Давление жидкости на горизонтальное дно сосуда

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 21 июня 2020; проверки требуют 7 правок.

Гидростатическое давление – давление столба жидкости над условным уровнем.

Благодаря полной удобоподвижности своих частиц капельные и газообразные жидкости, находясь в покое, передают давление одинаково во все стороны; давление это действует на всякую часть плоскости, ограничивающей жидкость, с силой Р, пропорциональной величине w этой поверхности, и направленной по нормали к ней. Отношение P/w, то есть давление р на поверхность, равную единице, называется гидростатическим давлением[1].

Простое уравнение P = pw может действительно служить для точного вычисления давления на данную поверхность сосуда, газов и капельных жидкостей, находящихся при таких условиях, что часть давления, зависящая от собственного веса жидкостей, ничтожно мала по сравнению с давлением, передаваемым им извне. Сюда относятся почти все случаи давлений газов и расчеты давлений воды в гидравлических прессах и аккумуляторах[1].

Вычисление[править | править код]

В каждой жидкости существует давление, обусловленное её собственным весом ; так как , то ; учтём, что и получим формулу .

Плотность жидкости зависит от температуры. Для очень точных вычислений плотность следует рассчитывать по специальной формуле. Давление на данной глубине одинаково во всех направлениях. Суммарное давление, обусловленное весом столба жидкости и давлением поршня, называют гидростатическим давлением[2].

Для бытовых расчетов можно принять, что с ростом глубины на каждые 10 метров пресной воды, давление увеличивается на 0,1 МПа (1 атмосфера).

История открытия[править | править код]

Это основное свойство жидкостей было открыто и проверено на опыте Блезом Паскалем в 1653 г., хотя несколько ранее оно было уже известно Стевину[источник не указан 1276 дней].

Единица измерения[править | править код]

Единицей измерения давления в международной системе единиц является Паскаль. На практике гидростатическое давление часто измеряют в атмосферах, принимая за 1 атмосферу давление в 76 см ртутного столба, при температуре 0 °C при нормальном ускорении свободного падения 9,80665 м/с².

На основании гидростатического парадокса можно гидростатическое давление измерять также высотой столба ртути или воды, способного производить то же давление на единицу поверхности.

Свойства[править | править код]

Гидростатический парадокс[править | править код]

Гидростатическое давление на тело не зависит от направления.

Вычисление немного усложняется, когда надо узнать давление, производимое на не горизонтальную часть стенки сосуда вследствие тяжести налитой на него жидкости. Здесь причиной давления становится вес столбов жидкости, имеющих основанием каждую бесконечно малую частицу рассматриваемой поверхности, а высотой вертикальное расстояние от каждой такой частицы до свободной поверхности жидкости. Расстояния эти будут постоянны только для горизонтальных частей стенок и для бесконечно узких горизонтальных полосок, взятых на боковых стенках; к ним одним можно прилагать непосредственно формулу гидростатического давления. Для боковых же стенок надо суммировать, по правилам интегрального исчисления, давления на все горизонтальные элементы их поверхности; в результате получается общее правило: давление тяжелой жидкости на всякую плоскую стенку равняется весу столба этой жидкости, имеющему основанием площадь этой стенки, а высотой вертикальное расстояние её центра тяжести от свободной поверхности жидкости. Поэтому давление на дно сосуда будет зависеть только от величины поверхности этого дна, от высоты уровня жидкости в него налитой и от её плотности, от формы же сосуда оно зависеть не будет. Это положение известно под именем «гидростатического парадокса» и было разъяснено ещё Паскалем.

Действительно, оно кажется на первый взгляд неверным, потому что в сосудах с равными доньями, наполненными до равной высоты одной и той же жидкостью, вес её будет очень различный, если формы различны. Но вычисление и опыт (сделанный в первый раз Паскалем) показывают, что в сосуде, расширяющемся кверху, вес излишка жидкости поддерживается боковыми стенками и передается весам через их посредство, не действуя на дно, а в сосуде, суживающемся кверху, гидростатическое давление на боковые стенки действует снизу вверх и облегчает весы ровно на столько, сколько весило бы недостающее количество жидкости.

Закон Паскаля[править | править код]

Чем глубже, тем выше давление. (левая часть графика)

Гидростатическое давление жидкости с постоянной плотностью в однородном поле тяжести ( = несжимаемая жидкость) подчиняется закону Паскаля:

где:

– плотность [для пресной воды: ρ ≈ 1000 кг/м³] – ускорение свободного падения [для Европы: g ≈ 9,81 м/с²] – высота (здесь: жидкости) [м] – [Па]

Читайте также:  Как решать задачи по физике сообщающиеся сосуды

⇒ = гидростатическое давление (p) зависит от высоты (h) жидкости.[4]

Примечания[править | править код]

Литература[править | править код]

  • В. В. Лермантов. Гидростатическое давление // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). – СПб., 1893. – Т. VIIIa. – С. 655-656.

