Давление газа на стенки сосуда вызвано
Анонимный вопрос
30 января 2018 · 4,8 K
Люблю фантастику, вязание, начинающий садовод
Давление газа на стенки сосудов вызывается ударами молекул газа.
У газов нет ни формы ни постоянного объема. Они могут заполнить любой объем.
Количество молекул в каждом кубическом сантиметре увеличивается при сжатии (уменьшается при расширении) от этого число ударов о стенки сосуда увеличивается (уменьшается). Поэтому чем больший сосуд газ заполняет, тем меньше давление и наоборот.
Газ одинаково давит по всем направлениям, как пример -когда надуваешь воздушный шар, то он надувается равномерно.
Если газ находиться в маленьком объеме, то давление на стенки становится огромным, поэтому газ удобнее и безопаснее заключать в специальные прочные стальные баллоны.
Люблю простые слова для вещей, toki pona.
Давление газа вызывается ударами молекул о стенки сосуда, т.к. молекулы хаотически движутся и постоянно соударяются друг с другом и со всеми встреченным препятствиями.
По Эйнштейну, чем ближе тело или частица к скорости света, тем огромнее становится его масса. И вот,в Большом адронном коллайдере, протоны и ионы, движутся почти со скоростью света, и что это значит?
Сусанна Казарян, США, Физик
Релятивистской массы нет в природе и, согласно релятивистской механике Эйнштейна, масса остаётся инвариантной и равной массе покоя всегда, независимо от скорости (недоверчивым сюда).
Темп роста энергии частицы (E) с ростом скорости β = v/c (в единицах скорости света c) получен мною здесь. Если тело обладало скоростью β₁ = 0,9 при энергии Е₁, то для достижения скорости β₂ = 0,9…999 (n девятoк после запятой), потребуется энергия E₂ = (3,16)ⁿ⁻¹⋅Е₁. Получается, что с каждой новой девяткой в величине скорости (β), энергия должна быть увеличена в 3,16 раз. Таким образом, неограниченный рост числа девяток (n) в численном значении скорости (β), приводит к неограниченному росту энергии.
Mаксимальная скорость зарегистрированного материального объекта (протона), ускоренного до околосветовых скоростей в космическом пространстве, равна β = 0,9…999 (всего 23 девятки), а соответствующая энергия, E ~ 10¹¹ ГэВ. Области в галактиках и механизмы ускорения до этих скоростей пока неизвестны. Максимальные энергии столкновения протонов, достигнутые на ускорителе БАК (LHC) в ЦЕРН, равны 1,3×10⁴ ГэВ, что в системе отсчёта неподвижной мишени соответствует энергии протона = 9×10⁷ ГэВ или скорости протона β = 0,999 999 999 999 9999 (16 девяток). В обоих случаях масса протона остаётся неизменной и равной массе покоя, 0.938 ГэВ.
Согласно релятивистской механике, со скоростью света (β = 1) могут лететь только безмассовые частицы (фотоны), но и у них есть недостаток − они не могут лететь медленнее.
Прочитать ещё 11 ответов
Как кинетическая энергия тела зависит от массы самого тела?
Легче всего посмотреть на формулу:
(Что-то картинка с формулой не вставилась здесь. Я её в комментарий вставил)
Здесь m – это масса, v – скорость частицы, c – инвариантная скорость.
Тут есть одна тонкость. Если масса равна нулю (как у фотона), то скорость v обязательно равна c, и первое слагаемое превращается в неопределённость 0/0. Формула становится непригодной.
В этом случае кинетическая энергия (она же полная, так как энергия покоя равна нулю) не зависит ни от массы, ни от скорости, а зависит от импульса: Ek = pc. Здесь p – импульс частицы.
Прочитать ещё 1 ответ
Какой эксперимент доказал независимость скорости света от скорости источника света?
