Действие ренина на сосуды

Система ренин-ангиотензин-альдостерон
Ренин-ангиотензиновая система (РАС) или ренин-ангиотензин-альдостероновая система (РААС) – это гормональная система человека и млекопитающих, которая регулирует кровяное давление и объём крови в организме.
Компоненты системы
- Ангиотензиноген
- Ангиотензин I
- Ангиотензин II
- Проренин
- Ренин
- Ангиотензинпревращающий фермент
- Альдостерон
Компоненты ренин-ангиотензиновой системы
Ренин-ангиотензин альдестероновый каскад начинается с биосинтеза препрорениновой из рениновой мРНК в юкстагломерулярных клетках и превращается в проренин путём отщепления 23 аминокислот. В эндоплазматическом ретикулуме проренин подвергается гликозилированию и приобретает 3-D структуру, которая характерна для аспартатных протеаз. Готовая форма проренина состоит из последовательности включающей 43 остатка присоединённых к N-концу ренина, содержащего 339-341 остаток. Предполагается, что дополнительная последовательность проренина (prosegment) связана с ренином для предотвращения взаимодействия с ангиотензиногеном. Большая часть проренина свободно выбрасывается в системный кровоток путём экзоцитоза, но некоторая доля превращается в ренин путём действия эндопептидаз в секреторных гранулах юкстагломерулярных клеток. Ренин, образуемый в секреторных гранулах в дальнейшем выделяется в кровоток, но этот процесс жёстко контролируется давлением, ангиотензином 2, NaCl, через внутриклеточные концентрации ионов кальция. Поэтому у здоровых людей объём циркулирующего проренина в десять раз выше концентрации активного ренина в плазме . Однако, все же остаётся не понятным, почему концентрация неактивного предшественника настолько высока.
Контроль секреции ренина
Активная секреция ренина регулируется четырьмя независимыми факторами:
- Почечным барорецепторным механизмом в афферентной артериоле, который улавливает изменение почечного перфузионного давления.
- Изменениями уровня NaCl в дистальном отделе нефрона. Этот поток измеряется как изменение концентрации Cl- клетками плотного пятна дистального извитого канальца нефрона в области, прилегающей к почечному тельцу.
- Стимуляцией симпатическими нервами через бета-1 адренергические рецепторы.
- Механизмом отрицательной обратной связи, реализованным через прямое действие ангиотензина 2 на юкстагломерулярные клетки.
Секрецию ренина активирует снижение перфузионного давления или уровня NaCl и повышение симпатической активности. Ренин также синтезируется и в других тканях, включая мозг, надпочечник, яичники, жировая ткань, сердце и сосудах.
Контроль секреции ренина – определяющий фактор активности РААС.
Механизм действия ренин-ангиотензиновой системы
Ренин регулирует начальный, ограничивающий скорость, этап РААС путём отщепления N-концевого сегмента ангиотензиногена для формирования биологически инертного декапептида ангиотензина 1 или Ang-(1-10). Первичный источник ангиотензиногена – печень. Долговременный подъём уровня ангиотензиногена в крови, который происходит во время беременности, при синдроме Иценко-Кушинга или при лечении глюкокортикоидами, может вызвать гипертензию, хотя и существуют данные о том, что хроническое повышение концентрации ангиотензина в плазме частично компенсируется снижением секреции ренина. Неактивный декапептид Ang 1 гидролизуется ангиотензинпревращающим ферментом (АПФ), который отщепляет С-концевой дипептид и, таким образом, формируется октапептид Ang 2 [Ang-(1-8)], биологически активный, мощный вазоконстриктор. АПФ представляет собой экзопептидазу и секретируется главным образом лёгочным и почечным эндотелием, нейроэпителиальными клетками. Ферментативная активность АПФ заключается в повышении вазоконстрикции и снижении вазодилятации.