Источник

Согласно формуле (2.23) сила давления жидкости на горизонтальное дно сосуда равна весу жидкости в объеме цилиндра с основанием равным площади дна, и высотой, равной глубине этого сосуда.

На рисунке представлены 3 различных сосуда по форме, однако, с равными площадями дна.

Давление жидкости на горизонтальное дно сосуда

Поэтому, несмотря на разную. Форму сосудов, давление жидкости на дно будет одинаковым во всех трех случаях.

2.10 Равновесие несмешивающихся жидкостей

Поверхность уровня – это поверхность все точки которой имеют одинаковое значение рассматриваемой функции (температура, потенциал)

Поверхность равного давления будем называть поверхностью уровня.

Свойства поверхности:

  1. Две поверхности уровня не пресекаются. Т.к p1<>p2

  2. Внешние объемные силы направлены нормально к поверхности уровня.

  3. Поверхность уровня есть горизонтальная поверхность.

Предположим, что две несмешивающиеся между собой жид­кости с различной плотностью помещены в одном и том же ре­зервуаре и находятся в равновесии. В таком случае и поверхностьих раздела будет также неподвижна. Определим вид такой по­верхности. Свободная поверхность является поверхностью уров­ня (во всех ее точках давление равно р0),т. е. представляет собой горизонтальную плоскость.

Давление жидкости на горизонтальное дно сосуда

Рассмотрим условия равновесия на неподвижной поверхно­сти раздела жидкостей с плотностями ρ1 и ρ2. Предположим, что поверхность раздела занимает положение, как показано на рис. 1.11.

Напишем основное дифференциальное уравнение для жид­кости: с плотностью

и с плотностью

Возьмем на поверхности раздела две точки (точки МиМ1на рис. 1.11). При переходе от одной точки к другой давление рменяется на величину dpи поэтому в указанных выше равенст­вах dpбудет одним и тем же по величине.

Тогда:

или

Так как g≠0то, если p1 ≠ p2, то dz=0и, следовательно, для поверхности раздела справедливо z=const, т. е. поверх­ность раздела в этом случае может быть только горизонтальной, Тот же результат был бы получен и при рассмотрении условий равновесия на поверхностях раздела других жидко­стей, находящихся в резервуаре.

Итак, приходим к общему заключе­нию, что при равновесии несмешивающихся жидкостей поверхности их разде­ла будут горизонтальными плоскостями.

Жидкости при этом расположатся по высоте (считая сверху вниз) в порядке воз­растания их плотностей, что следует не­посредственно из общих условий устой­чивого равновесия механической систе­мы в поле тяготения: центр тяжести системы расположенные в наиболее низкой точке, или, иначе, потенциальная энергия системы должна быть минимальной.

2.11 Относительное равновесие

Относительным равновесием жидкости называется такой случай ее движения, при котором отдельные ее частицы не сме­щаются одна относительно другой и вся масса жидкости дви­жется как твердое тело. Например, вообразим, что некоторый замкнутый резервуар (наполненный жидкостью) движется с по­стоянной скоростью (или постоянным ускорением) в любом на­правлении и с этой же скоростью (или ускорением) движется также и каждая частица жидкости, находящейся в резервуаре. Очевидно, что рассматриваемая масса жидкости будет неподвиж­на в координатной системе, связанной с движущимся резервуа­ром. Такое движение жидкости представляет собой относитель­ное ее равновесие.

Рассмотрим два практически наиболее интересных случая: движение по вертикали и вращательное движение относительно вертикальной оси.

  1. Движение по вертикали

Допустим, что открытый резервуар вместе с находящейся в ней жидкостью движется в вертикальном направлении сверху вниз с некоторым постоянным ускорением j, меньшим ускорения свободного падения g или равным ему (рис. 1.14).

Определим вид поверхности уровня и закон распределения гидростатического давления. Заметим предварительно, что, со­гласно принципу даламбера, при любом движении тела можно пользоваться уравнениями статики, если к системе действую­щих сил прибавить силы инерции (они направлены в сторону, противоположную направлению движения). Такая система сил будет уравновешена, и тело можно считать находящимся в рав­новесном состоянии.

