Давление в сосуде измеряют

Измерение давления необходимо для управления технологическими процессами и обеспечения безопасности производства. Кроме того, этот параметр используется при косвенных измерениях других технологических параметров: уровня, расхода, температуры, плотности и так далее. В Международной системе единиц (СИ) за единицу давления принят Паскаль (Па).
В большинстве случаев первичные преобразователи давления имеют неэлектрический выходной сигнал в виде силы или перемещения и объединены в один блок с измерительным прибором. Если результаты измерений необходимо передавать на расстояние, то применяют промежуточное преобразование этого неэлектрического сигнала в унифицированный электрический или пневматический. При этом первичный и промежуточный преобразователи объединяют в один измерительный преобразователь.
В зависимости от измеряемой среды (ИС) — газ, пар или жидкость используются различные способы отбора давления. Имеются специфические особенности измерения агрессивных, вязких, высокотемпературных, низкотемпературных, «грязных» сред, в воздухопроводах, дымоходах, пылепроводах и т. д.
Для измерения давления используют манометры, вакуумметры, мановакуумметры, напоромеры, тягомеры, тягонапоромеры, датчики давления, дифманометры.
В большинстве приборов измеряемое давление преобразуется в деформацию упругих элементов, поэтому они называются деформационными.
Деформационные приборы широко применяют для измерения давления при ведении технологических процессов благодаря простоте устройства, удобству и безопасности в работе. Все деформационные приборы имеют в схеме какой-либо упругий элемент, который деформируется под действием измеряемого давления: трубчатую пружину (трубка Бурдона), мембрану или сильфон.
Также существуют грузопоршневые манометры, в которых ничего не деформруется.
Наибольшее применение получили приборы с трубчатой пружиной. Их выпускают в виде показывающих манометров и вакуумметров c максимальным пределом измерений. В таких приборах с изменением измеряемого давления р трубчатая пружина / изменяет свою кривизну. Её свободный конец через тягу поворачивает зубчатый сектор и находящуюся с ним в зацеплении шестерню. Вместе с шестерней поворачивается закрепленная на ней стрелка, перемещающаяся вдоль шкалы. Для дистанционной передачи показаний выпускают манометры с промежуточными преобразователями с токовым и пневматическим выходом (МП-Э, МП-П), а также с дифференциально-трансформаторными преобразователями (МЭД).
Промышленность выпускает также мембранные дифманометры с промежуточными преобразователями, имеющими унифицированные токовые или пневматические сигналы.
Для преобразования деформации мембраны в унифицированный токовый сигнал применяют также тензорезисторные промежуточные преобразователи, в которых сопротивление резистора изменяется при его растяжении или сжатии. В таких приборах тензорезистор укреплен на жесткой измерительной мембране. Деформация мембраны, пропорциональная приложенному давлению, приводит к деформации тензорезистора и изменению его сопротивления. Это сопротивление преобразуется измерительной схемой, включающей неуравновешенный мост, в выходной сигнал постоянного тока. Так как деформация жесткой мембраны мала, то применяют полупроводниковые кремниевые тензорезисторы, обладающие высокой чувствительностью.
В дифманометрах чувствительным элементом служит блок из двух неупругих мембран, соединенных между собой штоком. Смещение этого штока под действием перепада давлений приводит к изгибу рычага и деформации измерительной мембраны. Мембраны выполнены из коррозионно-стойкого материала, что позволяет использовать дифманометр для измерений в сильноагрессивных средах.
Для измерения давления агрессивных сред применяют датчики, снабженные защитной мембраной, изготовленной из коррозионно-стойкого материала. Измеряемое давление передается к измерительной мембране через силиконовое масло, которым заполнена внутренняя полость датчика.
Промышленные тензорезисторные преобразователи предназначены для преобразования давления, разрежения и разности давлений в пропорциональное значение выходного сигнала — постоянного тока.
Особенности эксплуатации приборов для измерения давления
При эксплуатации приборов, измеряющих давление, часто требуется защита их от агрессивного и теплового воздействия среды.
Если среда химически активна по отношению к материалу прибора, то его защиту производят с помощью разделительных сосудов или мембранных разделителей.
Разделительный сосуд заполняется жидкостью, инертной по отношению к материалу прибора, соединительных трубок и самого сосуда. Кроме того, разделительная жидкость не должна химически взаимодействовать с измеряемой средой или смешиваться с ней. В качестве разделительных жидкостей применяют водные растворы глицерина, этиленгликоль, технические масла и др.
