Давление жидкости на дно сосуда от высоты столба жидкости

Давление жидкости на дно сосуда от высоты столба жидкости thumbnail

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 21 июня 2020; проверки требуют 3 правки.

Гидростатическое давление — давление столба жидкости над условным уровнем.

Благодаря полной удобоподвижности своих частиц капельные и газообразные жидкости, находясь в покое, передают давление одинаково во все стороны; давление это действует на всякую часть плоскости, ограничивающей жидкость, с силой Р, пропорциональной величине w этой поверхности, и направленной по нормали к ней. Отношение P/w, то есть давление р на поверхность, равную единице, называется гидростатическим давлением[1].

Простое уравнение P = pw может действительно служить для точного вычисления давления на данную поверхность сосуда, газов и капельных жидкостей, находящихся при таких условиях, что часть давления, зависящая от собственного веса жидкостей, ничтожно мала по сравнению с давлением, передаваемым им извне. Сюда относятся почти все случаи давлений газов и расчеты давлений воды в гидравлических прессах и аккумуляторах[1].

Вычисление[править | править код]

В каждой жидкости существует давление, обусловленное её собственным весом ; так как , то ; учтём, что и получим формулу .

Плотность жидкости зависит от температуры. Для очень точных вычислений плотность следует рассчитывать по специальной формуле. Давление на данной глубине одинаково во всех направлениях. Суммарное давление, обусловленное весом столба жидкости и давлением поршня, называют гидростатическим давлением[2].

Для бытовых расчетов можно принять, что с ростом глубины на каждые 10 метров пресной воды, давление увеличивается на 0,1 МПа (1 атмосфера).

История открытия[править | править код]

Это основное свойство жидкостей было открыто и проверено на опыте Блезом Паскалем в 1653 г., хотя несколько ранее оно было уже известно Стевину[источник не указан 1127 дней].

Единица измерения[править | править код]

Единицей измерения давления в международной системе единиц является Паскаль. На практике гидростатическое давление часто измеряют в атмосферах, принимая за 1 атмосферу давление в 76 см ртутного столба, при температуре 0 °C при нормальном ускорении свободного падения 9,80665 м/с².

На основании гидростатического парадокса можно гидростатическое давление измерять также высотой столба ртути или воды, способного производить то же давление на единицу поверхности.

Свойства[править | править код]

Гидростатический парадокс[править | править код]

Гидростатическое давление на тело не зависит от направления.

Вычисление немного усложняется, когда надо узнать давление, производимое на не горизонтальную часть стенки сосуда вследствие тяжести налитой на него жидкости. Здесь причиной давления становится вес столбов жидкости, имеющих основанием каждую бесконечно малую частицу рассматриваемой поверхности, а высотой вертикальное расстояние от каждой такой частицы до свободной поверхности жидкости. Расстояния эти будут постоянны только для горизонтальных частей стенок и для бесконечно узких горизонтальных полосок, взятых на боковых стенках; к ним одним можно прилагать непосредственно формулу гидростатического давления. Для боковых же стенок надо суммировать, по правилам интегрального исчисления, давления на все горизонтальные элементы их поверхности; в результате получается общее правило: давление тяжелой жидкости на всякую плоскую стенку равняется весу столба этой жидкости, имеющему основанием площадь этой стенки, а высотой вертикальное расстояние её центра тяжести от свободной поверхности жидкости. Поэтому давление на дно сосуда будет зависеть только от величины поверхности этого дна, от высоты уровня жидкости в него налитой и от её плотности, от формы же сосуда оно зависеть не будет. Это положение известно под именем «гидростатического парадокса» и было разъяснено ещё Паскалем.

Действительно, оно кажется на первый взгляд неверным, потому что в сосудах с равными доньями, наполненными до равной высоты одной и той же жидкостью, вес её будет очень различный, если формы различны. Но вычисление и опыт (сделанный в первый раз Паскалем) показывают, что в сосуде, расширяющемся кверху, вес излишка жидкости поддерживается боковыми стенками и передается весам через их посредство, не действуя на дно, а в сосуде, суживающемся кверху, гидростатическое давление на боковые стенки действует снизу вверх и облегчает весы ровно на столько, сколько весило бы недостающее количество жидкости.

