Давление смеси газов на стенки сосуда

Школьная Энциклопедия

Nav view search

Навигация

Искать

Давление газа

Где бы ни находился газ: в воздушном шаре, автомобильной шине, или металлическом баллоне — он заполняет собой весь объём сосуда, в котором находится.

Давление газа возникает совсем по другой причине, нежели давление твёрдого тела. Оно образуется в результате ударов молекул о стенки сосуда.

Давление газа на стенки сосуда

Двигаясь хаотично в пространстве, молекулы газа сталкиваются между собой и со стенками сосуда, в котором находятся. Сила удара одной молекулы мала. Но так как молекул очень много, и сталкиваются они с большой частотой, то, действуя сообща на стенки сосуда, они создают значительное давление. Если в газ помещено твёрдое тело, то оно также подвергается ударам молекул газа.

Проведём несложный опыт. Под колокол воздушного насоса поместим завязанный воздушный шарик, не полностью наполненный воздухом. Так как воздуха в нём мало, шарик имеет неправильную форму. Когда же мы начнём откачивать воздух из-под колокола, шарик станет раздуваться. Через некоторое время он примет форму правильного шара.

Что же произошло с нашим шариком? Ведь он был завязан, следовательно, количество воздуха в нём осталось прежним.

Всё объясняется довольно просто. Во время движения молекулы газа сталкиваются с оболочкой шарика снаружи и внутри него. Если воздух откачивается из колокола, молекул становится меньше. Уменьшается плотность, а значит и частота ударов молекул о наружную оболочку также уменьшается. Следовательно, давление снаружи оболочки падает. А так как внутри оболочки число молекул осталось прежним, то внутреннее давление превышает наружное. Газ давит изнутри на оболочку. И по этой причине она постепенно раздувается и принимает форму шара.

Закон Паскаля для газов

Молекулы газа очень подвижны. Благодаря этому давление они передают не только в направлении действия силы, вызывающей это давление, но и равномерно по всем направлениям. Закон о передаче давления сформулировал французский учёный Блез Паскаль: «Давление, производимое на газ или жидкость, передаётся без изменений в любую точку по всем направлениям». Этот закон называют основным законом гидростатики — науки о жидкости и газе в состоянии равновесия.

Закон Паскаля подтверждается опытом с прибором, который называют шаром Паскаля. Этот прибор представляет собой шар из твёрдого вещества с проделанными в нём крошечными отверстиями, соединённый с цилиндром, по которому двигается поршень. Шар заполняется дымом. При сжатии поршнем дым выталкивается из отверстий шара одинаковыми струйками.

Давление газа вычисляют по формуле:

где еlin — средняя кинетическая энергия поступательного движения молекул газа;

n — концентрация молекул

Парциальное давление. Закон Дальтона

На практике чаще всего нам приходится встречаться не с чистыми газами, а с их смесями. Мы дышим воздухом, являющимся смесью газов. Выхлопные газы автомобилей — тоже смесь. При сварке уже давно не применяется чистый углекислый газ. Вместо него также используют газовые смеси.

Газовой смесью называют смесь газов, не вступающих в химические реакции между собой.

Давление отдельного компонента газовой смеси называется парциальным давлением.

Если предположить, что все газы смеси являются идеальными газами, то давление смеси определяется законом Дальтона: «Давление смеси идеальных газов, не взаимодействующих химически, равно сумме парциальных давлений».

Его величина определяется по формуле:

Каждый газ в смеси создаёт парциальное давление. Его температура равна температуре смеси.

Давление газа можно изменить, меняя его плотность. Чем больше газа будет закачано в металлический баллон, тем больше в нём будет молекул, ударяющихся о стенки, и тем выше станет его давление. Соответственно, откачивая газ, мы разрежаем его, и давление снижается.

Но давление газа также можно изменить, изменив его объём или температуру, то есть, сжав газ. Сжатие проводят, воздействуя силой на газообразное тело. В результате такого воздействия уменьшается занимаемый им объём, повышается давление и температура.

Газ сжимается в цилиндре двигателя при движении поршня. На производстве высокое давление газа создают, сжимая его с помощью сложных устройств — компрессоров, которые способны создать давление до нескольких тысяч атмосфер.