Новые данные о компонентах ренин-ангиотензиновой системы
Хотя Ang2 наиболее биологически активный продукт РААС, существуют данные, что другие метаболиты агиотензинов 1 и 2 могу также могут иметь значительную активность. Ангиотензин 3 и 4 (Ang 3 & Ang 4) формируются путём отщепления аминокислот с N-конца от Ангиотензина 2 вследствие действия аминопептидаз А и N. Ang 3 и 4 наиболее часто вырабатываются в тканях с высоким содержанием этих ферментов, например, в мозге и почках. Ang 3 [Ang-(2-8)], гептапептид образующий в результате отщепления аминокислоты с N-конца, наиболее часто он встречается в центральной нервной системе, где Ang III играет важную роль в поддержании кров давления. Ang IV [Ang-(3-8)] гексапептид является результатом дальнейшего ферментативного расщепления AngIII. Предполагается, что Ang 2 и 4 работают кооперативно. В качестве примера можно привести повышение кровяного давления в мозгу, вызываемое действием этих ангиотензинов на AT1-рецептор. Причём этот гемодинамический эффект Ang 4 требует наличия как Ang2 так и самого AT1- рецептора. Пептиды, получаемые отщеплением аминокислот с С-конца, могут также иметь биологическую активность. Например, Ang-(1-7), гептапептидный фрагмент ангиотензина 2, может образовываться как из Ang2 так и из Ang1 действием ряда эндопептидаз или действием карбоксипептидаз (например, гомологом АПФ, названным АПФ2) конкретно на Ang2. В отличие от АПФ, АПФ2 не может участвовать в реакции превращения Ang1 в Ang2 и его активность не подавляется ингибиторами ACE (ACEIs). Ang-(1-7) реализующий свои функции через определённые рецепторы, впервые был описан как вазодилататор и как натуральный ингибитор ACEI. Ему также приписываются и кардиопротекторные свойства. АПФ2 может также отщеплять одну аминокислоту с С-конца, результатом такого действия является Ang-(1-9), пептид с неизвестными функциями.
Рецепторы ангиотензина II
Описаны как минимум 4 подтипа рецепторов к ангиотензину.
- Первый тип AT1-R участвует в реализации наибольшего числа установленных физиологических и патофизиологических функций ангиотензина 2. Действие на сердечно-сосудистую систему (вазоконстрикция, повышение давления крови, повышение сократимости сердца, сосудистая и сердечная гипертония), действие на почки (реабсорбция Na+, ингибирование выделения ренина), симпатическую нервную систему, надпочечника (стимуляция синтеза альдостерона). AT1-R рецетор также является посредником во влиянии ангиотензина на клеточный рост, пролиферацию, воспалительные реакции, и оксидативный стресс. Этот рецептор связан с G-белком и содержит семь встроенных в мембрану последовательностей. AT1-R широко представлен во многих типах клеток, являющихся мишенью Ang 2.
- Второй тип AT2-R широко представлен в период эмбрионального развития мозга, почек затем же в период постнатального развития количество этого рецептора падает. Имеются данные, что, несмотря на низкий уровень экспрессии во взрослом организме, AT2 рецептор может выступать в качестве посредника в процессе вазодилятации и также оказывать антипролиферативный и антиапоптотичекие эффекты в гладких мышцах сосудов и угнетать рост кардиомиоцитов. В почках, как предполагается, активация AT2 влияет на реабсорбцию в проксимальных извитых канальцах и стимулировать реакции превращения простагландина E2 в простагландин F2α.2,7. Однако, важность некоторых из этих At2 связанных действий остаётся неизученной.
- Функции третьего типа (AT3) рецепторов не до конца изучены.
- Четвёртый тип рецепторов (AT4) участвует в выделении ингибитора активатора плазминогена (под действием ангиотензина 2, а также 3 и 4). Предполагается, что эффекты характерные для Ang 1-7, включая вазодилятацию, натрийурез, снижение пролиферации, и защита сердца, реализуются через уникальные рецепторы, которые не связываются с Ang 2, такими как MAS рецепторы.
Также нужно отметить, что последние данные указывают на существование высокоаффинных поверхностных рецепторов, которые связывают как ренин, так и проренин. Они находятся в тканях мозга, сердца, плаценты и почек (в поэндотелиальной гладкой мускулатуре и мезангие). Эффекты таких рецепторов направлены на локальное увеличение выработки Ang2 и запуска внеклеточных киназ, таких как, MAP -киназ, к которым относится ERK1 и ERK2. Эти данные пролили свет на Ang2-независимые механизмы клеточного роста, активируемые ренином и проренином.
Влияние на прочие секреции
Как отмечалось ранее Ang2, через AT1 рецепторы стимулирует выработку альдостерона клубочковой зоной надпочечника . Альдостерон наиболее важный регулятор K+- Na+ баланса и таким образом играет важную роль в контроле объёма жидкостей. Он увеличивает реабсорцию натрия и воды в дистальных извитых канальцах и собирательных трубочках (а также в толстой кишке и слюнных и потовых железах) и таким образом вызывает экскрецию ионов калия и водорода. Ангиотензин 2 вместе с внеклеточным уровнем ионов калия – наиболее значимые регуляторы альдостерона, но синтез Ang2 также может быть вызван АКТГ, норадреналином, эндотелином, серотонином, а ингибирован АНП и NO. Также важно отметить, что Ang 2 важный фактор трофики клубочковой зоны надпочечников, которая без его наличия может атрофироваться.