ведущий инженер, классический физик
собственно вопрос о зависимости скорости света от скорости источника был актуальным всего несколько лет, когда Вальтер Ритц пытался спасти классическую физику от нашествия рельятивистов. Но в 1909 году Ритц неожиданно умер, а его реоны, частицы движущиеся в эфире быстрее света, не получили поддержки у классиков, поскольку в классическую эфирную физику не вписывались.Согласно же классике свет распространяется в виде волн светоносной среды, поэтому естественно, что скорость света от скорости источника никак не зависит, а зависит от свойств среды распространения сигналов. Поэтому и эксперимент, проверяющий связь скорости света и скорости источника совершенно не актуален. Тем не менее современный физический официоз видимо чисто для понтов недавно, в 2011 году решил этот вывод перепроверить, как бы в защиту СТО (от кого интересно её сейчас надо защищать) про что можно прочитать, например, здесь https://elementy.ru/nauchno-populyarnaya_biblioteka/431608/Teoriya_otnositelnosti_pryamoy_eksperiment_s_krivym_puchkom
Актуальным же по-прежнему является вопрос о сложении скоростей световых волн и наблюдателя (приёмника). И экспериментальной проверки такого сложения скоростей пока не было. Так-то нормальный человек, конечно, понимает, что скорость световой волны не может не складываться со скоростью наблюдателя, но рельятивистов это не устраивает 🙂
Прочитать ещё 9 ответов
Источник
Давление газа
Подробности
Категория: О давлении
Опубликовано 02.12.2014 16:18
Просмотров: 11177
Где бы ни находился газ: в воздушном шаре, автомобильной шине, или металлическом баллоне – он заполняет собой весь объём сосуда, в котором находится.
Давление газа возникает совсем по другой причине, нежели давление твёрдого тела. Оно образуется в результате ударов молекул о стенки сосуда.
Давление газа на стенки сосуда
Двигаясь хаотично в пространстве, молекулы газа сталкиваются между собой и со стенками сосуда, в котором находятся. Сила удара одной молекулы мала. Но так как молекул очень много, и сталкиваются они с большой частотой, то, действуя сообща на стенки сосуда, они создают значительное давление. Если в газ помещено твёрдое тело, то оно также подвергается ударам молекул газа.
Проведём несложный опыт. Под колокол воздушного насоса поместим завязанный воздушный шарик, не полностью наполненный воздухом. Так как воздуха в нём мало, шарик имеет неправильную форму. Когда же мы начнём откачивать воздух из-под колокола, шарик станет раздуваться. Через некоторое время он примет форму правильного шара.
Что же произошло с нашим шариком? Ведь он был завязан, следовательно, количество воздуха в нём осталось прежним.
Всё объясняется довольно просто. Во время движения молекулы газа сталкиваются с оболочкой шарика снаружи и внутри него. Если воздух откачивается из колокола, молекул становится меньше. Уменьшается плотность, а значит и частота ударов молекул о наружную оболочку также уменьшается. Следовательно, давление снаружи оболочки падает. А так как внутри оболочки число молекул осталось прежним, то внутреннее давление превышает наружное. Газ давит изнутри на оболочку. И по этой причине она постепенно раздувается и принимает форму шара.
Закон Паскаля для газов
Молекулы газа очень подвижны. Благодаря этому давление они передают не только в направлении действия силы, вызывающей это давление, но и равномерно по всем направлениям. Закон о передаче давления сформулировал французский учёный Блез Паскаль: «Давление, производимое на газ или жидкость, передаётся без изменений в любую точку по всем направлениям». Этот закон называют основным законом гидростатики – науки о жидкости и газе в состоянии равновесия.
Закон Паскаля подтверждается опытом с прибором, который называют шаром Паскаля. Этот прибор представляет собой шар из твёрдого вещества с проделанными в нём крошечными отверстиями, соединённый с цилиндром, по которому двигается поршень. Шар заполняется дымом. При сжатии поршнем дым выталкивается из отверстий шара одинаковыми струйками.
Давление газа вычисляют по формуле:
где еlin– средняя кинетическая энергия поступательного движения молекул газа;
n – концентрация молекул
Парциальное давление. Закон Дальтона
На практике чаще всего нам приходится встречаться не с чистыми газами, а с их смесями. Мы дышим воздухом, являющимся смесью газов. Выхлопные газы автомобилей – тоже смесь. При сварке уже давно не применяется чистый углекислый газ. Вместо него также используют газовые смеси.
Газовой смесью называют смесь газов, не вступающих в химические реакции между собой.
Давление отдельного компонента газовой смеси называется парциальным давлением.
Если предположить, что все газы смеси являются идеальными газами, то давление смеси определяется законом Дальтона: «Давление смеси идеальных газов, не взаимодействующих химически, равно сумме парциальных давлений».