Следовательно, мы можем воспользоваться уравнением поверхности уровня:

Давление жидкости на горизонтальное дно сосуда

рис. 1.14

Чтобы написать уравнение поверхности уровня для данного случая, определим X, Y и Z. Ускорениями действующих сил бу­дут ускорения свободного падения g (9,81 м/с2) и ускорение сил инерции jи. Оба ускорения направлены параллельно оси Oz. Сле­довательно, проекции этих ускорений на оси хну равны нулю: Х=0 и Y=0, а

Читайте также:  Почему лопаются сосуды на пальцах рук и ног

Итак, уравнение поверхности уровня в дифференциальной форме примет следующий вид:

Если

Интегрируя, находим z = const. А это значит, что – поверх­ность уровня будет горизонтальной плоскостью.

Если j=g,

то =1 и тогда dz может быть и не равным нулю, следовательно, форма свободной поверхности может быть произвольной.

То есть при падении с ускорением g (свободное падение) жидкость в невесомости, значит форма поверхности произвольная.

Определим закон распределения Гидростатического давления.

В условиях спуска по вертикали с ускорени­ем j закон распределения гидростатического давления будет та­ким же, как и в обычных условиях равновесия жидкости в поле земного тяготения, р = pо+ γ,h но с тем отличием, что в подвижной системе координат удельный вес меньше, причем, если j=g, т. е. при свободном падении, объемный вес γ’=0. Жидкость стала «не­весомой».

)

2. Статическое вращение жидкости

Давление жидкости на горизонтальное дно сосуда

Предположим, что ци­линдр с водой, налитой до глубины zо, приведен во вращатель­ное движение вокруг вертикальной оси Oz с угловой скоростью ω, с-1 (рис. 2.15).

Вращающиеся стенки цилиндра приведут во вращательное движение ближайшие к стенкам слои жидкости, а затем, вслед­ствие вязкости жидкости – и всю ее массу. По истечении извест­ного времени все частицы жидкости будут вращаться примерно с одной и той же угловой скоростью ω.Допустим, что такой момент времени наступил.

Определим форму поверхности уровня и, в частности, свободной поверх­ности.Как и в первой задаче, будем исходить из общего дифферен­циального уравнения поверхности уровня

Так как движение симметрично относительно оси вращения, то рассмотрим равновесие частиц жидкости, расположенных в плоскости координат xOz, вращающейся с угловой скоростью ω. Как и в предыдущей задаче, объемными силами будут силы земного тяготения и силы инерции. Последняя представляет собой центробежную силу, направленную параллельно оси Ох и в сторону от оси вращения.

В точке М на расстоянии х от оси Oz линейная скорость ча­стицы u=хω, поэтому для нее центробежное ускорение

и следовательно полное ускорение внешних объемных сил:

Очевидно, что в данном случае:

Делая подстановку получим:

или

и после интегрирования

что представляет собой уравнение параболы с вершиной на оси Oz в точкеА, имеющей координату zi=h.

Поскольку уравнение симметрично относительно оси Oz, то поверхность уровня будет представлять собой парабо­лоид вращения.

Запишем закон распределения давления:

рабс=ратм+pизб

В качестве примеров можно решить задачи 1.2, и 1.3 на странице 50

Уч. Альтшуль – Гидравлика и Аэродинамика.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Источник

Что такое давление жидкости

Наука гидростатика исследует ситуации, когда движение в жидкости отсутствует или скорость пренебрежимо мала, и позволяет понять некоторые свойства такой важной гидродинамической величины, как давление.

Теорема

Давление – физическая величина, описывающая силу, которая действует перпендикулярно поверхности на единицу ее площади. Для ее обозначения используется символ р или Р.

На опору под действием силы тяжести давят и твердые, и сыпучие вещества, но их воздействие отличается от гидростатического давления. Воздействие твердого тела определяется его весом, жидкости – ее глубиной. В газе и жидкости давящее воздействие на поверхности создается за счет хаотических столкновений молекул и связано с другими параметрами состояния вещества – например, температурой Т и плотностью (rho.)

Для жидкости, учитывая ее малую сжимаемость, вместо уравнения Клапейрона, учитывающего температуру и молярную массу газа, обычно используют условие несжимаемости, которое существенно упрощает уравнения гидроаэромеханики:

(rho = const.)

Сила гидростатического давления р на дно сосуда не зависит от его формы и изменяется пропорционально уровню налитой в сосуд жидкости и ее плотности в соответствии с основной гидростатической формулой:

(р = р_{0} + rhos gs h.)

(rho) здесь – плотность вещества, (р_{0}) – атмосферное давление, g – ускорение свободного падения, h – глубина погружения.

История открытия

Гидростатика как наука была достаточно хорошо известна еще в античные времена, поскольку она тесно связана с практической деятельностью людей. Для строительства лодок и кораблей, колодцев и различных гидравлических аппаратов, например, поршневых насосов, необходимо было понимать, как вода взаимодействует с твердыми материальными предметами.