См. также
- Гормоны
- Эндокринная система
- Рениновый рецептор
Ссылки
- Medicus Amicus: Средства, действующих на ренин-ангиотензиновую систему
- ЭНДОТЕЛИЙ СОСУДОВ – ОСНОВНОЙ РЕГУЛЯТОР МЕСТНОГО КРОВОТОКА
C09
Источник
Система ренин-ангиотензин-альдостерон
Ренин-ангиотензиновая система (РАС) или ренин-ангиотензин-альдостероновая система (РААС) – это гормональная система человека и млекопитающих, которая регулирует кровяное давление и объём крови в организме.
Энциклопедичный YouTube
1/3
Просмотров:
29 387
19 661
7 142
✪ Общий обзор ренин-ангиотензин-альдостероновой системы. Клетки и гормоны
✪ Ренин – ангиотензин – альдостероновая система
Артериальное давление контролируется очень и очень сложным механизмом. Поговорим о ренин-ангиотензин-альдостероновой системе. Ренин-ангиотензин-альдостероновая система. В этом видеоролике мы подробно рассмотрим клетки и гормоны, образующие эту самую систему. Сразу оговорим следующее. Эта система состоит из различных клеток, которые я рисую в виде вот таких домиков. А выделяемые ими различные гормоны я рисую в виде маленьких оранжевых человечков. Человечек – гормон, домик – клетка. Ключевую роль в этой системе играют юкстагломерулярные клетки. Юкстагломерулярные клетки. Вот они. Они расположены в почках, но не диффузно, а в сосудах. При ближайшем рассмотрении это очень сильно измененные гладкомышечные клетки. Это на самом деле гладкомышечные клетки. Я напишу это, чтобы вы не забыли. Разумеется, это в почках. Может, не очень похоже, но так я обозначил почку. Эти клетки выделяют гормон под названием ренин. Зачем? Ренин повышает артериальное давление. Если юкстагломерулярные клетки выявляют снижение давления, они начинают выделять ренин. Это первая причина выделения, низкое давление… низкое давление. А всего таких причин три. Я их напишу. Итак, вторая причина – симпатическая стимуляция юкстагломерулярных клеток. Итак, вторая причина – симпатическая стимуляция юкстагломерулярных клеток. Симпатическая нервная система бывает активна в стрессовые моменты, например, при попытке уйти от погони или, например, в драке. Или при кровотечении после автокатастрофы. В общем, это происходит при любых сильных стрессах. В ответ на такой стресс выделяется ренин. Вторая причина – симпатическая стимуляция. Аксоны симпатических нейронов подходят к юкстагломерулярным клеткам. Кроме того, отдельно от юкстагломерулярного комплекса, в почках есть плотное пятно. Плотное пятно. Оно также является одной из частей почки. Плотное пятно располагается в дистальном извитом канальце нефрона. Дистальный извитой каналец нефрона. Клетки плотного пятна чувствительны к уровню натрия. При низком артериальном давлении через клубочек проходит мало крови. Мало крови проходит через нефрон. Реабсорбируется много соли. Когда моча поступает в дистальный извитой каналец, клетки плотного пятна обнаруживают в ней недостаток соли. А так как причина в низком артериальном давлении, они стимулируют юкстагломерулярные клетки, чтобы те подняли давление. Сигнал передают простагландины, являющиеся медиаторами. Простагландины. В отличие от ренина, простагландины обладают местным действием. Простагландины используют многие клетки организма. Итак, третьей причиной выделения ренина является низкая концентрация соли в моче, определяемая в нефроне, а именно – в дистальном извитом канальце. Вот эти три главные причины. Все это происходит в почках. Всё это именно там. В регуляции давления участвуют и другие органы. Следующей в списке идет печень. Клетки печени, естественно, также выделяют свой гормон. Итак, клетки печени тоже выделяют свой гормон. И гормон этот называется ангиотензиноген. Ангиотензиноген сам по себе неактивен и бесполезен. Нарисуем лицо человека покрупнее, пусть он будет спящим. Итак, гормон циркулирует в кровотоке, но неактивен – это важно. Для его активации нужен другой гормон, взаимодействующий с ним. Нужен ренин. В результате ангиотензин превращается в ангиотензин I. Ренин – это фермент, отщепляющий большую часть молекулы ангиотензиногена. В результате получается активный ангиотензин I. Ангиотензин I. И вот человек просыпается. В кровеносных сосудах, само собой, тоже есть клетки, выстилающие их изнутри. Вот они. Это эндотелий, внутренняя выстилка кровеносного сосуда. Раньше считалось, что это происходит в легких. Но все больше данных о том, что в этом участвуют и другие сосуды также. Эндотелий в сосудах по всему телу преобразует этот гормон, ангиотензин I, с получением ангиотензина II. Ангиотензин II. Это