Закон Паскаля[править | править код]

Чем глубже, тем выше давление. (левая часть графика)

Гидростатическое давление жидкости с постоянной плотностью в однородном поле тяжести ( = несжимаемая жидкость) подчиняется закону Паскаля:

где:

 — плотность [для пресной воды: ρ ≈ 1000 кг/м³]
 — ускорение свободного падения [для Европы: g ≈ 9,81 м/с²]
 — высота (здесь: жидкости) [м]
 — [Па]

⇒ = гидростатическое давление (p) зависит от высоты (h) жидкости.[4]

Примечания[править | править код]

Литература[править | править код]

  • В. В. Лермантов. Гидростатическое давление // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1893. — Т. VIIIa. — С. 655—656.

Источник

Æèäêîñòè (è ãàçû) ïåðåäàþò ïî âñåì íàïðàâëåíèÿì íå òîëüêî âíåøíåå äàâëåíèå, íî è òî äàâ­ëåíèå, êîòîðîå ñóùåñòâóåò âíóòðè íèõ áëàãîäàðÿ âåñó ñîáñòâåííûõ ÷àñòåé.

Äàâëåíèå, îêàçûâàåìîå ïîêîÿùåéñÿ æèäêîñòüþ, íàçûâàåòñÿ ãèäðîñòà­òè÷åñêèì.

Ïîëó÷èì ôîðìóëó äëÿ ðàñ÷åòà ãèäðîñòàòè÷åñêîãî äàâëåíèÿ æèäêîñòè íà ïðîèçâîëüíîé ãëóáèíå h (â îêðåñòíîñòè òî÷êè A íà ðèñóíêå).

Ñòàòèêà Äàâëåíèå ïîêîÿùåéñÿ æèäêîñòè íà äíî è ñòåíêè ñîñóäà ãèäðîñòàòè÷åñêîå äàâëåíèå

Ñèëà äàâëåíèÿ, äåéñòâóþùàÿ ñî ñòîðîíû âûøåëåæàùåãî óçêîãî ñòîëáà æèäêîñòè, ìîæåò áûòü âûðàæåíà äâóìÿ ñïîñîáàìè:

1) êàê ïðîèçâåäåíèå äàâëåíèÿ p â îñíîâàíèè ýòîãî ñòîëáà íà ïëîùàäü åãî ñå÷åíèÿ S:

2) êàê âåñ òîãî æå ñòîëáà æèäêîñòè, ò. å. ïðîèçâåäåíèå ìàññû m æèäêîñòè íà óñêîðåíèå ñâî­áîäíîãî ïàäåíèÿ:

F=mg.                                  (1.28)

Ìàññà æèäêîñòè ìîæåò áûòü âûðàæåíà ÷åðåç åå ïëîòíîñòü p è îáúåì V:

m = pV,                                  (1.29)

à îáúåì — ÷åðåç âûñîòó ñòîëáà è ïëîùàäü åãî ïîïåðå÷íîãî ñå÷åíèÿ:

V=Sh.                                     (1.30)

Читайте также:  116 приказ по сосудам

Ïîäñòàâëÿÿ â ôîðìóëó (1.28) çíà÷åíèå ìàññû èç (1.29) è îáúåìà èç (1.30), ïîëó÷èì:

F = pVg=pShg.                           (1.31)

Ïðèðàâíèâàÿ âûðàæåíèÿ (1.27) è (1.31) äëÿ ñèëû äàâëåíèÿ, ïîëó÷èì:

pS = pSkg.

Ðàçäåëèâ îáå ÷àñòè ïîñëåäíåãî ðàâåíñòâà íà ïëîùàäü S, íàéäåì äàâëåíèå æèäêîñòè íà ãëóáèíå h:

p = phg.

Ýòî è åñòü ôîðìóëà ãèäðîñòàòè÷åñêîãî äàâëåíèÿ.