Источник

Давление газа на стенки сосуда формула вывод

Простейшей моделью, рассматриваемой молекулярно-кинетической теорией, является модель идеального газа . В кинетической модели идеального газа молекулы рассматриваются как идеально упругие шарики, взаимодействующие между собой и со стенками только во время упругих столкновений. Суммарный объем всех молекул предполагается малым по сравнению с объемом сосуда, в котором находится газ. Модель идеального газа достаточно хорошо описывает поведение реальных газов в широком диапазоне давлений и температур. Задача молекулярно-кинетической теории состоит в том, чтобы установить связь между микроскопическими (масса, скорость, кинетическая энергия молекул) и макроскопическими параметрами (давление, объем, температура).

В результате каждого столкновения между молекулами и молекул со стенками скорости молекул могут изменяться по модулю и по направлению; на интервалах времени между последовательными столкновениями молекулы движутся равномерно и прямолинейно. В модели идеального газа предполагается, что все столкновения происходят по законам упругого удара, т. е. подчиняются законам механики Ньютона.

Используя модель идеального газа, вычислим давление газа на стенку сосуда . В процессе взаимодействия молекулы со стенкой сосуда между ними возникают силы, подчиняющиеся третьему закону Ньютона. В результате проекция скорости молекулы, перпендикулярная стенке, изменяет свой знак на противоположный, а проекция скорости, параллельная стенке, остается неизменной (рис. 3.2.1).

Поэтому изменение импульса молекулы будет равно , где – масса молекулы.

Выделим на стенке некоторую площадку (рис. 3.2.2). За время с этой площадкой столкнутся все молекулы, имеющие проекцию скорости , направленную в сторону стенки, и находящиеся в цилиндре с основанием площади и высотой .

Пусть в единице объема сосуда содержатся молекул; тогда число молекул в объеме цилиндра равно . Но из этого числа лишь половина движется в сторону стенки, а другая половина движется в противоположном направлении и со стенкой не сталкивается. Следовательно, число ударов молекул о площадку за время равно

Поскольку каждая молекула при столкновении со стенкой изменяет свой импульс на величину , то полное изменение импульса всех молекул, столкнувшихся за время с площадкой , равно По законам механики это изменение импульса всех столкнувшихся со стенкой молекул происходит под действием импульса силы , где – некоторая средняя сила, действующая на молекулы со стороны стенки на площадке . Но по 3-му закону Ньютона такая же по модулю сила действует со стороны молекул на площадку . Поэтому можно записать:

Разделив обе части на , получим:

где – давление газа на стенку сосуда.

При выводе этого соотношения предполагалось, что все молекул, содержащихся в единице объема газа, имеют одинаковые проекции скоростей на ось . На самом деле это не так.

В результате многочисленных соударений молекул газа между собой и со стенками в сосуде, содержащем большое число молекул, устанавливается некоторое статистическое распределение молекул по скоростям. При этом все направления векторов скоростей молекул оказываются равноправными (равновероятными), а модули скоростей и их проекции на координатные оси подчиняются определенным закономерностям. Распределение молекул газа по модулю скоростей называется распределением Максвелла . Дж. Максвелл в 1860 г. вывел закон распределения молекул газа по скоростям, исходя из основных положений молекулярно-кинетической теории. На рис. 3.2.3 представлены типичные кривые распределения молекул по скоростям. По оси абсцисс отложен модуль скорости, а по оси ординат – относительное число молекул, скорости которых лежат в интервале от до . Это число равно площади выделенного на рис. 3.2.3 столбика.

Читайте также:  Утром проснулась а в глазу лопнул сосуд

Характерными параметрами распределения Максвелла являются наиболее вероятная скорость , соответствующая максимуму кривой распределения, и среднеквадратичная скорость

где – среднее значение квадрата скорости.

С ростом температуры максимум кривой распределения смещается в сторону больших скоростей, при этом и увеличиваются.