тоже гормон. Я нарисую его полностью проснувшимся, нашего человечка потому, что ангиотензин II полностью активен. Это очень и очень активный гормон. Вот что он делает. У этого гормона несколько мишеней. Я нарисую их стрелками: 1, 2, 3, 4. Этот гормон, ангиотензин II действует на 4 типа клеток. Но в первую очередь он поднимает артериальное давление. Вот 4 типа клеток-мишеней, изображённые вот здесь. Первый из них – гладкая мускулатура сосудов. Гладкая мускулатура сосудов. По всему телу, не только в почках. Гормон заставляет эту мускулатуру сокращаться, повышая сопротивление. Сужение просвета сосудов увеличивает сопротивление кровотоку. Это первый эффект. Также ангиотензин действует на клетки почек, вот здесь, заставляя их реабсорбировать больше воды с увеличением объема. Увеличивается объем циркулирующей крови. При этом увеличивается систолический объем. Сопротивление растет, выброс увеличивается. Вот уже два эффекта ангиотензина II. Еще он действует на железы. Я нарисую гипофиз, он расположен в основании мозга. Это железа, поэтому она также выделяет различные гормоны. Вот еще один гормон, он находится здесь. Вот это всё гормоны. Это АДГ, антидиуретический гормон. В целом, АДГ повторяет эффекты ангиотензина II. Он повышает сосудистое сопротивление и усиливает реабсорбцию воды с увеличением объема крови. Последняя мишень – надпочечники. Вот надпочечник. Он так называется, потому что находится на почке сверху. Это железа, соответственно она выделяет гормоны. Вот один из гормонов. Альдостерон. Альдостерон. Альдостерон в чем-то похож на антидиуретический гормон. Он тоже его чем-то напоминает. Он заимствует органы-мишени у ангиотензина II. Альдостерон действует на почки, увеличивая объем крови. АДГ, как говорилось ранее, действует на почки и гладкие мышцы. Вернемся наверх, там есть кое-что важное и интересное. Как вы помните, все началось с почек. В них и плотное пятно, и юкстагломерулярный аппарат, и нервные окончания. Почки также один из главных органов-мишеней. С почек началось, почками и заканчивается. А что насчет гладкой мускулатуры? Гладкая мускулатура по всему телу также является мишенью. Я просто хотел подчеркнуть роль почек. Есть еще кое-что. Говоря о системе РААС, имеют в виду конкретные механизмы. Говорят, к примеру, вот об этом гормоне. Об ангиотензиногене и ангиотензине I. И также об ангиотензине II и его мишенях: гладкой мускулатуре, железах (гипофизе и надпочечниках) и о почках. Это все – одна система. Запомните, что в ней участвуют минимум 4 типа клеток-мишеней. А альдостерон обладает значительным влиянием на почки. Вот что я хотел показать: в процесс вовлечено много различных гормонов со своими мишенями. А почки играют главную роль в регуляции давления. Subtitles by the Amara.org
Содержание
- 1 Компоненты системы
- 2 Компоненты ренин-ангиотензиновой системы
- 2.1 Контроль секреции ренина
- 3 Механизм действия ренин-ангиотензиновой системы
- 4 Новые данные о компонентах ренин-ангиотензиновой системы
- 5 Рецепторы ангиотензина II
- 6 Влияние на прочие секреции
- 7 См. также
- 8 Ссылки
Компоненты системы
- Ангиотензиноген
- Ангиотензин I
- Ангиотензин II
- Проренин
- Ренин
- Ангиотензинпревращающий фермент
- Альдостерон
Компоненты ренин-ангиотензиновой системы
Ренин-ангиотензин альдестероновый каскад начинается с биосинтеза препрорениновой из рениновой мРНК в юкстагломерулярных клетках и превращается в проренин путём отщепления 23 аминокислот. В эндоплазматическом ретикулуме проренин подвергается гликозилированию и приобретает 3-D структуру, которая характерна для аспартатных протеаз. Готовая форма проренина состоит из последовательности включающей 43 остатка присоединённых к N-концу ренина, содержащего 339-341 остаток. Предполагается, что дополнительная последовательность проренина (prosegment) связана с ренином для предотвращения взаимодействия с ангиотензиногеном. Большая часть проренина свободно выбрасывается в системный кровоток путём экзоцитоза, но некоторая доля превращается в ренин путём действия эндопептидаз в секреторных гранулах юкстагломерулярных клеток. Ренин, образуемый в секреторных гранулах в дальнейшем выделяется в кровоток, но этот процесс жёстко контролируется давлением, ангиотензином 2, NaCl, через внутриклеточные концентрации ионов кальция. Поэтому у здоровых людей объём циркулирующего проренина в десять раз выше концентрации активного ренина в плазме . Однако, все же остаётся не понятным, почему концентрация неактивного предшественника настолько высока.
