Диаметр цилиндрического сосуда в узкий

Решение №1

  • Давайте посчитаем объём жидкости в первом сосуде: (V = pi r^2 s 16)
  • Посчитаем тот же объём во втором сосуде, предположив, что там вода поднялась на h: (V=pi left(2rright)^2s h=4pi r^2s h)
  • Так как переливали один и тот же объём воды, объёмы, вычисленные выше в обоих сосудах, равны. То есть:

    (begin{eqnarray} pi r^2s 16 &=& 4pi r^2s h \ 16 &=& 4h \ h &=& 4 end{eqnarray})

Таким образом, высота воды во втором сосуде равна 4 см.

Решение №2

Объем цилиндрического сосуда выражается через его диаметр и высоту как:

(V=Hfrac{pi d^2}{4})

При увеличении диаметра сосуда в 2 раза высота равного объёма жидкости уменьшится в 4 раза и станет равна 4.

Ответ: 4

ЕГЭ-Центр «Пять с плюсом» основан в 2008 году. С основания и по настоящий момент Центр возглавляет Елизавета Владимировна Глазова, мать пятерых детей, профессиональный педагог и преподаватель русского языка и литературы.

Запрос успешно отправлен. В ближайшее время расширенный доступ будет предоставлен.

– Oбразование как Стиль Жизни

Присылайте свои колонки

и предложения

У вас есть интересная новость или материал из сферы образования или популярной науки?

Расскажите нам!

© 2014-2021 Newtonew. 12+

Просветительский медиа-проект об образовании, посвящённый самым актуальным и полезным концепциям, теориям и методикам, технологиям и исследованиям, продуктам и сервисам. Мы говорим о том, как развиваются и изменяются образование и наука.

Копирование материалов возможно только с разрешения редакции Newtonew.

Мы используем файлы cookie для улучшения пользовательского опыта. Подробнее вы можете посмотреть в нашем пользовательском соглашении.

Авторизация на сайте

Вход через соц.сети:

Напомнить пароль

Введите , на который вы зарегистрированы:

назад

Пароль выслан

Мы выслали ваш пароль для входа в систему на указанный .

Не забывайте о том, что вы можете авторизоваться в системе через социальные сети. Если при регистрации в соц.сетях вы указывали тот же что и на нашем сайте, то после авторизации вы попадете в свой профиль.

Вход через соц.сети:

Подтвердите регистрацию

На указанный было отправлено письмо со ссылкой. Пожалуйста, перейдите по ссылке для подтверждения.

Вход через соц.сети:

Регистрация подтверждена

Вы успешно зарегистрировались

Источник

Страница 1 из 2

211. Полый медный шар (ρ = 8,93 г/см3) весит в воздухе 3 Н, а в воде (ρ’ = 11 /см3) – 2Н. Пренебрегая выталкивающей силой воздуха определите объем внутренней полости шара.

212. На столе стоит цилиндрический сосуд, наполненный водой до уровня H = 20 см от дна. Если в воду (ρ = 1 г/см3) опустить плавать тонкостенный никелевый стакан (ρ` = 8,8 г/см3), то уровень воды поднимается на h = 2,2 см. Определить уровень H1 воды в сосуде, если стакан утопить.

213. По трубе радиусом r = 1,5 см течет углекислый газ (ρ = 7,5 кг/м3) Определите скорость его течения, если за t = 20 мин через поперечное сечение трубы протекает m = 950 г газа.

214. В бочку заливается вода со скоростью 200 см3/с. На дне бочки образовалось отверстие площадью поперечного сечения 0,8 см2. Пренебрегая вязкостью воды, определить уровень воды в бочке.

215. В сосуд заливается вода со скоростью 0,5 л/с. Пренебрегая вязкостью воды, определите диаметр отверстия в сосуде, при котором вода поддерживалась бы в нем на постоянном уровне h = 20 см

216. Бак цилиндрической формы площадью основания 10 м2 и объемом 100 м3 заполнен водой. Пренебрегая вязкостью воды, определить время, необходимое для полного опустошения бака, если на дне бака образовалось круглое отверстие площадью 8 см2.

