Давление жидкости на дно и стенки сосуда закон паскаля

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 21 июня 2020; проверки требуют 4 правки.

Гiдростатическое давление — давление столба жидкости над условным уровнем.

Благодаря полной удобоподвижности своих частиц капельные и газообразные жидкости, находясь в покое, передают давление одинаково во все стороны; давление это действует на всякую часть плоскости, ограничивающей жидкость, с силой Р, пропорциональной величине w этой поверхности, и направленной по нормали к ней. Отношение P/w, то есть давление р на поверхность, равную единице, называется гидростатическим давлением[1].

Простое уравнение P = pw может действительно служить для точного вычисления давления на данную поверхность сосуда, газов и капельных жидкостей, находящихся при таких условиях, что часть давления, зависящая от собственного веса жидкостей, ничтожно мала по сравнению с давлением, передаваемым им извне. Сюда относятся почти все случаи давлений газов и расчеты давлений воды в гидравлических прессах и аккумуляторах[1].

Вычисление[править | править код]

В каждой жидкости существует давление, обусловленное её собственным весом ; так как , то ; учтём, что и получим формулу .

Плотность жидкости зависит от температуры. Для очень точных вычислений плотность следует рассчитывать по специальной формуле. Давление на данной глубине одинаково во всех направлениях. Суммарное давление, обусловленное весом столба жидкости и давлением поршня, называют гидростатическим давлением[2].

Для бытовых расчетов можно принять, что с ростом глубины на каждые 10 метров пресной воды, давление увеличивается на 0,1 МПа (1 атмосфера).

История открытия[править | править код]

Это основное свойство жидкостей было открыто и проверено на опыте Блезом Паскалем в 1653 г., хотя несколько ранее оно было уже известно Стевину[источник не указан 1189 дней].

Единица измерения[править | править код]

Единицей измерения давления в международной системе единиц является Паскаль. На практике гидростатическое давление часто измеряют в атмосферах, принимая за 1 атмосферу давление в 76 см ртутного столба, при температуре 0 °C при нормальном ускорении свободного падения 9,80665 м/с².

На основании гидростатического парадокса можно гидростатическое давление измерять также высотой столба ртути или воды, способного производить то же давление на единицу поверхности.

Свойства[править | править код]

Гидростатический парадокс[править | править код]

Гидростатическое давление на тело не зависит от направления.

Вычисление немного усложняется, когда надо узнать давление, производимое на не горизонтальную часть стенки сосуда вследствие тяжести налитой на него жидкости. Здесь причиной давления становится вес столбов жидкости, имеющих основанием каждую бесконечно малую частицу рассматриваемой поверхности, а высотой вертикальное расстояние от каждой такой частицы до свободной поверхности жидкости. Расстояния эти будут постоянны только для горизонтальных частей стенок и для бесконечно узких горизонтальных полосок, взятых на боковых стенках; к ним одним можно прилагать непосредственно формулу гидростатического давления. Для боковых же стенок надо суммировать, по правилам интегрального исчисления, давления на все горизонтальные элементы их поверхности; в результате получается общее правило: давление тяжелой жидкости на всякую плоскую стенку равняется весу столба этой жидкости, имеющему основанием площадь этой стенки, а высотой вертикальное расстояние её центра тяжести от свободной поверхности жидкости. Поэтому давление на дно сосуда будет зависеть только от величины поверхности этого дна, от высоты уровня жидкости в него налитой и от её плотности, от формы же сосуда оно зависеть не будет. Это положение известно под именем «гидростатического парадокса» и было разъяснено ещё Паскалем.

Действительно, оно кажется на первый взгляд неверным, потому что в сосудах с равными доньями, наполненными до равной высоты одной и той же жидкостью, вес её будет очень различный, если формы различны. Но вычисление и опыт (сделанный в первый раз Паскалем) показывают, что в сосуде, расширяющемся кверху, вес излишка жидкости поддерживается боковыми стенками и передается весам через их посредство, не действуя на дно, а в сосуде, суживающемся кверху, гидростатическое давление на боковые стенки действует снизу вверх и облегчает весы ровно на столько, сколько весило бы недостающее количество жидкости.