Чтобы уточнить формулу для давления газа на стенку сосуда, предположим, что все молекулы, содержащиеся в единице объема, разбиты на группы, содержащие , , и т. д. молекул с проекциями скоростей , , и т. д. соответственно. При этом

Каждая группа молекул вносит свой вклад в давление газа. В результате соударений со стенкой молекул с различными значениями проекций скоростей возникает суммарное давление

Входящая в это выражение сумма – это сумма квадратов проекций всех молекул в единичном объеме газа. Если эту сумму разделить на , то мы получим среднее значение

квадрата проекции скорости молекул:

Теперь формулу для давления газа можно записать в виде

Так как все направления для векторов скоростей молекул равновероятны, среднее значение квадратов их проекций на координатные оси равны между собой:

Последнее равенство вытекает из формулы:

Формула для среднего давления газа на стенку сосуда запишется в виде

Это уравнение устанавливает связь между давлением идеального газа, массой молекулы , концентрацией молекул , средним значением квадрата скорости

и средней кинетической энергией поступательного движения молекул. Его называют основным уравнением молекулярно-кинетической теории газов.

Таким образом, давление газа равно двум третям средней кинетической энергии поступательного движения молекул, содержащихся в единице объема .

В основное уравнение молекулярно-кинетической теории газов входит произведение концентрации молекул на среднюю кинетическую энергию

поступательного движения. Если предположить, что газ находится в сосуде неизменного объема , то ( – число молекул в сосуде). В этом случае изменение давления пропорционально изменению средней кинетической энергии.

Возникают вопросы: каким образом можно на опыте изменять среднюю кинетическую энергию движения молекул в сосуде неизменного объема? Какую физическую величину нужно изменить, чтобы изменилась средняя кинетическая энергия

Опыт показывает, что такой величиной является температура .

Понятие температуры тесно связано с понятием теплового равновесия . Тела, находящиеся в контакте друг с другом, могут обмениваться энергией. Энергия, передаваемая одним телом другому при тепловом контакте, называется количеством теплоты .

Тепловое равновесие – это такое состояние системы тел, находящихся в тепловом контакте, при котором не происходит теплопередачи от одного тела к другому, и все макроскопические параметры тел остаются неизменными. Температура – это физический параметр, одинаковый для всех тел, находящихся в тепловом равновесии. Возможность введения понятия температуры следует из опыта и носит название нулевого закона термодинамики .

Для измерения температуры используются физические приборы – термометры , в которых о величине температуры судят по изменению какого-либо физического параметра. Для создания термометра необходимо выбрать термометрическое вещество (например, ртуть, спирт) и термометрическую величину , характеризующую свойство вещества (например, длина ртутного или спиртового столбика). В различных конструкциях термометров используются разнообразные физические свойства вещества (например, изменение линейных размеров твердых тел или изменение электрического сопротивления проводников при нагревании).

Термометры должны быть откалиброваны. Для этого их приводят в тепловой контакт с телами, температуры которых считаются заданными. Чаще всего используют простые природные системы, в которых температура остается неизменной, несмотря на теплообмен с окружающей средой – это смесь льда и воды и смесь воды и пара при кипении при нормальном атмосферном давлении. По температурной шкале Цельсия точке плавления льда приписывается температура , а точке кипения воды – . Изменение длины столба жидкости в капиллярах термометра на одну сотую длины между отметками и принимается равным . В ряде стран (США) широко используется шкала Фаренгейта (F), в которой температура замерзающей воды принимается равной 32 °F, а температура кипения воды равной 212 °F. Следовательно,

Особое место в физике занимают газовые термометры (рис. 3.2.4), в которых термометрическим веществом является разреженный газ (гелий, воздух) в сосуде неизменного объема (), а термометрической величиной – давление газа . Опыт показывает, что давление газа (при ) растет с ростом температуры, измеренной по шкале Цельсия.

Чтобы проградуировать газовый термометр постоянного объема, можно измерить давление при двух значениях температуры (например, 0 °C и 100 °C), нанести точки и на график, а затем провести между ними прямую линию (рис. 3.2.5). Используя полученный таким образом калибровочный график, можно определять температуры, соответствующие другим значениям давления. Экстраполируя график в область низких давлений, можно определить некоторую «гипотетическую» температуру, при которой давление газа стало бы равным нулю. Опыт показывает, что эта температура равна и не зависит от свойств газа . На опыте получить путем охлаждения газ в состоянии с нулевым давлением невозможно, так как при очень низких температурах все газы переходят в жидкое или твердое состояние.