Ãèäðîñòàòè÷åñêîå äàâëåíèå íà ëþáîé ãëóáèíå âíóòðè æèäêîñòè íå çàâèñèò îò ôîðìû ñîñóäà, â êîòîðîì íàõîäèòñÿ æèäêîñòü, è ðàâíî ïðîèçâåäåíèþ ïëîòíîñòè æèäêîñòè, óñêîðåíèÿ ñâîáîäíî­ãî ïàäåíèÿ è ãëóáèíû, íà êîòîðîé îïðåäåëÿåòñÿ äàâëåíèå.

Âàæíî åùå ðàç ïîä÷åðêíóòü, ÷òî ïî ôîðìóëå ãèäðîñòàòè÷åñêîãî äàâëåíèÿ ìîæíî ðàññ÷èòûâàòü äàâëåíèå æèäêîñòè, íàëèòîé â ñîñóä ëþáîé ôîðìû, â òîì ÷èñëå, äàâëåíèå íà ñòåíêè ñîñóäà, à òàê­æå äàâëåíèå â ëþáîé òî÷êå æèäêîñòè, íàïðàâëåííîå ñíèçó ââåðõ, ïîñêîëüêó äàâëåíèå íà îäíîé è òîé æå ãëóáèíå îäèíàêîâî ïî âñåì íàïðàâëåíèÿì.

Ãèäðîñòàòè÷åñêèé ïàðàäîêñ .

Ãèäðîñòàòè÷åñêèé ïàðàäîêñ — ÿâëåíèå, çàêëþ÷àþùååñÿ â òîì, ÷òî âåñ æèäêîñòè, íàëèòîé â ñîñóä, ìîæåò îòëè÷àòüñÿ îò ñèëû äàâëåíèÿ æèäêîñòè íà äíî ñîñóäà.

 äàííîì ñëó÷àå ïîä ñëîâîì «ïàðàäîêñ» ïîíèìàþò íåîæèäàííîå ÿâëåíèå, íå ñîîòâåòñòâóþùåå îáû÷íûì ïðåäñòàâëåíèÿì.

Òàê, â ðàñøèðÿþùèõñÿ êâåðõó ñîñóäàõ ñèëà äàâëåíèÿ íà äíî ìåíüøå âåñà æèäêîñòè, à â ñóæà­þùèõñÿ — áîëüøå.  öèëèíäðè÷åñêîì ñîñóäå îáå ñèëû îäèíàêîâû. Åñëè îäíà è òà æå æèäêîñòü íàëèòà äî îäíîé è òîé æå âûñîòû â ñîñóäû ðàçíîé ôîðìû, íî ñ îäèíàêîâîé ïëîùàäüþ äíà, òî, íåñìîòðÿ íà ðàçíûé âåñ íàëèòîé æèäêîñòè, ñèëà äàâëåíèÿ íà äíî îäèíàêîâà äëÿ âñåõ ñîñóäîâ è ðàâíà âåñó æèäêîñòè â öèëèíäðè÷åñêîì ñîñóäå.

Ñòàòèêà Äàâëåíèå ïîêîÿùåéñÿ æèäêîñòè íà äíî è ñòåíêè ñîñóäà ãèäðîñòàòè÷åñêîå äàâëåíèå

Ýòî ñëåäóåò èç òîãî, ÷òî äàâëåíèå ïîêîÿùåéñÿ æèäêîñòè çàâèñèò òîëüêî îò ãëóáèíû ïîä ñâîáîäíîé ïîâåðõíîñòüþ è îò ïëîòíîñòè æèäêîñòè: p = pgh (ôîðìóëà ãèäðîñòàòè÷åñêîãî äàâëåíèÿ æèäêîñòè). À òàê êàê ïëîùàäü äíà ó âñåõ ñîñóäîâ îäèíàêîâà, òî è ñèëà, ñ êîòîðîé æèäêîñòü äàâèò íà äíî ýòèõ ñîñó­äîâ, îäíà è òà æå. Îíà ðàâíà âåñó âåðòèêàëüíîãî ñòîëáà ABCD æèäêîñòè: P = oghS, çäåñü S — ïëîùàäü äíà (õîòÿ ìàññà, à ñëåäîâàòåëüíî, è âåñ â ýòèõ ñîñóäàõ ðàçëè÷íû).