Закон Паскаля[править | править код]

Чем глубже, тем выше давление. (левая часть графика)

Гидростатическое давление жидкости с постоянной плотностью в однородном поле тяжести ( = несжимаемая жидкость) подчиняется закону Паскаля:

где:

 — плотность [для пресной воды: ρ ≈ 1000 кг/м³]
 — ускорение свободного падения [для Европы: g ≈ 9,81 м/с²]
 — высота (здесь: жидкости) [м]
 — [Па]

⇒ = гидростатическое давление (p) зависит от высоты (h) жидкости.[4]

Примечания[править | править код]

Литература[править | править код]

  • В. В. Лермантов. Гидростатическое давление // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1893. — Т. VIIIa. — С. 655—656.

Источник

Закон Паскаля о давлении был открыт в XVII веке французским ученым Блезом Паскалем, в честь которого и получил свое название. Формулировка этого закона, его значение и применение в повседневной жизни подробно рассматривается в этой статье.

Давление жидкости на дно и стенки сосуда закон паскаля

Суть закона Паскаля

Закон Паскаля – давление, которое оказывается на жидкость или газ, передается в каждую точку жидкости или газа без изменений. То есть, передача давления во всех направлениях происходит одинаково.

Данный закон действителен только для жидкостей и газов. Дело в том, что молекулы жидких и газообразных веществ под давлением ведут себя совсем не так, как молекулы твердых тел. Их движение отличается друг от друга. Если молекулы жидкости и газа движутся относительно свободно, то молекулы твердых тел такой свободой не обладают. Они лишь слегка колеблются, немного отклоняясь от исходного положения. И благодаря относительно свободному передвижению молекулы газа и жидкости оказывают давление во всех направлениях.

Читайте также:  Какая есть трава для сосудов

Формула и основная величина закона Паскаля

Основной величиной в законе Паскаля является давление. Оно измеряется в Паскалях (Па). Давление (P) – отношение силы (F), которая действует на поверхность перпендикулярно, к ее площади (S). Следовательно: P=F/S.

Формулу закона Паскаля можно прочитать следующим образом: Паскаль равен силе в 1Н, которая действует на поверхность площадью 1 кв. метр – 1Па=1Н/кв.м

Особенности давления газа и жидкости

Находясь в закрытом сосуде, мельчайшие частицы жидкостей и газов – молекулы, ударяются о стенки сосуда. Так как эти частицы подвижны, то из места с более высоким давлением они способны передвигаться в место с низким давлением, т.е. в течение короткого времени оно становиться равномерным по всей поверхности занимаемого сосуда.

Для лучшего понимания закона можно провести опыт. Возьмем воздушный шарик и наполним его водой. Потом тонкой иголкой проделаем несколько отверстий. Результат не заставит себя ждать. Из дырочек начнет вытекать вода, а если шарик сжать (т.е. оказать давление), то напор каждой струи увеличиться в насколько раз, независимо оттого, в какой именно точке было оказано давление.

Этот же эксперимент можно провести с шаром Паскаля. Это круглый шар с имеющимися отверстиями с присоединенным к нему поршнем.

Давление жидкости на дно и стенки сосуда закон паскаля

Рис. 1. Блез Паскаль

Определение давления жидкости на дно сосуда происходит по формуле:

p=P/S=gpSh/s

или

p=gρh

Где:

  • g – ускорение свободного падения,
  • ρ – плотность жидкости (кг/куб.м)
  • h – глубина (высота столба жидкости)
  • p – давление в паскалях.

Под водой давление зависит только от глубины и плотности жидкости. То есть в море или океане плотность будет больше при большем погружении.

Давление жидкости на дно и стенки сосуда закон паскаля

Рис. 2. Давление на разных глубинах

Применение закона на практике

Многие законы физики, в том числе и закон Паскаля, применяются на практике. Например, обычный водопровод не мог бы функционировать, если бы в нем не действовал данный закон. Ведь молекулы воды в трубе движутся хаотично и относительно свободно, а значит и давление, оказываемое на стенки водопровода везде одинаковое. Работа гидравлического пресса также основана на законах движения и равновесия жидкостей. Пресс представляет собой два соединенных между собой цилиндра с поршнями. Пространство под поршнями заполняют маслом. Если на меньший поршень площадью S2, действует сила F2, то на больший поршень площадью S1, действует сила F1.

Давление жидкости на дно и стенки сосуда закон паскаля

Рис. 3. Гидравлический пресс

Также можно провести эксперимент с сырым и вареным яйцом. Если острым предметом, например, длинным гвоздем, проткнуть сначала одно, а потом другое, то результат будет разным. Крутое яйцо гвоздь пройдет насквозь, а сырое разлетится вдребезги, так как для сырого яйца будет действовать закон Паскаля, а для крутого нет.