Его величина определяется по формуле:
Каждый газ в смеси создаёт парциальное давление. Его температура равна температуре смеси.
Давление газа можно изменить, меняя его плотность. Чем больше газа будет закачано в металлический баллон, тем больше в нём будет молекул, ударяющихся о стенки, и тем выше станет его давление. Соответственно, откачивая газ, мы разрежаем его, и давление снижается.
Но давление газа также можно изменить, изменив его объём или температуру, то есть, сжав газ. Сжатие проводят, воздействуя силой на газообразное тело. В результате такого воздействия уменьшается занимаемый им объём, повышается давление и температура.
Газ сжимается в цилиндре двигателя при движении поршня. На производстве высокое давление газа создают, сжимая его с помощью сложных устройств – компрессоров, которые способны создать давление до нескольких тысяч атмосфер.
Источник
Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.
Учебник «Физика. 7 кл.» А.В. Перышкин – М. : Дрофа, 2011 г.
Тип урока: комбинированный на основе
исследовательской деятельности.
Цели:
- установить причину существования давления в
газах с точки зрения молекулярного строения
вещества; - выяснить:
- от чего зависит давление газа
- как можно его изменить.
Задачи:
- сформировать знания о давлении газа и природе
возникновения давления на стенки сосуда, в
котором находится газ; - сформировать умение объяснять давление газа на
основе учения о движении молекул, зависимости
давления от объема при постоянной массе и
температуре, а также и при изменении температуры; - развить общеучебные знания и умения: наблюдать,
делать выводы; - способствовать привитию интереса к предмету,
развития внимания, научного и логического
мышления учащихся.
Оборудование и материалы к уроку:
компьютер, экран, мультимедиапроектор,
презентация к уроку, колба с пробкой, штатив,
спиртовка, шприц, воздушный шар, пластиковая
бутылка с пробкой.
План урока:
- Проверка домашнего задания.
- Актуализация знаний.
- Объяснение нового материала.
- Закрепление пройденного материала на уроке.
- Итог урока. Домашнее задание.
ХОД УРОКА
Я предпочитаю то, что можно увидеть, услышать и
изучить. (Гераклит) (Слайд 2)
– Это девиз нашего урока
– На прошлых уроках мы с вами узнали о давлении
твердых тел, от каких физических величин зависит
давление.
1. Повторение пройденного материала
(Слайд 3)
1. Что такое давление?
2. От чего зависит давление твердого тела?
3. Как давление зависит от силы, приложенной
перпендикулярно опоре? Каков характер этой
зависимости?
4. Как давление зависит от площади опоры? Каков
характер этой зависимости?
5. В чем причина давления твердого тела на опору?
(Слайд 4)
Качественная задача.
Одинаковы ли силы, действующие на опору, и
давление в обоих случаях? Почему?
Проверка знаний. Тестирование (проверка и
взаимопроверка)
(Слайд 5)
Тест
1. Физическая величина, имеющая размерность
паскаль (Па), называется:
а) сила; б) масса; в) давление; г) плотность.
2. Силу давления увеличили в 2 раза. Как
изменится давление?
а) уменьшится в 2 раза; б) останется прежним; в)
увеличится в 4 раза; г) увеличится в 2 раза.
3. Давление можно рассчитать по формуле:
4. Какое давление на пол оказывает ковёр весом 200
Н, площадью 4 м2?
а) 50 Па; б) 5 Па; в) 800Па; г) 80 Па.
5. Два тела равного веса поставлены на стол.
Одинаковое ли давление они производят на стол?
(Слайд 6)
Ответы:
- в
- г
- в
- а
- а
2. Актуализация знаний (в форме беседы)
(Слайд 7)
– Почему воздушные шары и мыльные пузыри
круглые?
Учащиеся надувают воздушные шары.
– Чем мы заполнили шары? (Воздухом) Чем еще
можно заполнить шары? (Газами)
– Предлагаю сжать шары. Что вам мешает сжать
шары? Что действует на оболочку шара?
– Возьмите пластиковые бутылки, закройте
пробкой и попробуйте сжать.
– О чем пойдет речь на уроке?