Ãèäðîñòàòè÷åñêèé ïàðàäîêñ îáúÿñíÿåòñÿ çàêîíîì Ïàñêàëÿ — ñïîñîá­íîñòüþ æèäêîñòè ïåðåäàâàòü äàâëåíèå îäèíàêîâî âî âñåõ íàïðàâëåíèÿõ.

Èç ôîðìóëû ãèäðîñòàòè÷åñêîãî äàâëåíèÿ ñëåäóåò, ÷òî îäíî è òî æå êîëè÷åñòâî âîäû, íàõîäÿñü â ðàçíûõ ñîñóäàõ, ìîæåò îêàçûâàòü ðàçíîå äàâ­ëåíèå íà äíî. Ïîñêîëüêó ýòî äàâëåíèå çàâèñèò îò âûñîòû ñòîëáà æèäêîñòè, òî â óçêèõ ñîñóäàõ îíî áóäåò áîëüøå, ÷åì â øèðîêèõ. Áëàãîäàðÿ ýòîìó äàæå íåáîëüøèì êîëè÷åñòâîì âîäû ìîæíî ñîçäàâàòü î÷åíü áîëüøîå äàâëå­íèå.  1648 ã. ýòî î÷åíü óáåäèòåëüíî ïðîäåìîíñòðèðîâàë Á. Ïàñêàëü. Îí âñòàâèë â çàêðûòóþ áî÷êó, íàïîëíåííóþ âîäîé, óçêóþ òðóáêó è, ïîäíÿâ­øèñü íà áàëêîí âòîðîãî ýòàæà, âûëèë â ýòó òðóáêó êðóæêó âîäû. Èç-çà ìàëîé òîëùèíû òðóáêè âîäà â íåé ïîäíÿëàñü äî áîëüøîé âûñîòû, è äàâëå­íèå â áî÷êå óâåëè÷èëîñü íàñòîëüêî, ÷òî êðåïëåíèÿ áî÷êè íå âûäåðæàëè, è îíà òðåñíóëà.

Ñòàòèêà Äàâëåíèå ïîêîÿùåéñÿ æèäêîñòè íà äíî è ñòåíêè ñîñóäà ãèäðîñòàòè÷åñêîå äàâëåíèå

Источник

Рассмотрим, как можно рассчитать давление жидкости на дно и стенки сосуда. Решим сначала задачу с числовыми данными. Прямоугольный бак наполнен водой (рис. 96). Площадь дна бака 16 м2, высота его 5 м. Определим давление воды на дно бака.

Сила, с которой вода давит на дно сосуда, равна весу столба воды высотой 5 м и площадью основания 16 м2, иначе говоря, эта сила равна весу всей воды в баке.

raschet-davleniya-zhidkosti

Чтобы найти вес воды, надо знать ее массу. Массу воды можно вычислить по объему и плотности. Найдем объем воды в баке, умножив площадь дна бака на его высоту: V= 16 м2*5 м=80 м3. Теперь определим массу воды, для этого умножим ее плотность p = 1000 кг/м3 на объем: m = 1000 кг/м3 * 80 м3 = 80 000 кг. Мы знаем, что для определения веса тела надо его массу умножить на 9,8 Н/кг, так как тело массой 1 кг весит 9,8 Н.

Следовательно, вес воды в баке равен P = 9,8 Н/кг * 80 000 кг ≈ 800 000 Н. С такой силой вода давит на дно бака.

Разделив вес воды на площадь дна бака, найдем давление p:

p = 800000 H/16 м2 = 50 000 Па = 50 кПа.

Давление жидкости на дно сосуда можно рассчитать, пользуясь формулой, что значительно проще. Чтобы вывести эту формулу, вер­немся к задаче, но только решим ее в общем виде.

Обозначим высоту столба жидкости в сосуде буквой h, а площадь дна сосуда S.

Объем столба жидкости V= Sh.

Масса жидкости т = pV,или m = pSh.

Вес этой жидкости P = gm, или P = gpSh.

Так как вес столба жидкости равен силе, с которой жидкость давит на дно сосуда, то, разделив вес P на площадь S, получим давление р:

p = P/S, или p = gpSh/S

т. е.

p = gph.

Мы получили формулу для расчета давления жидкости на дно со­суда. Из этой формулы видно, что давление жидкости на дно сосуда прямо пропорционально плотности и высоте столба жидкости.