Закон Паскаля гласит, что давление во всех точках покоящейся жидкости одинаково, то есть: F1/S1=F2/S2, откуда F2/F1=S2/S1.

Сила F2 во столько же раз больше силы F1, во сколько раз площадь большего поршня больше площади малого.

Что мы узнали?

Основной величиной закона Паскаля, который изучают в 7 классе, является давление, которое измеряется в Паскалях. В отличие от твердых тел газообразные и жидкие вещества давят на стенки сосуда, в котором они находятся одинаково. Причиной этому молекулы, которые движутся свободно и хаотично в разных направлениях.

Тест по теме

Доска почёта

Чтобы попасть сюда – пройдите тест.

    

  • алена рехтина

    10/10

  • Никита Жарлыкин

    10/10

  • Станислав Шалаев

    10/10

  • Мариан Хоук

    10/10

  • Анатолий Мирчук

    10/10

  • Тимур Маллалиев

    7/10

  • Константин Костин

    8/10

  • Мадина Магомедова

    7/10

  • Михаил Кузин

    9/10

  • Катя Пу

    10/10

Оценка доклада

Средняя оценка: 4.6. Всего получено оценок: 1069.

Источник

Гидростатическое давление – это давление, производимое на жидкость силой тяжести.

Гидростатикой называется раздел гидравлики, в котором изучаются законы равновесия жидкостей и рассматривается практическое приложение этих законов.

Для того, чтобы понять гидростатику необходимо определиться в некоторых понятиях и определениях.

В этой статье мы подготовили для Вас, всю необходимую информацию о гидростатическом давлении, начиная от закона Паскаля и определения формулы гидростатического давления и до свойств давления и применения законов гидростатики в повседневной жизни.

Закон Паскаля для гидростатики.

В 1653 году французским ученым Б. Паскалем был открыт закон, который принято называть основным законом гидростатики.

Звучит он так:

Давление на поверхность жидкости, произведенное внешними силами, передается в жидкости одинаково во всех направлениях.

Закон Паскаля легко понимается если взглянуть на молекулярное строение вещества. В жидкостях и газах молекулы обладают относительной свободой, они способны перемещаться друг относительно друга, в отличии от твердых тел. В твердых телах молекулы собраны в кристаллические решетки.

Относительная свобода, которой обладают молекулы жидкостей и газов, позволяет передавать давление производимое на жидкость или газ не только в направлении действия силы, но и во всех других направлениях.

Закон Паскаля для гидростатики нашел широкое распространение в промышленности. На этом законе основана работа гидроавтоматики, управляющей станками с ЧПУ, автомобилями и самолетами и многих других гидравлических машин.

Читайте также:  Два сосуда 5 и 7 литров налить 6 литров

Определение и формула гидростатического давления

Из описанного выше закона Паскаля вытекает, что:

Величина гидростатического давления не зависит от формы сосуда, в котором находится жидкость и определяется произведением

P = ρgh , где

ρ – плотность жидкости

g – ускорение свободного падения

h – глубина, на которой определяется давление.

Для иллюстрации этой формулы посмотрим на 3 сосуда разной формы.

Во всех трёх случаях давление жидкости на дно сосуда одинаково.

Полное давление жидкости в сосуде равно

P = P0 + ρgh, где

P0 – давление на поверхности жидкости. В большинстве случаев принимается равным атмосферному.

Сила гидростатического давления

Выделим в жидкости, находящейся в равновесии, некоторый объем, затем рассечем его произвольной плоскостью АВ на две части и мысленно отбросим одну из этих частей, например верхнюю. При этом мы должны приложить к плоскости АВ силы, действие которых будет эквивалентно действию отброшенной верхней части объема на оставшуюся нижнюю его часть.

Рассмотрим в плоскости сечения АВ замкнутый контур площадью ΔF, включающий в себя некоторую произвольную точку a. Пусть на эту площадь воздействует сила ΔP.

Тогда гидростатическое давление формула которого выглядит как

Рср = ΔP / ΔF

представлет собой силу, действующую на единицу площади, будет называться средним гидростатическим давлением или средним напряжением гидростатического давления по площади ΔF.

Истинное давление в разных точках этой площади может быть разным: в одних точках оно может быть больше, в других – меньше среднего гидростатического давления. Очевидно, что в общем случае среднее давление Рср будет тем меньше отличаться от истинного давления в точке а, чем меньше будет площадь ΔF, и в пределе среднее давление совпадет с истинным давлением в точке а.

Для жидкостей, находящихся в равновесии, гидростатическое давление жидкости аналогично напряжению сжатия в твердых телах.