В мембранном разделителе измеряемая среда отделяется от прибора мембраной с малой жесткостью из нержавеющей стали или фторопласта. Для передачи давления от мембраны к прибору полость между ними заполняют жидкостью.
Для предохранения прибора от действия высокой температуры среды применяют сифонные трубки.
Деформационные приборы требуют периодической поверки. В эксплуатационных условиях у них проверяют нулевую и рабочую точки шкалы. Для этого применяют трехходовые краны. При поверке нулевой точки прибор соединяют с атмосферой. Стрелка прибора должна вернуться к нулевой отметке. Поверку прибора в рабочей точке шкалы осуществляют по контрольному манометру, укрепляемому на боковом фланце. При пользовании краном необходимо строго соблюдать плавность включения и выключения прибора.
С помощью трехходового крана можно проводить также продувку соединительной линии.
Примечания[править | править код]
Литература[править | править код]
- Датчики теплофизических и механических параметров: Справочник в трех томах. Т.1/ Под общ. ред. Ю.Н. Коптева, М.:ИПРЖР, 1999 –548 с.
- Проектирование датчиков для измерения механических величин/ Под общ. ред. Е.П. Осадчего. – М.: Машиностроение. 1979. -480 с.
См. также[править | править код]
- Метрология
Источник
Анонимный вопрос
1 ноября 2018 · 1,9 K
Физик и лирик. Высшее образование – физико-математикое. Интересуюсь всем, что…
Единицами измерения давления являются: Па (Паскаль), Бар, атм (атмосферы), мм рт.ст. (миллиметры ртутного столба).
Если интересует измерение в кровеносных сосудах, то значение артериального кровяного давления человека (систолическое/диастолическое) измеряется в мм рт. ст., например, 110 и 70 мм рт. ст.
Почему атмосферное давление так влияет на состояние человека? И что, вообще, такое давление человека?
Сначала отвечу на второй вопрос. “Давлением” обычно называют системное артериальное давление. Те, кто в школе хорошо учил физику и неплохо биологию, могут задать вопрос: не изменяется ли оно при сердечных сокращениях, да и как кровь вообще движется по сосудам в таких условиях? Ответ: давление (давайте АД для простоты)- это усредненная по времени величина. Сердце, как насос, выталкивает из себя кровь в аорту и дальше по сосудам. Давление создается сокращением мышечного слоя сердца – миокарда. В норме в минуту сердце совершает 60-90 толчков, и средняя величина АД во всех отделах кровеносной системы большого круга кровообращения (это важный момент) составляет, допустим, 120 в период сокращения сердца – систолы, и 70 в период его расслабления – диастолы. Максимальное давление – в аорте, минимальное – в полых венах (меньше нуля).
Почему ваше давление – важный показатель? Это один из основных и легко измеряемых параметров сердечно-сосудистой системы, а смертность от заболеваний этой системы стабильно держит 2-3 место в большинстве стран мира. Если бы каждый человек замерял АД раз в неделю, смертность бы очень снизилась. У кого-то в Африке нет техсредств, у кого-то нет желания. На самом деле нужно уметь правильно измерять АД, чтобы получить точные цифры. Но пускай даже так, люди вообще этого не делают. Так что же происходит, когда давление слишком высокое или низкое? Давайте разбираться.
Изменения давления, очевидно, влияют на сосуды. Если АД слишком высокое, то и влияние не очень хорошее. Высокое АД – это или больше 140 систолическое, или больше 90 диастолическое (или, очевидно, и то и другое). В артериях развиваются деструктивные изменения, которые, даже если впоследствии понизить давление препаратами, будут способствовать его повышению снова. Поэтому очень часто гипертоники (люди с повышенным АД) сидят на таблетках всю жизнь. Может показаться пугающим, но мне как раз не повезло быть одной из них и на самом деле ежедневный прием лекарств не напрягает. Не так напрягает, как нехилый шанс инсульта в старости. С инфарктом миокарда связь не так однозначна, но тут тоже риск вырастает. АД отражает состояние всей сердечно-сосудистой системы, но суть инсульта и инфаркта миокарда – двух самых грозных осложнений гипертонии – в местных изменениях. Вам необязательно знать все подробности – они очень сложны – но вкратце расскажу: курение – бросить однозначно, алкоголь – лучше бросить, физ.активность – желательно, стресс – долой. Атмосферное давление вызывает некоторые изменения АД у некоторых людей, но этим можно пренебречь в общей статистике. В нашей стране любят ставить таким пациентам ВСД, что, однако, ничего не объясняет и не решает проблему. На самом деле причина часто в ежедневном стрессе и уже существующих других заболеваниях.