По этой формуле можно вычислять и давление на стенки, сосуда, а также давление внутри жидкости, в том числе давление снизу вверх, так как давление на одной и той же глубине одинаково по всем направлениям.

При расчете давления по формуле:

p = gph

надо плотность p выражать в килограммах на кубический метр (кг/м3), а высоту столба жидкости h — в метрах (м), g = 9,8 Н/кг, тогда давление будет выражено в, паскалях (Па).

Пример. Определить давление нефти на дно цистерны, если высота столба нефти 10 м, а плотность ее 800 кг/м3.

zadacha

Вопросы.  1. От каких величин зависит давление жидкости на дно сосуда? 2. Как зависит давление жидкости на дно сосуда от высоты столба жидкости? 3. Как зависит давление жидкости на дно сосуда от плотности жидкости? 4. Какие величины надо знать, чтобы рассчитать давление жидкости на стенки сосуда? 5. По какой формуле рассчитывают давление жидкости на дно и стенки сосуда?

Читайте также:  Электролиз воды в сосуде

Упражнения. 1. Определите давление на глубине 0,6 м в воде, керосине, ртути. 2. Вычислите давление воды на дно одной из глубочайших морских впадин, глубина, которой 10 900 м, Плотность морской воды 1030 кг/м3. 3. На рисунке 97 изображена футбольная камера, соединенная с вертикально расположенной стеклянной трубкой. В камере и трубке находится вода. На камеру положена дощечка, а на нее — гиря массой 5 кг. Высота столба воды в трубке 1 м. Определите площадь соприкосновения дощечки с камерой.

raschet-davleniya-zhidkosti-na-dno

Задания. 1. Возьмите высокий сосуд. В боковой поверхности его по прямой, на разной высоте от дна сделайте три небольших отверстия. Закройте отверстия спичками и налейте в сосуд до верха воды. Откройте отверстия и проследите за струйками вытекающей воды (рис. 98). Ответьте на вопросы: почему вода вытекает из отверстий? Из чего следует, что давление увеличивается с глубиной? 2. Прочтите в конце учебника параграфы «Гидростатический парадокс. Опыт Паскаля», «Давление на дне морей и океанов. Исследование морских глубин».

Источник

Давление

«Давление». Значит, что-то на что-то давит. То есть воздействует. Хм… Кажется, у нас уже была физическая величина, которая показывала, как интенсивно что-то действует на что-то другое. Какая это величина, как вы думаете?

Какая величина описывает интенсивность действия одного тела на другое?

Работа.

Сила.

Импульс.

Кинетическая энергия.

Давление. «Опять новая величина? А что, тех величин, которые уже есть, недостаточно? – резонно можете спросить вы. – У нас есть понятие силы для того, чтобы описывать, как и что действует на некоторое тело. Зачем ещё и давление?» Понять, зачем нужно давление, вам поможет следующий пример.

Представьте себе ситуацию: есть 101010 человек, и на них сверху опускают тяжеленную коробку массой в 500500500 килограмм.

Смогут ли они удержать такую коробку? Смогут. Почему?

Почему десять человек смогут удержать коробку массой 500500500 кг?

Потому что они сильны духом.

Потому что с ними бог.

Потому что на одного человека приходится небольшая масса в 505050 кг.

Потому что 500500500 кг легко удержит и один человек.

А смог ли бы удержать коробку массой 500500500 кг один человек? Нет, скорее всего – она бы его раздавила.

Отсюда мы можем сделать вывод, что имеет значение не только масса тела, не только сила тяжести тела, не только интенсивность воздействия – то есть сила FFF – но и то, как распределяется эта нагрузка. Если сила действует на некоторое тело, которое имеет некоторый размер, то логично, что будет иметь значение, на какую площадь SSS воздействует эта нагрузка.

Давление – величина, которая учитывает распределение воздействия некоторой силы FFF на некоторую площадь SSS.

Как вы думаете, как будет правильно в таком случае записать формулу для давления ppp? Выберите правильный вариант.

p=F−Sp = F – Sp=F−S.

p=FSp = frac{F}{S}p=SF​.

p=SFp = frac{S}{F}p=FS​.

p=FSp = FS p=FS.