Английский физик У. Кельвин (Томсон) в 1848 г. предложил использовать точку нулевого давления газа для построения новой температурной шкалы ( шкала Кельвина ). В этой шкале единица измерения температуры такая же, как и в шкале Цельсия, но нулевая точка сдвинута:

В системе СИ принято единицу измерения температуры по шкале Кельвина называть кельвином и обозначать буквой K. Например, комнатная температура по шкале Кельвина равна .

Температурная шкала Кельвина называется абсолютной шкалой температур . Она оказывается наиболее удобной при построении физических теорий.

Нет необходимости привязывать шкалу Кельвина к двум фиксированным точкам – точке плавления льда и точке кипения воды при нормальном атмосферном давлении, как это принято в шкале Цельсия.

Кроме точки нулевого давления газа, которая называется абсолютным нулем температуры , достаточно принять еще одну фиксированную опорную точку. В шкале Кельвина в качестве такой точки используется температура тройной точки воды ), в которой в тепловом равновесии находятся все три фазы – лед, вода и пар. По шкале Кельвина температура тройной точки принимается равной .

Газовые термометры громоздки и неудобны для практического применения: они используются в качестве прецизионного стандарта для калибровки других термометров.

Таким образом, давление разреженного газа в сосуде постоянного объема изменяется прямо пропорционально его абсолютной температуре: . С другой стороны, опыт показывает, что при неизменных объеме и температуре давление газа изменяется прямо пропорционально отношению количества вещества в данном сосуде к объему сосуда

где – число молекул в сосуде, – постоянная Авогадро, – концентрация молекул (т. е. число молекул в единице объема сосуда). Объединяя эти соотношения пропорциональности, можно записать:

где – некоторая универсальная для всех газов постоянная величина. Ее называют постоянной Больцмана , в честь австрийского физика Л. Больцмана, одного из создателей молекулярно-кинетической теории. Постоянная Больцмана – одна из фундаментальных физических констант. Ее численное значение в СИ равно:

Читайте также:  Ишемия сосудов ног последствия

Сравнивая соотношения с основным уравнением молекулярно-кинетической теории газов, можно получить:

Средняя кинетическая энергия хаотического движения молекул газа прямо пропорциональна абсолютной температуре.

Таким образом, температура есть мера средней кинетической энергии поступательного движения молекул .

Следует обратить внимание на то, что средняя кинетическая энергия поступательного движения молекулы не зависит от ее массы. Броуновская частица, взвешенная в жидкости или газе, обладает такой же средней кинетической энергией, как и отдельная молекула, масса которой на много порядков меньше массы броуновской частицы. Этот вывод распространяется и на случай, когда в сосуде находится смесь химически невзаимодействующих газов, молекулы которых имеют разные массы. В состоянии равновесия молекулы разных газов будут иметь одинаковые средние кинетические энергии теплового движения, определяемые только температурой смеси. Давление смеси газов на стенки сосуда будет складываться из парциальных давлений каждого газа:

В этом соотношении , , , … – концентрации молекул различных газов в смеси. Это соотношение выражает на языке молекулярно-кинетической теории экспериментально установленный в начале XIX столетия закон Дальтона : давление в смеси химически невзаимодействующих газов равно сумме их парциальных давлений .

Источник

Источник

Калькулятор парциального давления Дальтона

Парциальное давление ­— это давление отдельно взятого компонента газовой смеси на стенку сосуда или границу атмосферы. Для расчета давления каждого компонента важно знать его количество вещества, а также объем и температуру газовой смеси.

Свойства идеального газа

При рассмотрении газовых смесей каждый ее компонент рассматривается как идеальный газ. Идеальный газ не существует в природе, так как представляет собой математическую модель с несколькими допущениями:

  • размер молекул пренебрежимо мал;
  • молекулярное взаимодействие отсутствует;
  • атомы соударяются абсолютно упруго (по типу бильярдных шаров);
  • газ находится в термодинамическом равновесии.

