Давление жидкости в разных сосудах
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 21 июня 2020; проверки требуют 7 правок.
Гидростатическое давление – давление столба жидкости над условным уровнем.
Благодаря полной удобоподвижности своих частиц капельные и газообразные жидкости, находясь в покое, передают давление одинаково во все стороны; давление это действует на всякую часть плоскости, ограничивающей жидкость, с силой Р, пропорциональной величине w этой поверхности, и направленной по нормали к ней. Отношение P/w, то есть давление р на поверхность, равную единице, называется гидростатическим давлением[1].
Простое уравнение P = pw может действительно служить для точного вычисления давления на данную поверхность сосуда, газов и капельных жидкостей, находящихся при таких условиях, что часть давления, зависящая от собственного веса жидкостей, ничтожно мала по сравнению с давлением, передаваемым им извне. Сюда относятся почти все случаи давлений газов и расчеты давлений воды в гидравлических прессах и аккумуляторах[1].
Вычисление[править | править код]
В каждой жидкости существует давление, обусловленное её собственным весом ; так как , то ; учтём, что и получим формулу .
Плотность жидкости зависит от температуры. Для очень точных вычислений плотность следует рассчитывать по специальной формуле. Давление на данной глубине одинаково во всех направлениях. Суммарное давление, обусловленное весом столба жидкости и давлением поршня, называют гидростатическим давлением[2].
Для бытовых расчетов можно принять, что с ростом глубины на каждые 10 метров пресной воды, давление увеличивается на 0,1 МПа (1 атмосфера).
История открытия[править | править код]
Это основное свойство жидкостей было открыто и проверено на опыте Блезом Паскалем в 1653 г., хотя несколько ранее оно было уже известно Стевину[источник не указан 1297 дней].
Единица измерения[править | править код]
Единицей измерения давления в международной системе единиц является Паскаль. На практике гидростатическое давление часто измеряют в атмосферах, принимая за 1 атмосферу давление в 76 см ртутного столба, при температуре 0 °C при нормальном ускорении свободного падения 9,80665 м/с².
На основании гидростатического парадокса можно гидростатическое давление измерять также высотой столба ртути или воды, способного производить то же давление на единицу поверхности.
Свойства[править | править код]
Гидростатический парадокс[править | править код]
Гидростатическое давление на тело не зависит от направления.
Вычисление немного усложняется, когда надо узнать давление, производимое на не горизонтальную часть стенки сосуда вследствие тяжести налитой на него жидкости. Здесь причиной давления становится вес столбов жидкости, имеющих основанием каждую бесконечно малую частицу рассматриваемой поверхности, а высотой вертикальное расстояние от каждой такой частицы до свободной поверхности жидкости. Расстояния эти будут постоянны только для горизонтальных частей стенок и для бесконечно узких горизонтальных полосок, взятых на боковых стенках; к ним одним можно прилагать непосредственно формулу гидростатического давления. Для боковых же стенок надо суммировать, по правилам интегрального исчисления, давления на все горизонтальные элементы их поверхности; в результате получается общее правило: давление тяжелой жидкости на всякую плоскую стенку равняется весу столба этой жидкости, имеющему основанием площадь этой стенки, а высотой вертикальное расстояние её центра тяжести от свободной поверхности жидкости. Поэтому давление на дно сосуда будет зависеть только от величины поверхности этого дна, от высоты уровня жидкости в него налитой и от её плотности, от формы же сосуда оно зависеть не будет. Это положение известно под именем «гидростатического парадокса» и было разъяснено ещё Паскалем.
Действительно, оно кажется на первый взгляд неверным, потому что в сосудах с равными доньями, наполненными до равной высоты одной и той же жидкостью, вес её будет очень различный, если формы различны. Но вычисление и опыт (сделанный в первый раз Паскалем) показывают, что в сосуде, расширяющемся кверху, вес излишка жидкости поддерживается боковыми стенками и передается весам через их посредство, не действуя на дно, а в сосуде, суживающемся кверху, гидростатическое давление на боковые стенки действует снизу вверх и облегчает весы ровно на столько, сколько весило бы недостающее количество жидкости.