Прочитать ещё 1 ответ
Объясните чайнику: если до Большого взрыва Вселенная была бесконечно мала, то как называлось то пространство, которое ее окружало?
PhD, senior scientist AI, неандерталец
Разум цепляется за привычное. Например, мы привыкли, что все тела падают вниз. Привыкли настолько, что в Англии, на родине Ньютона, еще в девятнадцатом веке огромной общественной популярностью пользовалась книга, в которой «доказывалось», что Земля — плоская, ведь иначе мы бы с нее упали. Раз она плоская, у нее должен быть край. Однако, путешествие Магеллана показало — если плыть все время на запад, то снова приплывешь в Европу, только уже с востока. Итак, Земля — шар, а с тем, что люди на другой стороне ходят «вверх ногами», придется смириться, хоть это и противоречит «здравому смыслу».
Ну, «здравый смысл» с тех пор кое-как примирился с законом всемирного тяготения, но теперь есть новая задача — понять, как Вселенная может быть ограниченной в объеме и при этом не иметь «краев» и чего-то «вне». Что ж, лучшая аналогия — это старые игры, где, выходя за конец экрана, какой-нибудь пэкмен, или диггер, или змейка, или Марио оказывались с противоположного. Для них, таким образом, края экрана не существовало.
Ограниченная по объему трехмерная вселенная — это нечто подобное. Представьте себе: вы находитесь в комнате, у которой как будто две двери в противоположных стенах. Вы открываете дверь и видите такую же комнату и себя со спины, открывающего дверь в следующей стене, за которой видна еще одна комната и еще один вы, и так далее. И за спиной у вас скрипнула дверь — на самом деле та же самая, потому что дверь — одна. И происходит это не потому, что существует бесконечное число вас, а потому что вселенная зациклена сама на себя — просто свет делает несколько кругов по этой вселенной прежде чем достичь ваших глаз. Если в этой нашей вселенной сделать скорость света, к примеру, один метр в секунду, то вы будете видеть себя в другой комнате уже с задержкой в несколько секунд. Теперь добавим еще двери, точнее, одну дверь двум другим стенам комнаты. А теперь — люк в полу и потолке с теми же эффектами.
А теперь — уберем стены, пол и потолок! И увидим многократные копии себя же через равные промежутки пространства. Хотя на самом деле эти копии настолько же реальны, насколько ваше отражение в зеркале — то, что мы видим в зеркале отраженную комнату, отнюдь не значит, что есть еще одна комната.
Поздравляю! Вот вы и очутились во вселенной с ограниченным объемом, но без краев и чего-то «вне». Это лишь один из вариантов, тороидальный. В сферической вселенной вы бы видели размытый образ себя во всем поле зрения — причем, считая, что угол обзора у нас 180°, вы бы видели в упор свой затылок, а в нижнем краю зрения — макушку, в верхнем — подошвы обуви, а по бокам — уши. Но это уже мелочи.
Почему так не происходит в нашей Вселенной? Дело в том, что она расширяется, и достаточно удаленные ее участки улетают от нас быстрее скорости света. В общем, даже если вселенная конечна, свет, испущенный нами или отраженный от нас, просто не имеет возможности к нам возвратиться. Это — большой вариант комнаты.
А теперь рассмотрим противоположный сценарий. Будем сжимать нашу комнату без стен. Вот нам уже в ней неуютно. Вот вы в нее уже не помещаетесь, вас прижимает носом к своему собственному затылку, который вы видите перед собой, и вы чувствуете затылком, как к нему прижало ваш же нос. Вот комната становится размером с атомное ядро… И вот мы приходим в состояние «сразу» после Большого Взрыва. «Сразу» заключено в кавычки, потому что время — это тоже лишь измерение пространства. Так что нет не только «вне» вселенной, но и «до» Большого Взрыва. Ну, то есть, в одной из моделей.
Вот, как-то так.
Прочитать ещё 67 ответов
Источник
Характеристикой давления является сила, которая равномерно воздействует на единицу площади поверхности тела. Эта сила оказывает влияние на различные технологические процессы. Давление измеряется в паскалях. Один паскаль равен давлению силы в один ньютон на площадь поверхности в 1 м2. Применяют приборы для измерения давления.