217. Сосуд в виде полусферы радиусом R = 10 см до краев наполнен водой. На дне сосуда имеется отверстие площадью поперечного сечения S = 4 мм2. Определите время, за которое через это отверстие выльется столько воды, чтобы ее уровень в сосуде понизился на 5 см.

218. Определить работу, которая затрачивается на преодоление трения при перемещении воды объемом V = 1,5 м3 в горизонтальной трубе от сечения с давлением p1 = 40 кПа до сечения с давлением p2 = 20 кПа.

219. В дне сосуда имеется отверстие диаметром d1. В сосуде вода поддерживается на постоянном уровне, равном h. Считая, что струя не разбрызгиваются, и, пренебрегая силами трения в жидкости, определить диаметр струи, вытекающей из сосуда на расстоянии h1 = 2h от его дна.

220. Площадь поршня, вставленного в горизонтально расположенный налитый водой цилиндр, S1 = 1,5 см2, а площадь отверстия S2 = 0,8 мм2. Пренебрегая трением и вязкостью, определить время t, за которое вытечет вода из цилиндра, если на поршень действовать постоянной силой F = 5 H, а ход поршня l = 5 см. Плотность воды ρ = 1000 кг/м3.

224. Для точного измерения малых разностей давления служат U-образные манометры, которые заполнены двумя различными жидкостями. В одном из них при использовании нитробензола (ρ = 1,203 г/см3) и воды (ρ’ = 1,000 г/см3) получили разность уровней Δh = 26 мм. Определите разность давлений.

225. По горизонтальной трубе в направлении, указанном на рисунке стрелкой, течет жидкость. Разность уровней Δh жидкости в манометрических трубках 1 и 2 одинакового диаметра составляет 8 см. Определить скорость течения жидкости по трубе.

226. По горизонтальной трубе переменного сечения течет вода. Площади поперечных сечений трубы на разных её участках соответственно равна S1 = 10 см2 и S2 = 20 см2. Разность уровней Δh воды в вертикальных трубках одинакового составляет 20 см. Определить объем воды, проходящей за 1 с через сечение трубы.

227. Определите, на какую высоту h поднимется вода в вертикальной трубе, впаянной в узкую часть горизонтальной трубы диаметром d2 = 3 см, если в широкой части трубы диаметром d1 = 9 см скорость газа v1 = 25 см/с.

228. Определите разность давлений в широком и узком (d1 = 9 см, d2 = 6 см) коленах горизонтальной трубы, если в широком колене воздух (ρ = 1,29 кг/м3) продувается со скоростью v1 = 6 м/с.

229. Вдоль оси горизонтальной трубки диаметром 3 см, по которой течет углекислый газ (ρ = 7,5 кг/м3), установлена трубка Пито. Пренебрегая вязкостью, определить объем газа, проходящего за 1 с через сечение трубы, если разность уровней в жидкостном манометре составляет Δh = 0,5 см. Плотность жидкости принять равной ρ` = 1000 кг/м3.

230. Через трубку сечением S1 = 100 см2 продувается воздух со скоростью 2 м3/мин. В трубке имеется короткий участок с меньшим поперечным сечением S2 = 20 см2. Определите: 1) скорость v1 воздуха в широкой части трубки, 2) разность уровней Δh воды, используемой в подсоединенном к данной системе манометре. Плотность воздуха ρ = 1,3 кг/м3, воды ρ’ = 1000 кг/м3

231. Пренебрегая вязкостью жидкости, определить скорость истечения жидкости из малого отверстия в стенке сосуда, если высота h уровня жидкости над отверстием составляет 1,5 м.

Источник

Читайте также:  Болезни сосудов и селезенки