Идеальный газ обладает несколькими особыми свойствами, которые описываются газовыми законами. Так, при постоянном давлении отношение объема газа к его температуре остается статичным: при изменении одной величины, вторая также прямо пропорционально изменяется. То же самое и с изохорными процессами, то есть протекающими при постоянном объеме: изменение давления газа вызывает прямо пропорциональное изменение температуры и наоборот. При постоянной температуре или изотермическом процессе, давление и объем ведут себя иначе: при изменении одной величины, вторая изменяется обратно пропорционально.

В газовых законах давление может измеряться в паскалях или в атмосферах, объем — в литрах или кубометрах, а температура — исключительно в кельвинах. Именно поэтому при выполнении расчетов можно использовать разные формулы, но в любом случае требуется переводитьградусы Цельсия в кельвины по простой формуле:

где tc — положительная или отрицательная температура, выраженная в градусах Цельсия.

Закон Дальтона

Один из наиболее уважаемых и знаменитых естествоиспытателей, Джон Дальтон, первым предположил, что сумма давлений отдельных веществ в газовой смеси равна ее общему давлению. Закон Дальтона математически записывается как:

Pc = P1 + P2 + … + Pn,

где Pc — давление смеси.

Закон Дальтона напрямую связан с уравнением идеального газа:

где n — количество вещества, а R — универсальная газовая постоянная.

Из уравнения идеального газа мы можем выразить давление P = nRT / V и представить давление газовой смеси как сумму парциальных давлений:

Pc = n1RT1 / V1 + n2RT1 / V1 + … + n3RT1 / V1

В этом выражении прежде всего требуется выяснить количество вещества определенного газа n. Обычно оно выражается в молях, следовательно, его можно вычислить через массу газа или его объем. Например, у нас есть 10 литров кислорода. Через плотность мы можем выразить его массу по формуле:

Плотность кислорода — справочная величина, которая равна 1,41 кг/м3. Переведем литры в кубические метры и подсчитаем массу:

m = 1,41 × 0,01 = 0,0141 кг = 14,1 г

Зная, что 1 моль кислорода имеет массу в 15,9 г, легко подсчитать, что количество вещества в 10 литрах газа составляет n = 0,88 моль.

Остальные величины обычно известны. Следует упомянуть, что значение универсальной газовой постоянной отличается:

  • если расчеты производятся в литрах и атмосферах, то R = 0,08206 л × атм / моль × К;
  • если расчеты производятся по системе СИ в кубических метрах и паскалях, то R = 8,3143 Дж / К × моль.

Закон о парциальном давлении газовой смеси строго соблюдается при крайне малых давлениях, когда среднее расстояние между структурными единицами веществ значительно больше их собственных размеров, а молекулярное взаимодействие почти не наблюдается. При средних давлениях закон соблюдается приблизительно, но при высоких давлениях наблюдается большое отклонение от парциального закона Дальтона.

Наша программа позволяет вычислить общее давление газовой смеси, если известно количества вещества ее компонентов. Для расчетов также требуется знать температуру смеси в кельвинах и ее объем в литрах. После заполнения всех ячеек калькулятор автоматически выдаст общее давление смеси.

Рассмотрим пример

Вычисление давления смеси

Пусть в газовой смеси присутствуют химические вещества:

  • азот — 14 моль;
  • кислород — 4 моль;
  • аргон — 2 моль.

Смесь имеет температуру 300 К и занимает объем 100 л. Вычислим общее давление газовой смеси на стенки сосуда. Для этого через запятую введем в ячейку «Значение n» количества вещества газов, а также заполним ячейки температуры и объема. В результате получим, что давление газовой смеси составляет 4 988,6759 кПа.

Заключение

Закон Дальтона непременно встретится в базовом курсе физике и химии, поэтому наш калькулятор пригодится школьникам и студентам начальных курсов.

Источник

Определить давление смеси на стенки сосуда

Задачи по физике — это просто!

Вспомним

1). Если масса газа не меняется:

2). Формулы газовых законов:

3). Если в условиях задачи задан переход из состояния p1V1T1 в состояние p2V2T2, используем формулу:

При этом, если один из параметров const, его можно сократить, и тогда мы получаем одну из формул газовых законов.

3). Если в условиях задачи известны только 2 параметра из трех (p,V,T), используем формулу:

Не забываем
Решать задачи надо всегда в системе СИ!

А теперь к задачам!