Контроль секреции ренина
Активная секреция ренина регулируется четырьмя независимыми факторами:
- Почечным барорецепторным механизмом в афферентной артериоле, который улавливает изменение почечного перфузионного давления.
- Изменениями уровня NaCl в дистальном отделе нефрона. Этот поток измеряется как изменение концентрации Cl- клетками плотного пятна дистального извитого канальца нефрона в области, прилегающей к почечному тельцу.
- Стимуляцией симпатическими нервами через бета-1 адренергические рецепторы.
- Механизмом отрицательной обратной связи, реализованным через прямое действие ангиотензина 2 на юкстагломерулярные клетки.
Секрецию ренина активирует снижение перфузионного давления или уровня NaCl и повышение симпатической активности. Ренин также синтезируется и в других тканях, включая мозг, надпочечник, яичники, жировая ткань, сердце и сосудах.
Контроль секреции ренина – определяющий фактор активности РААС.
Механизм действия ренин-ангиотензиновой системы
Ренин регулирует начальный, ограничивающий скорость, этап РААС путём отщепления N-концевого сегмента ангиотензиногена для формирования биологически инертного декапептида ангиотензина 1 или Ang-(1-10). Первичный источник ангиотензиногена – печень. Долговременный подъём уровня ангиотензиногена в крови, который происходит во время беременности, при синдроме Иценко-Кушинга или при лечении глюкокортикоидами, может вызвать гипертензию, хотя и существуют данные о том, что хроническое повышение концентрации ангиотензина в плазме частично компенсируется снижением секреции ренина. Неактивный декапептид Ang 1 гидролизуется ангиотензинпревращающим ферментом (АПФ), который отщепляет С-концевой дипептид и, таким образом, формируется октапептид Ang 2 [Ang-(1-8)], биологически активный, мощный вазоконстриктор. АПФ представляет собой экзопептидазу и секретируется главным образом лёгочным и почечным эндотелием, нейроэпителиальными клетками. Ферментативная активность АПФ заключается в повышении вазоконстрикции и снижении вазодилятации.
Новые данные о компонентах ренин-ангиотензиновой системы
Хотя Ang2 наиболее биологически активный продукт РААС, существуют данные, что другие метаболиты агиотензинов 1 и 2 могу также могут иметь значительную активность. Ангиотензин 3 и 4 (Ang 3 & Ang 4) формируются путём отщепления аминокислот с N-конца от Ангиотензина 2 вследствие действия аминопептидаз А и N. Ang 3 и 4 наиболее часто вырабатываются в тканях с высоким содержанием этих ферментов, например, в мозге и почках. Ang 3 [Ang-(2-8)], гептапептид образующий в результате отщепления аминокислоты с N-конца, наиболее часто он встречается в центральной нервной системе, где Ang III играет важную роль в поддержании кров давления. Ang IV [Ang-(3-8)] гексапептид является результатом дальнейшего ферментативного расщепления AngIII. Предполагается, что Ang 2 и 4 работают кооперативно. В качестве примера можно привести повышение кровяного давления в мозгу, вызываемое действием этих ангиотензинов на AT1-рецептор. Причём этот гемодинамический эффект Ang 4 требует наличия как Ang2 так и самого AT1- рецептора. Пептиды, получаемые отщеплением аминокислот с С-конца, могут также иметь биологическую активность. Например, Ang-(1-7), гептапептидный фрагмент ангиотензина 2, может образовываться как из Ang2 так и из Ang1 действием ряда эндопептидаз или действием карбоксипептидаз (например, гомологом АПФ, названным АПФ2) конкретно на Ang2. В отличие от АПФ, АПФ2 не может участвовать в реакции превращения Ang1 в Ang2 и его активность не подавляется ингибиторами ACE (ACEIs). Ang-(1-7) реализующий свои функции через определённые рецепторы, впервые был описан как вазодилататор и как натуральный ингибитор ACEI. Ему также приписываются и кардиопротекторные свойства. АПФ2 может также отщеплять одну аминокислоту с С-конца, результатом такого действия является Ang-(1-9), пептид с неизвестными функциями.