Закон Паскаля[править | править код]
Чем глубже, тем выше давление. (левая часть графика)
Гидростатическое давление жидкости с постоянной плотностью в однородном поле тяжести ( = несжимаемая жидкость) подчиняется закону Паскаля:
где:
– плотность [для пресной воды: ρ ≈ 1000 кг/м³] – ускорение свободного падения [для Европы: g ≈ 9,81 м/с²] – высота (здесь: жидкости) [м] – [Па]
⇒ = гидростатическое давление (p) зависит от высоты (h) жидкости.[4]
Примечания[править | править код]
Литература[править | править код]
- В. В. Лермантов. Гидростатическое давление // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). – СПб., 1893. – Т. VIIIa. – С. 655-656.
Источник
Формула давления жидкости отличается от формулы, с помощью которой можно рассчитать давление твердого тела. Потому, что давление жидкости не зависит от площади поверхности, на которую жидкость давит.
Закон Паскаля
Французский физик, Блез Паскаль, в 1653 году сформулировал закон: «Давление, которое мы оказываем на жидкость (или газ), она без изменения передаст в любую точку и во всех направлениях».
Мы немного упростим формулировку:
Жидкость (или газ) передает давление, оказанное на нее, одинаково и без изменений во все стороны.
Это значит, что на одной и той же глубине жидкость будет одинаково давить и на дно, и на стенки сосуда.
Рис. 1. Чем глубже, тем больше давление жидкости, но в любой точке жидкость передает это давление одинаково во все стороны
На рисунке 1 изображен сосуд, наполненный жидкостью. Высоту столбика жидкости – то есть, глубину, отсчитываем от поверхности жидкости.
Видно, что на разных глубинах давление отличается.
[ large begin{cases} h_{1} < h_{2} < h_{3} \ P_{1} < P_{2} < P_{3} end{cases} ]
Чем глубже, тем больше давление жидкости. Но в любой точке оно одинаково передается во все стороны.
Формула давления жидкости
Формула, по которой можно посчитать давление жидкости:
[ large boxed{ P = rho_{text{ж}} cdot g cdot h }]
( P left(text{Па}right) ) – давление жидкости;
( displaystyle rho_{text{ж}} left(frac{text{кг}}{text{м}^3} right) ) – плотность жидкости;
( displaystyle g left(frac{text{м}}{c^{2}} right) ) – ускорение свободного падения;
Для большинства школьных задач можно принимать ( displaystyle g approx 10 left(frac{text{м}}{c^{2}} right) );
( h left(text{м}right) ) – высота столбика жидкости.
В формулу для давления жидкости не входит площадь S поверхности, на которую эта жидкость давит.
Поэтому, давление жидкости не зависит от площади. А давление твердого тела рассчитывают по другой формуле.
В некоторых задачах указывают объем используемой жидкости. И иногда просят рассчитать силу давления. Чтобы получить правильный ответ для таких задач, нужно уметь переводить площади и объемы в единицы системы СИ.
Сообщающиеся сосуды
Сообщающиеся сосуды – это емкости, расположенные на плоской горизонтальной поверхности, у дна они соединяются трубками.
Если в один из сосудов начать наливать жидкость, то она будет распределяться по всем сосудам, так, что ее уровень будет одинаковым во всех сосудах (рис. 2).
Рис. 2. В сообщающихся сосудах уровень жидкости будет одинаковым
Неважно, какую форму имеет сосуд. Давление жидкости во всех сосудах будет одинаковым. Поэтому одинаковой будет высота h столбика жидкости во всех сосудах.
U-образное колено
U-образное колено – это два сообщающихся сосуда, диаметры сосудов одинаковые.
Жидкости, которые заливают в колено, не должны смешиваться (рис. 3). Например, можно залить в оду трубку воду, а в другую – масло.
Рис. 3. Два сообщающихся сосуда одинакового диаметра образуют U-образное колено
Запишем формулы для расчета давления в левом (P_{1}) и правом (P_{2}) частях колена.