Итак, запишем формулу давления:

p=FSp=frac{F}{S}p=SF​.

Стоит отметить, что площадь SSS, которая входит в формулу давления, – это площадь соприкосновения предмета, «который давит», и предмета, «на который давят». Например, если человек идет по поверхности льда пруда площадью 400400400 кв. м., то в формулу давления, которое человек оказывает на лед, надо подставить площадь подошв его ботинок, а не всей поверхности пруда целиком.

Единица измерения давления – Паскаль:

[p]=[FS]=Ньютонметр2=Паскаль=Па [p] = [ frac{F}{S} ] =frac{Ньютон}{метр^2}= Паскаль = Па[p]=[SF​]=метр2Ньютон​=Паскаль=Па.

Разберем задачу.

Условие

Аквариум, изображённый на рисунке, доверху наполнили водой. Найдите давление воды на дно аквариума. Плотность воды равна ρrhoρ. Атмосферное давление не учитывать.

  1. ρgarho gaρga
  2. 2ρga32 rho g a^3 2ρga3
  3. Pg2a2frac{Pg}{2a^2}2a2Pg​
  4. 2ρga2 rho ga 2ρga

(Источник: ЕГЭ-2013. Физика. Реальный экзамен. Урал. Вариант 1)

Решение

Шаг 1. Вспомним формулу давления.

Выберите правильную формулу для давления.

p=F−Sp = F – Sp=F−S

p=FSp = frac{F}{S}p=SF​

p=SFp = frac{S}{F}p=FS​

p=FSp = FS p=FS

Шаг 2. Определим, какая сила давит на дно сосуда.

Какая сила давит на дно сосуда?

сила тяжести воды

сила реакции опоры сосуда

сила трения воды о стенки сосуда

сила вязкого внутреннего трения жидкости

Шаг 3. Попробуем выразить силу тяжести через известные нам величины. Для начала просто запишем формулу силу тяжести.

Как можно вычислить силу тяжести воды?

F=mghF = mghF=mgh

F=mgF = mgF=mg

F=mgSF = frac{mg}{S}F=Smg​

F=mgSF = mgSF=mgS

Шаг 4. В формуле F=mgF=mgF=mg нам неизвестна масса воды mmm. Ее можно выразить через другие величины, данные в условии.

Как можно вычислить силу тяжести, зная размеры сосуда и плотность?

F=mg=4ρa3gF = mg = 4 rho a^3 g F=mg=4ρa3g

F=mg=2ρagF = mg = 2 rho ag F=mg=2ρag

F=mg=ρagF = mg = rho ag F=mg=ρag

F=mg=ρgF = mg = rho g F=mg=ρg

Шаг 5. Вычислим давление по формуле p=FSp = frac{F}{S}p=SF​.
Подставим в формулу давления ранее полученное выражение для силы:

p=FS=4ρa3g2a⋅a=2ρagp = frac{F}{S} = frac{4 rho a^3 g}{2a cdot a} = 2 rho agp=SF​=2a⋅a4ρa3g​=2ρag.

Правильный ответ: 4) 2ρga2 rho ga2ρga.

Давление столба жидкости

Представьте, что вы опустились со специальным аквалангом на дно озера.

Если вы поднимите голову вверх, то увидите, что над вами находится толща воды. Целый водяной столб. И он находится прямо над вами.

Как вы думаете, что он делает с вами?

Ничего не делает.

Выталкивает меня наверх.

Давит на меня.

Пытается сместить меня вбок.

На столб действует сила тяжести: F=mgF = mgF=mg.

Если площадь человека в поперечине равна SSS, то на человека будет оказываться давление: p=FS=mgSp = frac{F}{S} = frac{mg}{S} p=SF​=Smg​.

Массу жидкости можно расписать.

Как правильно расписать массу жидкости?

m=ρVm = rho Vm=ρV

Читайте также:  Какие сосуды в мочке уха

m=ρVm = frac{rho}{V}m=Vρ​

m=Vρm = frac{V}{rho}m=ρV​

m=ρ+Vm = rho + Vm=ρ+V

Если представить, что столб жидкости – цилиндр высотой hhh и площадью поперечного сечения SSS, то его объём можно выразить через hhh и SSS.