Типовые задачи из курса школьной физики по термодинамике на вычисление макропараметров (p,V,T) газа.

Задача 1

Найти массу природного горючего газа объемом 64 м 3 , считая, что объем указан при нормальных условиях. Молярную массу природного газа считать равной молярной массе метана (СН4).

Задача 2

Воздух объемом 1,45 м 3 , находящийся при температуре 20 o C и давлении 100 кПа, превратили в жидкое состояние. Какой объем займет жидкий воздух, если его плотность 861 кг/м 3 ?

Задача 3

Какое количество вещества содержится в газе, если при давлении 200 кПа и температуре 240 К его объем равен 40 литров?

Задача 4

В одинаковых баллонах при одинаковой температуре находятся водород (H2) и углекислый газ (CO2). Массы газов одинаковы. Какой из газов и во сколько раз производит большее давление на стенки баллона?

Задача 5

Газ при давлении 0,2 МПа и температуре 15 о С имеет объем 5 литров. Чему равен объем газа этой массы при нормальных условиях?

Задача 6

При температуре 27 о С давление газа в закрытом сосуде было 75 кПа. Каким будет давление при температуре -13 о С?

Читайте также:  Наросты на сосудах глаз

Задача 7

В баллоне находится газ под давлением.
Определить, какой объем занимал бы этот газ при нормальных условиях (t=0 o C, давление 101 325 Па), если известны объем баллона — V1, температура газа в баллоне — t1, давление газа в баллоне — p1.

Задача 8

Определить давление сжатого воздуха в баллоне, если известны вместимость баллона, температура и масса газа.

Задача 9

В баллоне находится смесь газов (гелий и аргон). Определить давление смеси газов на стенки сосуда, если известны вместимость баллона, температура смеси и масса каждого газа.

Задача 10

Определить молярную массу газа, если известна его плотность и температура при нормальном атмосферном давлении.

Задача 11

Баллон заполнен газом, известны вместимость баллона — V1, температура газа — t1 и давление газа — p1. Какой объем занимал бы этот газ при нормальных условиях (температура t2=0 o C, давление р2= 101 325 Па)?

Задача 12

Определить температуру газа по шкале Цельсия, если объем 4 молей газа при давлении 100 кПа составляет 20 литров.

Задача 13

Определить массу воздуха объемом 40 литров при нормальном атмосферном давлении (101325 Па) и температуре 20 o C.

Источник

Давление газа — формула. Формула давления газа в сосуде

Давление является одним из трех основных термодинамических макроскопических параметров любой газовой системы. В данной статье рассмотрим формулы давления газа в приближении идеального газа и в рамках молекулярно-кинетической теории.

Идеальные газы

Каждый школьник знает, что газ является одним из четырех (включая плазму) агрегатных состояний материи, в котором частицы не имеют определенных положений и движутся хаотичным образом во всех направлениях с одинаковой вероятностью. Исходя из такого строения, газы не сохраняют ни объем, ни форму при малейшем внешнем силовом воздействии на них.

В любом газе средняя кинетическая энергия его частиц (атомов, молекул) больше, чем энергия межмолекулярного взаимодействия между ними. Кроме того, расстояния между частицами намного превышают их собственные размеры. Если молекулярными взаимодействиями и размерами частиц можно пренебречь, тогда такой газ называется идеальным.

В идеальном газе существует лишь единственный вид взаимодействия — упругие столкновения. Поскольку размер частиц пренебрежимо мал в сравнении с расстояниями между ними, то вероятность столкновений частица-частица будет низкой. Поэтому в идеальной газовой системе существуют только столкновения частиц со стенками сосуда.

Все реальные газы с хорошей точностью можно считать идеальными, если температура в них выше комнатной, и давление не сильно превышает атмосферное.

Причина возникновения давления в газах

Прежде чем записать формулы расчета давления газа, необходимо разобраться, почему оно возникает в изучаемой системе.