[ large boxed{begin{cases} P_{1} = rho_{1} cdot g cdot h_{1} \ P_{2} = rho_{2} cdot g cdot h_{2} end{cases}} ]
Чем больше разница плотностей двух жидкостей, тем больше отличаются высоты их столбиков.
При решении задач общую нижнюю часть колена не учитываем. На рисунке 3 она отделена от верхней части горизонтальной линией.
Давление столбиков, оставшихся в верхней части, будет одинаковым.
( P_{1} ) – давление жидкости в левой части колена;
( P_{2} ) – давление жидкости в правой части колена.
[ large begin{cases} P_{1} = P_{2} \ rho_{1} cdot g cdot h_{1} = rho_{2} cdot g cdot h_{2} end{cases} ]
Обе части последнего уравнения разделим на ускорение свободно падения. Тогда получим соотношение для высот столбиков жидкости и их плотностей:
[ large boxed{ rho_{1} cdot h_{1} = rho_{2} cdot h_{2} }]
Высоты столбиков можно измерить линейкой. Зная плотность одной из жидкостей, можно найти плотность второй жидкости.
Примечание: Давление жидкостей часто измеряют в миллиметрах ртутного столба или метрах водяного столба. Переходите по ссылке, чтобы узнать, как связаны эти единицы измерения и как давление переводить в систему СИ.
Гидравлический пресс
Молекулы жидкости плотно упакованы, они прилегают друг к другу. Поэтому жидкости не сжимаемы! Это свойство жидкостей используют в гидравлическом прессе.
Гидравлический пресс – это два сообщающихся сосуда. Их называют цилиндрами. Диаметры цилиндров отличаются. Внутри каждого цилиндра вверх и вниз может свободно перемещаться поршень (рис. 4). Поршень плотно прилегает к стенкам цилиндра, чтобы жидкость из цилиндра не просачивалась наружу.
Рис. 4. Гидравлический пресс – это два сообщающихся сосуда различных диаметров, по сосудам могут без трения перемещаться поршни
Перемещаясь, поршень из цилиндра вытесняет жидкость в соседний цилиндр. Объем жидкости, вытесненной из одного цилиндра, совпадает с объемом, перешедшим в другой цилиндр, так как жидкость не проливается наружу.
[ large Delta V_{1} = Delta V_{2} ]
( Delta V_{1} left(text{м}^{3}right) ) – объем жидкости, вытесненной из первого цилиндра;
( Delta V_{2} left(text{м}^{3}right) ) – объем жидкости, перешедшей во второй цилиндр.
Из геометрии известно, объем цилиндрической фигуры можно найти по формуле:
[ large boxed{ Delta V = Delta h cdot S }]
( Delta h left(text{м}right) ) – высота столбика вытесненной жидкости;
( S left(text{м}^{2}right) ) – площадь поршня (или основания цилиндра);
Так как объемы вытесненной и перешедшей в другой цилиндр жидкостей равны, можем записать
[ large Delta h_{1} cdot S_{1} = Delta h_{2} cdot S_{2} ]
То есть, высоты столбиков отличаются во столько же раз, во сколько отличаются площади поршней.
Площадь поверхности поршня и его диаметр связаны соотношением:
[ large boxed{ S_{text{круга}} = pi cdot frac{d^{2}}{4} }]
( S left(text{м}^{2}right) ) – площадь поршня;
( d left(text{м}right) ) – диаметр поршня;
Давления в цилиндрах будут равны.
[ large P_{text{общ.лев}} = P_{text{общ.прав}} ]
Поршни в цилиндрах не двигаются – т. е. находятся в равновесии. Запишем условия равновесия для поршней:
[ large boxed{ frac{F_{1}}{S_{1}} + rho_{1} cdot g cdot h_{1} = frac{F_{2}}{S_{2}} + rho_{2} cdot g cdot h_{2} } ]
Здесь дробью вида (displaystylelarge frac{F}{S}) обозначено давление твердого тела (ссылка) – поршня.
Назовем цилиндр большого диаметра большим цилиндром, а цилиндр малого диаметра – малым. Сформулируем принцип действия гидравлического пресса:
С помощью малой силы в малом цилиндре мы можем создавать большую силу в большом цилиндре.