Как можно записать объем столба жидкости? Выберите правильную формулу.

V=hSV = frac{h}{S}V=Sh​

V=hSV = hS V=hS

V=h+SV = h + S V=h+S

V=ShV = frac{S}{h} V=hS​

Тогда давление столба жидкости можно записать следующим образом: p=FS=mgS=ρhSgS=ρghp = frac{F}{S} = frac{mg}{S} = frac{rho hSg}{S} = rho gh p=SF​=Smg​=SρhSg​=ρgh.

Итак, гидростатическое давление столба жидкости на глубине hhh рассчитывается по формуле p=ρgh.p = rho gh {.}p=ρgh.

Решим задачу.

Сосуд, изображённый на рисунке, доверху наполнили некоторой жидкостью. Найдите давление жидкости на дно сосуда. Плотность жидкости равна ρrhoρ. Атмосферное давление не учитывать.

(Источник: ЕГЭ-2013. Физика. Урал. Вариант 6)

2ρga32 rho g a^3 2ρga3

2ρga2 rho g a 2ρga

2ρga22 rho g a^2 2ρga2

ρga rho g a ρga

Гидростатика. Закон Паскаля

Раздел гидростатики в физике занимается давлениями неподвижных жидкостей. Нечто похожее у нас уже было в разделе «Статика», когда мы рассматривали неподвижность твёрдых тел, рассматривали правило моментов: чтобы вращающие моменты уравновешивали друг друга.

В гидростатике – нечто похожее: рассматриваются давления жидкости в условии, когда она неподвижна – то есть не течёт. Для этого раздела важен закон Паскаля:

Давление жидкости передаётся в любую точку без изменения во всех направлениях.

Сложная формулировка. Сложный закон. Понять его можно на примере. Возьмём полиэтиленовый пакет, нальём в него жидкость и сделаем несколько небольших дырочек. Будем давить сверху на этот пакет с жидкостью. Что мы увидим? Вода будет литься из каждой дырочки.

И можно заметить, что наше давление сверху на пакет будет передаваться без изменения в каждую «дырочку» пакета – струйки воды получатся примерно одинаковые, хоть и будут направлены в разные стороны.
Получается, что если до некоторой точки жидкости дошло давление, то давление от этой точки будет распространяться во все стороны.

На основе закона Паскаля основано действие различных гидравлических прессов и других механических устройств, в которых требуется передача давления чего-либо из одной точки – в другую точку (например – экскаватора, тормозной системы автомобилей). Такое устройство может представлять собой трубку, внутри которой находится жидкость. С одной стороны трубки – давят на жидкость, жидкость передаёт это давление – и давит на что-то с другого конца трубки.

Для того чтобы закон Паскаля стал вам окончательно понятен, приведём ещё один пример. Допустим, у нас есть палка. Просто палка. И мы давим этой палкой на землю. Действуем сверху вниз. Если земля не слишком твёрдая, то палка «уйдёт» у нас вниз. И только вниз. Ни вбок, ни вверх. Вниз.

Рассмотрим другой случай. Пусть у нас есть трубка, а на её конце – резиновый шарик. А внутри трубки и шарика – жидкость. Тогда, если мы будем давить на жидкость в трубке, то шарик у нас будет раздуваться во все стороны. Не только вниз, не только вбок – а во все стороны сразу. То есть давление в жидкости передаётся во все стороны, а давление в твёрдых телах – преимущественно в том направлении, в котором приложено давление.

Разберем задачу.

Условие

В широкую U-образную трубку с вертикальными прямыми коленами налиты неизвестная жидкость плотностью ρ1rho _1 ρ1​ и вода плотностью ρ2=1,0⋅103 кг/м3rho _2 = 1,0 cdot 10^3text{ }кг/м^3 ρ2​=1,0⋅103 кг/м3 (см. рисунок).

На рисунке b=10b = 10b=10 см, h=24h = 24h=24 см, H=30H = 30H=30 см. Чему равна плотность ρ1rho _1ρ1​?