Единицей измерения давления в системе СИ является ньютон на квадратный метр (Н/м2) – её называют паскалем (Па). Поскольку величина паскаля очень мала, часто применяют укрупненные единицы:

килоньютон на квадратный метр – 1кН/м2 = 1*103 Н/м2

меганьютон на квадратный метр – 1МН/м2 = 1*106 Н/м2

Давление равное 1*105 Н/м2 называется баром (бар).

В физической системе единицей намерения давления является дина на квадратный сантиметр (дина/м2), в технической системе – килограмм-сила на квадратный метр (кгс/м2). Практически давление жидкости обычно измеряют в кгс/см2, а давление равное 1 кгс/см2 называется технической атмосферой (ат).

Между всеми этими единицами существует следующее соотношение:

1ат = 1 кгс/см2 = 0,98 бар = 0,98 * 105 Па = 0,98 * 106дин = 104 кгс/м2

Следует помнить что между технической атмосферой (ат) и атмосферой физической (Ат) существует разница. 1 Ат = 1,033 кгс/см2 и представляет собой нормальное давление на уровне моря. Атмосферное давление зависит от высоты расположения места над уровнем моря.

Измерение гидростатического давления

На практике применяют различные способы учета величины гидростатического давления. Если при определении гидростатического давления принимается во внимание и атмосферное давление, действующее на свободную поверхность жидкости, его называют полным или абсолютным. В этом случае величина давления обычно измеряется в технических атмосферах, называемых абсолютными (ата).

Часто при учете давления атмосферное давление на свободной поверхности не принимают во внимание, определяя так называемое избыточное гидростатическое давление, или манометрическое давление, т.е. давление сверх атмосферного.

Манометрическое давление определяют как разность между абсолютным давлением в жидкости и давлением атмосферным.

Рман = Рабс – Ратм

и измеряют также в технических атмосферах, называемых в этом случае избыточными.

Случается, что гидростатическое давление в жидкости оказывается меньше атмосферного. В этом случае говорят, что в жидкости имеется вакуум. Величина вакуума равняется разнице между атмосферным и и абсолютным давлением в жидкости

Рвак = Ратм – Рабс

и измеряется в пределах от нуля до атмосферы.

Свойства гидростатического давления

Гидростатическое давление воды обладает двумя основными свойствами:
  Оно направлено по внутренней нормали к площади, на которую действует;
  Величина давления в данной точке не зависит от направления (т.е. от ориентированности в пространстве площадки, на которой находится точка).

Первое свойство является простым следствием того положения, что в покоящейся жидкости отсутствуют касательные и растягивающие усилия.

Предположим, что гидростатическое давление направлено не по нормали, т.е. не перпендикулярно, а под некоторым углом к площадке. Тогда его можно разложить на две составляющие – нормальную и касательную. Наличие касательной составляющей из-за отсутствия в покоящейся жидкости сил сопротивления сдвигающим усилиям неизбежно привело бы к движению жидкости вдоль площадки, т.е. нарушило бы её равновесие.

Поэтому единственным возможным направлением гидростатического давления является его направление по нормали к площадке.

Если предположить что гидростатическое давление направлено не по внутренней, а по внешней нормали, т.е. не внутрь рассматриваемого объекта а наружу от него, то вследствие того, что жидкость не оказывает сопротивления растягивающим усилиям – частицы жидкости пришли бы в движение и её равновесие было бы нарушено.

Следовательно, гидростатическое давление воды всегда направлено по внутренней нормали и представляет собой сжимающее давление.

Из этого же правило следует, что если измениться давление в какой-то точке, то на такую же величину измениться давление в любой другой точке этой жидкости. В этом заключается закон Паскаля, который формулируется следующим образом: Давление производимое на жидкость, передается внутри жидкости во все стороны с одинаковой силой.

Читайте также:  Сосуды точки на коже

На применение этого закона основываются действие машин, работающих под гидростатическим давлением.

Ещё одним фактором влияющим на величину давления является вязкость жидкости, которой до недавнего времени приято было пренебрегать. С появлением агрегатов работающих на высоком давлении вязкость пришлось так же учитывать. Оказалось, что при изменении давления, вязкость некоторых жидкостей, таких как масла, может изменяться в несколько раз. А это уже определяет возможность использовать такие жидкости в качестве рабочей среды.

Вместе со статьей “Гидростатическое давление: определение, формула и свойства.” читают:

Источник

Ещё один фундаментальный закон физики, который изучается в школе и обязателен для усвоения всеми нами – это закон Паскаля.