Читайте также:  Тромбоз центральных сосудов сетчатки

Различие между давлением твердого тела и воды очень эффектно пояснил на опыте Блез Паскаль: всего лишь стакан воды, вылитый в высокую тонкую трубку, соединенную с наполненной водой закрытой бочкой, создал такое избыточное давление, что вода через щели брызнула наружу.

Определение

В 1653 году Паскаль сформулировал свой закон: давление, производимое на жидкость или газ, передается в любую точку одинаково.

Позже был сконструирован прибор, демонстрирующий действие закона Паскаля. Он называется шар Паскаля и представляет собой заполняемый водой шар с маленькими отверстиями, соединенный с цилиндрической рукояткой, внутри которой движется поршень. Внешнее давление, производимое поршнем, передается во все точки воды одинаково, и она выплескивается в виде одинаковых струек. Поэтому струйки, вытекающие из отверстий, расположенных в горизонтальной плоскости, оставляют на полу следы равной длины.

Факторы, влияющие на показатель

На давление жидкости могут влиять:

  • ее плотность;
  • атмосферное давление;
  • температура;
  • глубина сосуда;
  • площадь дна сосуда.

Давление на дно и стенку сосуда

Закон Паскаля утверждает, что давление в любом месте покоящейся жидкости или газа по всем направлениям одинаково, причем оно одинаково передается по всему объему вещества. Таким образом, разницы между давлением на дно и на стенку нет.

Расчет давления жидкости на дно и стенки сосуда

Чтобы найти давление на дно сосуда, нужно взять приведенное выше основное уравнение гидростатики и подставить туда глубину, плотность и атмосферное давление.

В случае стенок непосредственно прилагать эту формулу можно только к бесконечно малым горизонтальным полоскам на боковых стенках сосуда. Чтобы рассчитать давление на стенки, нужно суммировать давление на все горизонтальные элементы их поверхности, используя правила интегрального исчисления. Паскаль, проведя эти расчеты, доказал, что от формы сосуда давление жидкости не зависит.

Единицы измерения

В международной системе единиц давление измеряется в Паскалях. Один Паскаль равен силе в один ньютон, производящей равномерное давление на единицу поверхности в один метр. Но на практике часто используют такую единицу измерения, как атмосфера, равную 76 см ртутного столба при нулевой температуре по Цельсию.

Определение

Атмосфера – внесистемная единица измерения, которая примерно означает давление атмосферы Земли на уровне Мирового океана.

Формулы расчета

Для описания процессов в гидравлических прессах или любых других системах, в которых давление собственно жидкостей ничтожно мало по сравнению с передаваемым им извне, используется формула закона Паскаля:

(р = frac{F}{S}.)

F – сила, с которой происходит воздействие на поверхности сосуда, S – площадь этой поверхности.

В учебных задачах обычно опускают такой параметр, как атмосферное давление, и используют для расчетов формулу:

(р = rhos gs h.)

Можно вывести эту формулу для сосудов, имеющих форму прямой призмы или цилиндра, из закона Паскаля.

(m = rhos V = rhos Ss h)

Вес (Р = g s m = gs rhos Ss h.)

Вес столба, давящего на дно сосуда, равен силе, и тогда:

(р = frac{Р}{S} = gs rhos Ss frac{h}{S} = gs rhos h.)

Применение на практике

Для гидравлических механизмов, например, прессов, можно рассчитать пропорциональный изменению площади выигрыш в силе, зная, во сколько раз увеличивается площадь большего поршня по сравнению с меньшим.

Применение на практике

Соотношение между полезной и затраченной работой описывается понятием КПД, коэффициент полезного действия, и рассчитывается по формуле:

(frac{F_{2}h_{2}}{F_{1}h_{1}})

Также закон Паскаля описывает работу жидкостных манометров, приборов для измерения давления, отличного от атмосферного. Давление в одном колене манометра вызывает повышение жидкости в другом колене – это явление называется избыточным столбом. По его высоте, соотнося ее с нанесенной шкалой, пользователь прибора узнает точную цифру в миллиметрах ртутного столба.

Гидростатический парадокс

Согласно гидростатическому парадоксу, давление жидкости на любую плоскую стенку равняется весу столба этой жидкости, давящему на основание, площадь которого равна площади этой стенки. Поэтому от формы емкости давление не зависит. Если емкость расширяется к горлышку, то вес содержимого распределяется по наклонным стенкам и передается вниз через стенки, не давя на дно, а если емкость к горлышку сужается, то содержимое давит на стенки снизу вверх, что уменьшает его воздействие на дно.

Источник