Виды давления
- Атмосферное давление образуется атмосферой Земли.
- Вакуумметрическое давление – это давление, не достигающее величины атмосферного давления.
- Избыточное давление – это величина давления, превосходящая значение атмосферного давления.
- Абсолютное давление определяется от величины абсолютного нуля (вакуума).
Виды и работа
Приборы, измеряющие давление, называются манометрами. В технике чаще всего приходится определять избыточное давление. Значительный интервал измеряемых величин давлений, особые условия измерения их во всевозможных технологических процессах обуславливает разнообразие видов манометров, которые имеют свои различия по конструктивным особенностям и по принципу работы. Рассмотрим основные из применяемых видов.
Барометры
Барометром называют прибор, измеряющий давление воздуха в атмосфере. Существует несколько видов барометров.
Ртутный барометр действует на основе перемещения ртути в трубке по определенной шкале.
Жидкостный барометр работает по принципу уравновешивания жидкости давлением атмосферы.
Барометр-анероид работает на изменении размеров металлической герметичной коробки с вакуумом внутри, под действием давления атмосферы.
Электронный барометр является более современным прибором. Он преобразовывает параметры обычного анероида в цифровой сигнал, отображающийся на жидкокристаллическом дисплее.
Жидкостные манометры
В этих моделях приборов давление определяется высотой столба жидкости, которое выравнивает это давление. Жидкостные приборы для измерения давления чаще всего выполняют в виде 2-х стеклянных сосудов, соединенных между собой, в которые залита жидкость (вода, ртуть, спирт).
Рис-1
Один конец емкости соединен с измеряемой средой, а второй открыт. Под давлением среды жидкость перетекает из одного сосуда в другой до выравнивания давления. Разность уровней жидкости определяет избыточное давление. Такими приборами замеряют разность давлений и разрежение.
На рисунке 1а изображен 2-х трубный манометр, измеряющий вакуум, избыточное и атмосферное давление. Недостатком является значительная погрешность измерения давлений, имеющих пульсацию. Для таких случаев применяют 1-трубные манометры (рисунок 1б). В них один край сосуда большего размера. Чашка соединена с измеряемой полостью, давление которой передвигает жидкость в узкую часть сосуда.
При замере берется во внимание только высота жидкости в узком колене, так как жидкость изменяет свой уровень в чашке незначительно, и этим пренебрегают. Чтобы произвести замеры малых избыточных давлений используют 1-трубные микроманометры с трубкой, наклоненной под углом (рисунок 1в). Чем больше наклон трубки, тем точнее показания прибора, вследствие увеличения длины уровня жидкости.
Особой группой считаются приборы для измерения давления, в которых движение жидкости в емкости действует на чувствительный элемент – поплавок (1) на рисунке 2а, кольцо (3) (рисунок 2в) или колокол (2) (рисунок 2б), которые связаны со стрелкой, являющейся указателем давления.
Преимуществами таких приборов является дистанционная передача и их регистрация значений.
Деформационные манометры
В технической области приобрели популярность деформационные приборы для измерения давления. Их принцип работы заключается в деформации чувствительного элемента. Эта деформация появляется под действием давления. Упругий компонент связан со считывающим устройством, имеющим шкалу с градуировкой единицами давления.
Деформационные манометры делятся на:
- Пружинные.
- Сильфонные.
- Мембранные.
Рис-3
Пружинные манометры
В этих приборах чувствительным элементом является пружина, соединенная со стрелкой передаточным механизмом. Давление воздействует внутри трубки, сечение старается принять круглую форму, пружина (1) пытается раскручиваться, в результате стрелка передвигается по шкале (рисунок 3а).
Мембранные манометры
В этих приборах упругим компонентом является мембрана (2). Она прогибается под давлением, и воздействует на стрелку с помощью передаточного механизма. Мембрану изготавливают по типу коробки (3). Это увеличивает точность и чувствительность прибора из-за большего прогиба при равном давлении (рисунок 3б).
Сильфонные манометры
В приборах сильфонного типа (рисунок 3в) упругим элементом является сильфон (4), который выполнен в виде гофрированной тонкостенной трубки. В эту трубку воздействует давление. При этом сильфон увеличивается в длину и с помощью механизма передачи передвигает стрелку манометра.