Закон Паскаля не особенно сложен для восприятия и если сопоставить его с теми же законами Ньютона или законом Ома, то разобраться в нем проще. Но всё равно мы рассмотрим его детально и осмыслим :)! Ведь сталкиваемся мы с работой этого закона повсеместно, хотя, конечно же, совершенно не задумываемся об этом.

Где мы можем встретить закон Паскаля?

Наверняка многие ездят на автобусах или личных автомобилях, а там используются гидравлические тормозные системы. Без этих систем не получится выполнить эффективное торможение.

Ведь классические механические тормоза не всегда способны справиться с большими нагрузками. Если удержать автомобиль, массой 2 т ещё можно с помощью простой педальки с механической тягой, то остановить грузовик массой 30 т будет совсем не просто!

Получается, гидравлическая тормозная система способна увеличить силу, приложенную к тормозному диску?

Да, именно так! Это, как раз -таки, и есть работа закона Паскаля.

Аналогичный физический эффект используется во всех гидравлических усилителях. Это могут быть гидроножницы, гидравлический пресс и многие другие варианты применения в машинах и механизмах. Главное преимущество – возможность увеличить силу на выходе. Как же это происходит? Причем тут вообще закон Паскаля? А давайте вспомним, как он звучит.

Формулировка закона Паскаля

Давление на жидкость или газ, передается в любую точку без изменений во всех направлениях.

Так закон Паскаля записан в учебнике. Вроде бы всё и понятно. А вроде бы и опять какая-то каша. Но самая большая проблема в осмыслении появляется когда мы видим вот такую формулу.

Это запись закона Паскаля. Но тут совсем ничего не понятно :)…

Для начала, нужно понимать, что такое давление.

Давление – это некоторая физическая величина, которая описывается, как отношение силы к площади, на которую она воздействует.

Представить это довольно легко.

Понятно, что некоторую силу можно оказывать на некоторое тело. Для этого тело должно воздействовать на другое тело. Очевидно, что если сила оказывает воздействие широкой точкой приложения, то оказываемое давление будет меньше.

Представьте, что идёте по снегу на снегоступах или на кониках. Коньки проваливаются в глубокий снег, а снегоступы нет. Почему?

Площадь снегоступа больше, чем площадь лезвия конька.

Значит, снегоступ оказывает меньшее давление, а толща снега способна такое давление выдержать, что уже нельзя сказать про давление, оказываемое на снег коньками. Или, сила в случае снегоступа распределена по всему снегоступу, а в случае конька- по всему коньку.

Очевидно, что это разные величины. Также очевидно, что чем больше площадь, тем слабее воздействие. Вот эту характеристику и назвали давлением. В жидкости или газе ситуация аналогичная. Те же самые механические воздействия.

Теперь вернемся к формулировке закона Паскаля. Там есть фраза “передается в любую точку без изменений во всех направлениях.”

Именно это есть ключ к пониманию закона Паскаля. Именно это явление в результате многочисленных опытов и обнаружил ученый.

Самая простая демонстрация явления – шар Паскаля.

Это устройство было изготовлено специально для демонстрации равномерного распределения давления внутри жидкости или газа без изменений.

Надавливаешь на ручку и струи жидкости вырываются из каждого отверстия с одинаковой силой вне зависимости от расположения отверстия на шарике. Это может означать только одно. Что точка приложения тут роли не играет, а после оказания воздействия усилие это одинаково расходится во все отверстия.

Но если это так, то и в подобной системе обозначенный принцип будет выполняться

Это, кстати говоря, принципиальная схема простого гидравлического пресса.

Если записать, что давление одинаково, то получится нечто типа p1=p2=const

Само p, или давление, как мы помним равно F/S. Т.е. сила, приложенная к жидкости, разделить на площадь её приложения. А внутри у нас давление одинаково. Ведь Паскаль так сказал и доказал 🙂

Вот и выходит, что p1=p2 и F1/S1 = F2/S2. Нашли то самое неясное выражение, которое всех ставит в тупик. Оно следует из равенства давлений.

Применение закона Паскаля

Ну вот и получили мы некоторый гидравлический рычаг, который может дать выигрыш в силе. Эта схема используется во всех гидравлических системах для усиления нажатия. Хитрая организация гидравлических каналов тут роли не играет. Зато играет роль, что давление во все стороны одинаково распространяется.

Не забываем подписываться на канал и ставить нравится!

Источник