Рецепторы ангиотензина II
Описаны как минимум 4 подтипа рецепторов к ангиотензину.
- Первый тип AT1-R участвует в реализации наибольшего числа установленных физиологических и патофизиологических функций ангиотензина 2. Действие на сердечно-сосудистую систему (вазоконстрикция, повышение давления крови, повышение сократимости сердца, сосудистая и сердечная гипертония), действие на почки (реабсорбция Na+, ингибирование выделения ренина), симпатическую нервную систему, надпочечника (стимуляция синтеза альдостерона). AT1-R рецетор также является посредником во влиянии ангиотензина на клеточный рост, пролиферацию, воспалительные реакции, и оксидативный стресс. Этот рецептор связан с G-белком и содержит семь встроенных в мембрану последовательностей. AT1-R широко представлен во многих типах клеток, являющихся мишенью Ang 2.
- Второй тип AT2-R широко представлен в период эмбрионального развития мозга, почек затем же в период постнатального развития количество этого рецептора падает. Имеются данные, что, несмотря на низкий уровень экспрессии во взрослом организме, AT2 рецептор может выступать в качестве посредника в процессе вазодилятации и также оказывать антипролиферативный и антиапоптотичекие эффекты в гладких мышцах сосудов и угнетать рост кардиомиоцитов. В почках, как предполагается, активация AT2 влияет на реабсорбцию в проксимальных извитых канальцах и стимулировать реакции превращения простагландина E2 в простагландин F2α.2,7. Однако, важность некоторых из этих At2 связанных действий остаётся неизученной.
- Функции третьего типа (AT3) рецепторов не до конца изучены.
- Четвёртый тип рецепторов (AT4) участвует в выделении ингибитора активатора плазминогена (под действием ангиотензина 2, а также 3 и 4). Предполагается, что эффекты характерные для Ang 1-7, включая вазодилятацию, натрийурез, снижение пролиферации, и защита сердца, реализуются через уникальные рецепторы, которые не связываются с Ang 2, такими как MAS рецепторы.
Также нужно отметить, что последние данные указывают на существование высокоаффинных поверхностных рецепторов, которые связывают как ренин, так и проренин. Они находятся в тканях мозга, сердца, плаценты и почек (в поэндотелиальной гладкой мускулатуре и мезангие). Эффекты таких рецепторов направлены на локальное увеличение выработки Ang2 и запуска внеклеточных киназ, таких как, MAP -киназ, к которым относится ERK1 и ERK2. Эти данные пролили свет на Ang2-независимые механизмы клеточного роста, активируемые ренином и проренином.
Влияние на прочие секреции
Как отмечалось ранее Ang2, через AT1 рецепторы стимулирует выработку альдостерона клубочковой зоной надпочечника . Альдостерон наиболее важный регулятор K+- Na+ баланса и таким образом играет важную роль в контроле объёма жидкостей. Он увеличивает реабсорцию натрия и воды в дистальных извитых канальцах и собирательных трубочках (а также в толстой кишке и слюнных и потовых железах) и таким образом вызывает экскрецию ионов калия и водорода. Ангиотензин 2 вместе с внеклеточным уровнем ионов калия – наиболее значимые регуляторы альдостерона, но синтез Ang2 также может быть вызван АКТГ, норадреналином, эндотелином, серотонином, а ингибирован АНП и NO. Также важно отметить, что Ang 2 важный фактор трофики клубочковой зоны надпочечников, которая без его наличия может атрофироваться.
См. также
- Гормоны
- Эндокринная система
- Рениновый рецептор
Ссылки
- Medicus Amicus: Средства, действующих на ренин-ангиотензиновую систему
- ЭНДОТЕЛИЙ СОСУДОВ - ОСНОВНОЙ РЕГУЛЯТОР МЕСТНОГО КРОВОТОКА
C09
Эта страница в последний раз была отредактирована 4 марта 2020 в 23:08.
Источник