Сильфонные и мембранные виды манометров используют для замеров незначительных избыточных давлений и вакуума, так как упругий компонент имеет небольшую жесткость. При применении таких приборов для измерения вакуума они получили название тягомеров. Прибор, измеряющий избыточное давление, является напоромером, для измерения избыточного давления и вакуума служат тягонапоромеры.
Приборы для измерения давления деформационного типа имеют преимущество в сравнении с жидкостными моделями. Они позволяют производить передачу показаний дистанционно и записывать их в автоматическом режиме.
Это происходит вследствие преобразования деформации упругого компонента в выходной сигнал электрического тока. Сигнал фиксируется приборами измерений, которые имеют градуировку по единицам давления. Такие приборы имеют название деформационно-электрических манометров. Широкое использование нашли тензометрические, дифференциально-трансформаторные и магнитомодуляционные преобразователи.
Дифференциально-трансформаторный преобразователь
Рис-4
Принципом работы такого преобразователя является изменение силы тока индукции в зависимости от величины давления.
Приборы с наличием такого преобразователя имеют трубчатую пружину (1), которая передвигает стальной сердечник (2) трансформатора, а не стрелку. В итоге изменяется сила индукционного тока, подающегося через усилитель (4) на измерительный прибор (3).
Магнитомодуляционные приборы для измерения давления
В таких приборах усилие преобразуется в сигнал электрического тока вследствие передвижения магнита, связанного с упругим компонентом. При движении магнит воздействует на магнитомодуляционный преобразователь.
Электрический сигнал усиливается в полупроводниковом усилителе и поступает на вторичные электроизмерительные устройства.
Тензометрические манометры
Преобразователи на основе тензометрического датчика работают на основе зависимости электрического сопротивления тензорезистора от величины деформации.
Рис-5
Тензодатчики (1) (рисунок 5) фиксируются на упругом элементе прибора. Электрический сигнал на выходе возникает вследствие изменения сопротивления тензорезистора, и фиксируется вторичными устройствами измерения.
Электроконтактные манометры
В схемах сигнализации, системах авторегулирования технологических процессов, приборах тепловой защиты популярными стали электроконтактные манометры. На рисунке изображена схема и вид прибора.
Рис-6
Упругим компонентом в приборе выступает трубчатая одновитковая пружина. Контакты (1) и (2) выполняются для любых отметок шкалы прибора, вращая винт в головке (3), которая находится на внешней стороне стекла.
При уменьшении давления и достижении его нижнего предела, стрелка (4) с помощью контакта (5) включит цепь лампы соответствующего цвета. При возрастании давления до верхнего предела, который задан контактом (2), стрелка замыкает цепь красной лампы контактом (5).
Классы точности
Измерительные манометры разделяют на два класса:
- Образцовые.
- Рабочие.
Образцовые приборы определяют погрешность показаний рабочих приборов, которые участвуют в технологии производства продукции.
Класс точности взаимосвязан с допустимой погрешностью, которая является величиной отклонения манометра от действительных величин. Точность прибора определяется процентным соотношением от максимально допустимой погрешности к номинальному значению. Чем больше процент, тем меньше точность прибора.
Образцовые манометры имеют точность намного выше рабочих моделей, так как они служат для оценки соответствия показаний рабочих моделей приборов. Образцовые манометры применяются в основном в условиях лаборатории, поэтому они изготавливаются без дополнительной защиты от внешней среды.
Пружинные манометры имеют 3 класса точности: 0,16, 0,25 и 0,4. Рабочие модели манометров имеют такие классы точности от 0,5 до 4.
Применение манометров
Приборы для измерения давления наиболее популярные приборы в различных отраслях промышленности при работе с жидким или газообразным сырьем.
Перечислим основные места использования приборы для измерения давления в:
- Газо- и нефтедобывающей промышленности.
- Теплотехнике для контроля давления энергоносителя в трубопроводах.
- Авиационной отрасли промышленности, автомобилестроении, сервисном обслуживании самолетов и автомобилей.
- Машиностроительной отрасли при применении гидромеханических и гидродинамических узлов.
- Медицинских устройствах и приборах.
- Железнодорожном оборудовании и транспорте.
- Химической отрасли промышленности для определения давления веществ в технологических процессах.
- Местах с применением пневматических механизмов и агрегатов.
Похожие темы:
- Датчики давления. Виды и работа. Как выбрать и применение
- Тензометрические датчики (Тензодатчики). Виды и работа. Устройство
Источник