расстоянии h2 = 2 см от дна сосуда. Найти скорость v вытекания воды из крана в случае, если расстояние между нижним концом трубки и дном сосуда: а) h1 = 2 см; б) h1 =7,5 см; в) h1 =10 см.

Решение:

4.5. Цилиндрической бак высотой h = 1 м наполнен до краев водой. За какое время t вся вода выльется через отверстие, расположенное у дна бака, если площадь S2 поперечного сечения отверстия в 400 раз меньше площади поперечного сечения бака? Сравнить это время с тем, которое понадобилось бы для вытекания того же объема воды, если бы уровень воды в баке поддерживался постоянным на высоте h = 1 м от отверстия.

Решение:

4.6. В сосуд льется вода, причем за единицу времени наливается объем воды V1 = 0,2 л/с. Каким должен быть диаметр d отверстия в дне сосуда, чтобы вода в нем держалась на постоянном уровне h = 8,3 см?

Решение:

4.7. Какое давление р создает компрессор в краскопульте, если струя жидкой краски вылетает из него со скоростью v = 25 м/с? Плотность краски р = 0,8 • 103 кг/м3.

Решение:

4.8. По горизонтальный трубе АВ течет жидкость. Разность уровней этой жидкости в трубах а и b равна dh = 10 см. Диаметры трубок а и b одинаковы. Найти скорость v течения жидкости в трубе АВ.

Решение:

4.9. Воздух продувается через трубку АВ. За единицу времени через трубку АВ протекает объем воздуха V1 = 5 л/мин. Площадь поперечного сечения широкой части трубки АВ равна S1 = 2 см2, а узкой ее части и трубки abc равна S2 = 0,5 см2. Найти разность уровней dh воды, налитой в трубку abc. Плотность воздуха р = 1,32 кг/м3.

Решение:

4.10. Шарик всплывает с постоянной скоростью v в жид, плотность р1которой в 4 раза больше плоскости мате шарика. Во сколько раз сила трения Fтр , действующая на всплывающий шарик, больше силы тяжести mg, действующей на этот шарик?

Решение:

4.11. Какой наибольшей скорости v может достичь дождевая капля диаметром d = 0,3 мм, если динамическая вязкость воз n= 1,2-10-5 Па*с?

Решение:

4.12. Стальной шарик диаметром d = 1мм падает с посто скоростью v = 0,185 см/с в большом сосуде, наполненном касторовым маслом. Найти динамическую вязкость n касторо масла.

Решение:

4.13. Смесь свинцовых дробинок с диаметрами d1 = 3 мм и d2 = 1 мм опустили в бак с глицерином высотой h = 1 м. На сколько позже упадут на дно дробинки меньшего диаметра по сравнению с дробинками большего диаметра? Динамическая вязкость глицерина n = 1,47 Па*с.

Решение:

4.14. Пробковый шарик радиусом r = 5 мм всплывает в сосуде, наполненном касторовым маслом. Найти динамическую и кинематическую вязкости касторового масла, если шарик всплывает с постоянной скоростью v = 3,5 см/с.

Решение:

4.15. В боковую поверхность цилиндрического сосуда радиусом R = 2 см вставлен горизонтальный капилляр, внутренний радиус r = 1 мм которого и длина l = 2 см. В сосуд налито касторовое масло, динамическая вязкость которого n = 1,2Па*с. Найти зависимость скорости v понижения уровня касторового масла в сосуде от высоты h этого уровня над капилляром. Найти значение этой скорости при h = 26 см.

Решение:

4.16. В боковую поверхность сосуда вставлен горизон капилляр, внутренний радиус которого r = 1 мм и длина l = 1,5 см. В сосуд налит глицерин, динамическая вязкость которого n = 1,0Па*с. Уровень глицерина в сосуде поддержи постоянным на высоте h = 0,18м выше капилляра. Какое время потребуется на то, чтобы из капилляра вытек объем глицерина V = 5 см3?

Решение:

4.17. На столе стоит сосуд, в боковую поверхность которого вставлен горизонтальный капилляр на высоте h1 = 5 см от дна сосуда. Внутренний радиус капилляра r = 1 мм и длина l = 1 см. В сосуд налито машинное масло, плотность которого р = 0,9 • 103 кг/м3 и динамическая вязкость n = 0,5 Па*с. Уровень масла в сосуде поддерживается постоянным на высоте h2 – 50 см выше капилляра. На каком расстоянии L от конца капилляра (по горизонтали) струя масла падает на стол?

Решение:

4.18. Стальной шарик падает в широком сосуде, напол трансформаторным маслом, плотность которого р – 0,9 • 103 кг/ m3 и динамическая вязкость n= 0,8Па*с. Считая, что закон Стокса имеет место при числе Рейнольдса Re < 0,5 (если при вычислении Re в качестве величины D взять диаметр шарика), найти предельное значение диаметра D шарика.

Решение:

4.19. Считая, что ламинарность движения жидкости (или газа) в цилиндрической трубе сохраняется при числе Рейнольдса Rе<3000 (если при вычислении Re в качестве величины D взять диаметр трубы), показать, что условия задачи 4.1 соответствуют ламинарному движению. Кинематическая вязкость газа v = 1,33 • 10-6 м2/с.

Решение:

4.20. Вода течет по трубе, причем за единицу времени через поперечное сечение трубы протекает объем воды V1 = 200см3/с. Динамическая вязкость воды n = 0,001 Па*с. При каком предельном значении диаметра D трубы движение воды остается ламинарным? (Смотри условие предыдущей задачи.)

Решение:

/>

Источник

Читайте также:  Лицо человека с мышцами и сосудами