Источник
Определение
Закон Паскаля: давление, производимое на жидкость или газ, передается жидкостью или газом во все стороны одинаково.
Такая особенность передача давления жидкостями и газами связана с подвижностью молекул в жидком и газообразном состояниях.
Давление столба жидкости определяется формулой:
p = ρжgh
p – давление столба жидкости (Па), ρж- плотность жидкости (кг/м3), g – ускорение свободного падения (≈10 м/с2), h – высота столба жидкости, или ее глубина (м).
Важно! Высоту h нужно определять от поверхности жидкости.
Сила давления жидкости
Сила давления жидкости на дно сосуда – это произведение давления, оказываемого жидкостью на дно сосуда, на площадь этого дна:
F = pS = ρжghab
Сила давления жидкости на боковую грань сосуда – это произведение половины давления, оказываемого жидкостью на дно сосуда, на площадь грани:
F=ρжgh2hb
Подсказки к задачам:
- Плотность пресной воды равна 1000 кг/м3.
- Плотность соленой воды равна 1030 кг/м3.
Пример №1. Чему равно давление, созданное водой, на глубине 2 м?
Давление в жидкостях определяется формулой:
p = ρжgh.
Давление, созданное пресной водой, равно:
p = 1000∙10∙2 = 20000 (Па) = 20 (кПа)
Давление, созданное соленой водой, равно:
p = 1030∙10∙2 = 20600 (Па) = 20,6 (кПа)
Гидростатический парадокс
Из закона Паскаля следует, что давление на дно сосуда определяется только плотностью жидкости и высотой ее столба. Поэтому, если в разные сосуды налить одинаковую жидкость одинаковой высоты, давление, оказываемое ею на дно каждого из сосудов, будет одинаковым.
p1 = p2 = p3
Сила давления при этом будет разная, так как она прямо пропорционально зависит от площади дна. Так как площадь дна первого сосуда минимальна, а третьего максимальна, силы давления, оказываемые жидкостью на дно сосудов, будут такими:
F1 < F2 < F3
Пример №2. На рисунке изображены три сосуда с разными жидкостями. Площади дна сосудов равны. В первом сосуде находится вода (ρ1 = 1 г/см3), во втором – керосин (ρ2 = 0,8 г/см3), в третьем – спирт (ρ3 = 0,8 г/см3). В каком сосуде оказывается максимальное давление на дно?
Давление зависит только от плотности жидкости и от ее столба: площадь сосудов никакой роли не играет. Так как столбы жидкостей во всех сосудах одинаково, остается сравнивать плотности. Плотность воды больше плотности керосина и плотности спирта. Поэтому в сосуде 1 давление на дно сосуда будет максимальным.
Задание EF18645
В сосуд высотой 20 см налита вода, уровень которой ниже края сосуда на 2 см. Чему равна сила давления воды на дно сосуда, если площадь дна 0,01м2? Атмосферное давление не учитывать.
Алгоритм решения
- Записать исходные данные и перевести единицы измерения величин в СИ.
- Записать формулу для вычисления силы давления.
- Выполнить решение задачи в общем виде.
- Вычислить искомую величину, подставив известные данные.
Решение
Запишем исходные данные:
- Высота сосуда H = 20 см.
- Разница между высотой сосуда и уровнем налитой в него воды: b = 2 см.
- Площадь дна сосуда: S = 0,01 м2.
20 см = 0,2 м
2 см = 0,02 м
Сила давления равна произведению давления на площадь, на которую это давление оказывается:
F = pS
Давление равно произведению высоты столба жидкости на ускорение свободного падения и на плотность самой жидкости. А высота столба воды в данном случае равна разности высоту стакана и разнице между высотой сосуда и уровнем воды. Поэтому:
F = pS = ρжghS = ρжg(H – b)S = 1000∙10∙(0,2 – 0,02)∙0,01 = 18 (Н)
Ответ: 18
pазбирался: Алиса Никитина | обсудить разбор | оценить
Задание EF22709 Какова сила давления керосина, заполняющего цистерну, на заплату в её стене, находящуюся на глубине 2 м? Площадь заплаты 10 см2. Атмосферное давление не учитывать.