(Слайд 8)
– Тема урока: Давление газа
3. Объяснение нового материала
Газы, в отличии от твёрдых тел и жидкостей,
заполняют весь сосуд, в котором находятся.
Стремясь расшириться, газ оказывает давление на
стенки, дно и крышку любого тела, с которым он
соприкасается.
(Слайд 9) Картинки стальных баллонов, в которых
находится газ; камеры автомобильной шины; мяча
Давление газа обусловлено иными причинами, чем
давление твердого тела на опору.
(Слайд 10)
Вывод: давление газа на стенки сосуда
(и на помещенное в газ тело) вызывается ударами
молекул газа.
Например, число ударов молекул воздуха,
находящегося в комнате, о поверхность площадью 1
см2 за 1 с выражается двадцатитрехзначным
числом. Хотя сила удара отдельной молекулы мала,
но действие всех молекул на стенки сосуда
значительно, оно и создает давление газа.
Учащиеся самостоятельно работают с учебником.
Читают опыт с резиновым шаром под колоколом. Как
объяснить этот опыт? (стр.83 рис. 91)
Учащиеся объясняют опыт.
(Слайд 11) Просмотр видеофрагмента с объяснением
опыта для закрепления материала.
(Слайд 12) Минутка отдыха. Зарядка для глаз.
(Слайд 13)
«Ощущение тайны – наиболее прекрасное
из доступных нам переживаний. Именно это чувство
стоит у колыбели настоящей науки».
Альберт Эйнштейн
(Слайд 14) ИМЕЮТ ЛИ ГАЗЫ ОБЪЁМ? ЛЕГКО ЛИ ИЗМЕНИТЬ
ОБЪЁМ ГАЗОВ? ЗАНИМАЮТ ЛИ ГАЗЫ ВЕСЬ
ПРЕДОСТАВЛЯЕМЫЙ ИМ ОБЪЁМ? ПОЧЕМУ?ПОЧЕМУ? ИМЕЮТ ЛИ
ГАЗЫ ПОСТОЯННЫЙ ОБЪЁМ И СОБСТВЕННУЮ ФОРМУ?
ПОЧЕМУ?
рис. 92 стр. 84
(Слайд 15) У учащихся сделаны модели из шприцов.
Выполнение опыта.
Учащиеся делают вывод: при уменьшении объёма
газа его давление увеличивается, а при
увеличении объёма давление уменьшается при
условии, что масса и температура газа остаются
неизменными.
(Слайд 16) Опыт с колбой
– Как изменится давление газа, если нагреть его
при постоянном объеме?
При нагревании давление газа в колбе будет
постепенно возрастать до тех пор, пока пробка не
вылетит из склянки.
Учащиеся делают вывод: давление газа в закрытом
сосуде тем больше, чем выше температура газа,при
условии, что масса газа и объём не изменяются.
(Слайд 17)
Газы, заключенные в сосуде, можно сжимать или
сдавливать, уменьшая при этом их объем. Сжатый
газ равномерно распределяется во всех
направлениях. Чем сильнее вы сжимаете газ, тем
выше будет его давление.
Учащиеся делают вывод: давление газа тем больше,
чем чаще и сильнее молекулы ударяют о стенки
сосуда
4. Закрепление пройденного материала на
уроке.
(Слайд 18) Подумай-ка
– Что происходит с молекулами газа при
уменьшении объёма сосуда, в котором находится
газ?
- молекулы начинают быстрее двигаться,
- молекулы начинают медленнее двигаться,
- среднее расстояние между молекулами газа
уменьшается, - среднее расстояние между молекулами газа
увеличивается.
(Слайд 19) Сравни-ка свои ответы
- Чем вызвано давление газа?
- Почему давление газа увеличивается при его
сжатии и уменьшается при расширении? - Когда давление газа больше: в холодном или
горячем состоянии? Почему?
Ответ 1. Давление газа вызвано ударами молекул
газа о стенки сосуда или о помещенное в газ тело
Ответ 2. При сжатии плотность газа увеличивается,
из-за чего возрастает число ударов молекул о
стенки сосуда. Следовательно, увеличивается и
давление. При расширении плотность газа
уменьшается, что влечет за собой уменьшение
числа ударов молекул о стенки сосуда. Поэтому
давление газа уменьшается
Ответ 3. Давление газа больше в горячем состоянии.