  1. 0,6⋅103 кг/м30,6cdot 10^3text{ }кг/м^30,6⋅103 кг/м3
  2. 0,7⋅103 кг/м30,7cdot 10^3text{ }кг/м^30,7⋅103 кг/м3
  3. 0,8⋅103 кг/м30,8cdot 10^3text{ }кг/м^30,8⋅103 кг/м3
  4. 0,9⋅103 кг/м30,9cdot 10^3text{ }кг/м^30,9⋅103 кг/м3

(Источник: сайт решуегэ.рф)

Решение

Шаг 1. В задаче даны плотности и высоты столбов жидкости. Определим тип этой задачи.

Как вы думаете, на что может быть эта задача?

на силы

на гидростатическое давление жидкостей

на уравнение моментов сил

на объёмы

Шаг 2. Так же, как в задачах на правило моментов вращающие моменты уравновешивают друг друга, в задачах на гидростатическое давление мы часто будем иметь дело с противодействием.

Кто кому в этой задаче противодействует?

Жидкости в левой части трубки противодействуют жидкости в правой части трубки.

Жидкость плотностью ρ1rho _1ρ1​ противодействует жидкости плотностью ρ2rho _2ρ2​.

Сила тяжести противодействует силе давления жидкости.

U-образная рубка противодействует жидкости.

Шаг 3. Определим, что оказывает давление в левой части трубки.

Что давит в левой части трубки?

жидкость ρ1rho _1ρ1​ и небольшая часть жидкости ρ2rho _2ρ2​

жидкость ρ1rho _1ρ1​

жидкость ρ2rho _2ρ2​

материал трубки

Шаг 4. Запишем условие равенства гидростатических давлений.

Как правильно записать условие равенства гидростатических давлений?

ρ1gH+ρ2gb=ρ2ghrho _1 gH + rho _2 gb = rho _2 ghρ1​gH+ρ2​gb=ρ2​gh

ρ1g(H−b)+ρ2gb=ρ2ghrho _1 g(H – b) + rho _2 gb = rho _2 ghρ1​g(H−b)+ρ2​gb=ρ2​gh

ρ1gH=ρ2gh+ρ2gbrho _1 gH = rho _2 gh + rho _2 gbρ1​gH=ρ2​gh+ρ2​gb

ρ1g(H−b)=ρ2gh+ρ2gbrho _1 g(H – b) = rho _2 gh + rho _2 gbρ1​g(H−b)=ρ2​gh+ρ2​gb

Шаг 5. Преобразуем выражение и подставим численные значения.

Для начала заметим, что можно сократить всё выражение на ускорение свободного падения ggg:

ρ1g(H−b)+ρ2gb=ρ2gh⇔ρ1(H−b)+ρ2b=ρ2hrho _1 g(H – b) + rho _2 gb = rho _2 ghLeftrightarrowrho _1(H – b) + rho _2 b = rho _2 hρ1​g(H−b)+ρ2​gb=ρ2​gh⇔ρ1​(H−b)+ρ2​b=ρ2​h.

В задаче просят найти плотность жидкости ρ1rho _1ρ1​.

Сделаем это:

ρ1=ρ2h−ρ2bH−b=ρ2(h−b)H−b=ρ2h−bH−brho _1 = frac{rho _2 h – rho _2 b}{H – b} = frac{rho _2 (h – b)}{H – b} = rho _2 frac{h – b}{H – b}ρ1​=H−bρ2​h−ρ2​b​=H−bρ2​(h−b)​=ρ2​H−bh−b​.

Подставим численные значения:

ρ1=ρ2h−bH−b=1⋅103кгм3⋅24см−10см30см−10см=rho _1 = rho _2 frac{h – b}{H – b} = 1 cdot 10^3 frac{кг}{м^3} cdot frac{24 см – 10 см}{30 см – 10 см} =ρ1​=ρ2​H−bh−b​=1⋅103м3кг​⋅30см−10см24см−10см​=

=103кгм3⋅0,7=700кгм3= 10^3 frac{кг}{м^3} cdot 0,7 = 700 frac{кг}{м^3}=103м3кг​⋅0,7=700м3кг​.

Правильный ответ: 2) 0,7⋅103 кг/м30,7 cdot 10^3text{ }кг/м^30,7⋅103 кг/м3.

Источник