Алгоритм решения
- Записать исходные данные и перевести единицы измерения величин в СИ.
- Записать формулу для вычисления силы давления.
- Выполнить решение задачи в общем виде.
- Вычислить искомую величину, подставив известные данные.
Решение
Запишем исходные данные:
- Глубина заплаты в цистерне h = 2 м.
- Площадь заплаты: S = 10 см2.
10 см2 = 0,001 м2
Сила давления равна произведению давления на площадь, на которую это давление оказывается:
F = pS
Давление равно произведению высоты столба жидкости на ускорение свободного падения и на плотность самой жидкости. Поэтому:
F = pS = ρкghS = 800∙10∙2∙0,001 = 16 (Н)
Ответ: 16
pазбирался: Алиса Никитина | обсудить разбор | оценить
Задание EF18804
На рисунке представлены графики зависимости давления p от глубины погружения h для двух покоящихся жидкостей: воды и тяжёлой жидкости дийодметана, при постоянной температуре.
Выберите два верных утверждения, согласующихся с приведёнными графиками.
Ответ:
а) В воде на глубине 25 м давление p в 2,5 раза больше атмосферного.
б) С ростом глубины погружения давление в дийодметане возрастает быстрее, чем в воде.
в) Плотность керосина 0,82 г/см3, аналогичный график зависимости давления от глубины для керосина окажется между графиками для воды и дийодметана.
г) Если внутри пустотелого шарика давление равно атмосферному, то в воде на глубине 10 м давления на его поверхность извне и изнутри будут равны друг другу.
д) Плотность оливкового масла 0,92 г/см3, аналогичный график зависимости давления от глубины для масла окажется между графиком для воды и осью абсцисс (горизонтальной осью).
Алгоритм решения
1.Проверить все утверждения на истинность.
2.Записать буквы, соответствующие верным утверждениям, последовательно без пробелов.
Решение
Проверим истинность первого утверждения (а). Для этого определим по графику давление воды на глубине 25 м. Если пустить перпендикуляр к графику зависимости давления воды от глубины погружения через h = 25 м, то он пересечет график в точке, которой соответствует давление p = 350 кН. Атмосферное давление равно 100 кН. Следовательно, давление воды на этой глубине в 3,5 раза превышает атмосферное давление. Утверждение неверно.
Проверим второе утверждение (б). Согласно ему, с ростом глубины погружения давление в дийодметане возрастает быстрее, чем в воде. Это действительно так, потому что угол наклона графика зависимости давления дийодметана от глубины погружения к оси абсцисс больше того же графика для воды. Это можно подтвердить и математически: давление в более плотной жидкости с глубиной растет быстрее, так как давление имеет прямо пропорциональную зависимость с глубиной. Утверждение верно.
Проверим третье утверждение (в). Согласно ему, если на этом же рисунке построить график зависимости давления керосина от глубины погружения, то он окажется между двумя уже существующими графиками. Но этого не может быть, потому что давление в воде растет медленнее, чем давление в дийодметане, так как вода менее плотная. По этой же причине давление в керосине будет расти медленнее, чем в воде, так как керосин менее плотный по сравнению с водой. Третий график в этом случае займет положение между графиком зависимости давления воды от глубины погружения и осью абсцисс. Утверждение неверно.
Проверим четвертое утверждение (г). Согласно графику, давление воды на глубине 10 м равно 200 кПа. Поэтому давление на поверхность шарика снаружи, погруженного на такую глубину, будет вдвое больше, чем давление, оказываемое на его стенки изнутри (при условии, что давление внутри равно 1 атм.). Утверждение неверно.
Проверим последнее утверждение (д). Согласно ему, если на этом же рисунке построить график зависимости давления оливкового масла от глубины погружения, то он окажется между графиком для воды и осью абсцисс. Это действительно так, потому что плотность оливкового масла меньше плотности воды. Утверждение верно.
Верный ответ: бд.
Ответ: бд
pазбирался: Алиса Никитина | обсудить разбор | оценить
Алиса Никитина | ???? Скачать PDF | Просмотров: 1.8k | Оценить:
Источник