Согласно физическому определению, давление – это величина, равная отношению силы, которая перпендикулярно воздействует на некоторую площадку, к площади этой площадки, то есть:

Выше мы отмечали, что существует только один единственный тип взаимодействия в идеальной газовой системе – это абсолютно упругие столкновения. В результате них частицы передают количество движения Δp стенкам сосуда в течение времени соударения Δt. Для этого случая применим второй закон Ньютона:

Именно сила F приводит к появлению давления на стенки сосуда. Сама величина F от столкновения одной частицы является незначительной, однако количество частиц огромно (≈ 10 23 ), поэтому они в совокупности создают существенный эффект, который проявляется в виде наличия давления в сосуде.

Формула давления газа идеального из молекулярно-кинетической теории

При объяснении концепции идеального газа выше были озвучены основные положения молекулярно-кинетической теории (МКТ). Эта теория основывается на статистической механике. Развита она была во второй половине XIX века такими учеными, как Джеймс Максвелл и Людвиг Больцман, хотя ее основы заложил еще Бернулли в первой половине XVIII века.

Согласно статистике Максвелла-Больцмана, все частицы системы движутся с различными скоростями. При этом существует малая доля частиц, скорость которых практически равна нулю, и такая же доля частиц, имеющих огромные скорости. Если вычислить среднюю квадратичную скорость, то она примет некоторую величину, которая в течение времени остается постоянной. Средняя квадратичная скорость частиц однозначно определяет температуру газа.

Применяя приближения МКТ (невзаимодействующие безразмерные и хаотично перемещающиеся частицы), можно получить следующую формулу давления газа в сосуде:

Здесь N – количество частиц в системе, V – объем, v – средняя квадратичная скорость, m – масса одной частицы. Если все указанные величины определены, то, подставив их в единицах СИ в данное равенство, можно рассчитать давление газа в сосуде.

Формула давления из уравнения состояния

В середине 30-х годов XIX века французский инженер Эмиль Клапейрон, обобщая накопленный до него экспериментальный опыт по изучению поведения газов во время разных изопроцессов, получил уравнение, которое в настоящее время называется универсальным уравнением состояния идеального газа. Соответствующая формула имеет вид:

Здесь n – количество вещества в молях, T – температура по абсолютной шкале (в кельвинах). Величина R называется универсальной газовой постоянной, которая была введена в это уравнение русским химиком Д. И. Менделеевым, поэтому записанное выражение также называют законом Клапейрона-Менделеева.

Из уравнения выше легко получить формулу давления газа:

Равенство говорит о том, что давление линейно возрастает с температурой при постоянном объеме и увеличивается по гиперболе с уменьшением объема при постоянной температуре. Эти зависимости отражены в законах Гей-Люссака и Бойля-Мариотта.

Если сравнить это выражение с записанной выше формулой, которая следует из положений МКТ, то можно установить связь между кинетической энергией одной частицы или всей системы и абсолютной температурой.

Давление в газовой смеси

Отвечая на вопрос о том, как найти давление газа и формулы, мы ничего не говорили о том, является ли газ чистым, или речь идет о газовой смеси. В случае формулы для P, которая следует из уравнения Клапейрона, нет никакой связи с химическим составом газа, в случае же выражения для P из МКТ эта связь присутствует (параметр m). Поэтому при использовании последней формулы для смеси газов становится непонятным, какую массу частиц выбирать.

Когда необходимо рассчитать давление смеси идеальных газов, следует поступать одним из двух способов:

  • Рассчитывать среднюю массу частиц m или, что предпочтительнее, среднее значение молярной массы M, исходя из атомных процентов каждого газа в смеси;
  • Воспользоваться законом Дальтона. Он гласит, что давление в системе равно сумме парциальных давлений всех ее компонентов.

Пример задачи

Известно, что средняя скорость молекул кислорода составляет 500 м/с. Необходимо определить давление в сосуде объемом 10 литров, в котором находится 2 моль молекул.

Ответ на задачу можно получить, если воспользоваться формулой для P из МКТ:

Здесь содержатся два неудобных для выполнения расчетов параметра – это m и N. Преобразуем формулу следующим образом:

Объем сосуда в кубических метрах равен 0,01 м 3 . Молярная масса молекулы кислорода M равна 0,032 кг/моль. Подставляя в формулу эти значения, а также величины скорости v и количества вещества n из условия задачи, приходим к ответу: P = 533333 Па, что соответствует давлению в 5,3 атмосферы.

Источник

Источник