Это связано с тем, что молекулы газа при
повышении температуры начинают двигаться
быстрее, из-за чего удары их становятся чаще и
сильнее.
(Слайд 20) Качественные задачи. (Сборник задач по
физике В.И. Лукашик, Е.В.Иванова, Москва
«Просвещение» 2007 г. стр. 64)
1. Почему при накачивании воздуха в шину
автомобиля с каждым разом становится все труднее
двигать ручку насоса?
2. Массы одного и того же газа, находящегося в
разных закрытых сосудах при одинаковой
температуре, одинаковы. В каком из сосудов
давление газа наибольшее? Наименьшее? Ответ
объясните
(Слайд 21)
3. Объясните появление вмятины на мяче
Мяч при комнатной температуре
Мяч на снегу в морозный день
(Слайд 22)
Решать загадки можно вечно.
Вселенная ведь бесконечна.
Спасибо всем нам за урок,
А главное, чтоб был он впрок!
Рефлексия.
5. Итог урока
Домашнее задание: §35
Источник
Макеты страниц
Стенки сосуда, в котором заключен газ, подвергаются непрерывной бомбардировке молекулами. В результате элементу стенки сообщается за секунду некоторый импульс, который равен силе, действующей на . Отношение этой силы к величине дает давление, оказываемое газом на стенки сосуда. Вследствие хаотичности движения молекул давление газа на различные участки стенок сосуда одинаково (разумеется, при условии, что газ находится в равновесном состоянии).
Если предположить, что молекулы отскакивают от стенки по закону зеркального отражения величина скорости молекулы не изменяется, то импульс, сообщаемый при ударе стенке молекулой, будет равен (рис. 96.1; — масса молекулы). Этот импульс направлен по нормали к площадке. Каждая из молекул (см. (95.2)) сообщает стенке импульс а все эти молекулы — импульс
Просуммируем полученное выражение по направлениям в пределах телесного угла (отвечающего изменениям Ф от 0 до и изменениям от 0 до .
Рис. 96.1.
В результате получим импульс, сообщаемый молекулами, скорости которых имеют величину от v до
(мы подставили выражение (94.4) для Интегрирование по дает интеграл по равен 1/3. Следовательно,
Проинтегрировав это выражение по скоростям от 0 до получим полный импульс, сообщаемый площадке за время
Выражение
представляет собой среднее значение квадрата скорости молекул. Заменив в (96.1) интеграл произведением получим, что
есть число молекул в единице объема). Наконец, разделив это выражение на и получим давление газа на стенки сосуда:
Масса всех молекул по предположению одинакова. Поэтому ее можно внести под знак среднего. В результате выражение (96.2) примет вид
где — среднее значение кинетической энергии поступательного движения молекул.
Получим выражение для давления, исходя из упрощенных представлений, которые привели нас к формуле (95.7). Согласно этим представлениям каждая молекула сообщает стенке при ударе импульс Умножив этот импульс на число ударов (см. (95.7)), получим импульс, сообщаемый единичной площадке в единицу времени, т. е. давление.
Таким образом, получается формула
Эта формула отличается от (96.2) тем, что вместо среднего квадрата скорости стоит квадрат средней скорости Впоследствии (см. § 97) мы убедимся в том, что эти две величины отличаются друг от друга, т. е.
При более аккуратном подсчете нужно число молекул, определяемое формулой (95.8), умножить на и затем произвести суммирование по всем V. В результате получится импульс, сообщаемый площадке за время
Разделив это выражение на и получим для давления формулу (96-2). Таким образом, исходя из упрощенного представления о движении молекул вдоль трех взаимно перпендикулярных направлений, мы получили точное выражение для давления. Это объясняется тем, что указанное упрощение приводит, с одной стороны, к занижению числа ударов молекул о стенку вместо см. (95.6) и (95.7)), а с другой — к завышению импульса, передаваемого стенке при каждом ударе. При упрощенном выводе мы принимали, что при каждом ударе стенке сообщается импульс, равный . В действительности же величина сообщаемого стенке импульса зависит от угла вследствие чего средний импульс, сообщаемый при одном ударе, равен . В итоге обе неточности взаимно компенсируют друг друга и, несмотря на упрощенность рассмотрения, получается точное выражение для давления.
Источник