Дифракционная решетка в сосуде

Дифракционная решетка в сосуде thumbnail

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 17 декабря 2015; проверки требуют 56 правок.

У этого термина существуют и другие значения, см. Решётка.

Очень большая отражательная дифракционная решётка.

Дифракционная решётка – оптический прибор, действие которого основано на использовании явления дифракции света. Представляет собой совокупность большого числа регулярно расположенных штрихов (щелей, выступов), нанесённых на некоторую поверхность.

История[править | править код]

Первое описание явления сделал в 1673 году Джеймс Грегори, который наблюдал дифракцию на птичьих перьях:

Если вы сочтёте нужным, вы можете показать мистеру Ньютону небольшой эксперимент, который (если он еще не знает об этом) будет достоин его внимания. Впустите солнечный свет через маленькое отверстие в затемнённый дом, а в отверстие поместите перо (чем тоньше и белее, тем лучше для этой цели), и оно направит на белую стену или бумагу напротив нее ряд маленьких кругов и овалов (если я их не ошибаюсь), из которых один белый (а именно середина, которая противоположна Солнцу), а все остальные по-разному окрашены. Я с радостью выслушаю его мысли об этом.[1]

Дэвид Риттенхаус в 1786 году впервые изготовил дифракционную решётку и измерил углы отклонения для разных цветов[2].

В 1801 году Томас Юнг открыл и объяснил интерференцию света. В 1818 году Огюстен Жан Френель разработал теорию дифракции света.

Опираясь на представления Юнга и Френеля о световых волнах, Йозеф Фраунгофер в 1821 году впервые использовал дифракционную решётку (которую он и изготовил) для получения спектров и вычисления длин волн.

Виды решёток[править | править код]

  • Отражательные: Штрихи нанесены на зеркальную (металлическую) поверхность, и наблюдение ведется в отражённом свете
  • Прозрачные: Штрихи нанесены на прозрачную поверхность (или вырезаются в виде щелей на непрозрачном экране), наблюдение ведется в проходящем свете.

Описание явления[править | править код]

Так выглядит свет лампы накаливания фонарика, прошедший через прозрачную дифракционную решётку. Нулевой максимум (m=0) соответствует свету, прошедшему сквозь решётку без отклонений. В силу дисперсии решётки в первом (m=±1) максимуме можно наблюдать разложение света в спектр. Угол отклонения возрастает с ростом длины волны (от фиолетового цвета к красному)

Идеализированная решетка состоит из набора щелей с периодом d, который должен быть больше, чем длина волны, представляющая интерес, чтобы вызвать дифракцию. Пусть на решетку нормально(перпендикулярно решетке) падает плоская волна монохроматического света с длиной волны , тогда каждая щель в решетке действует как квазиточечный источник, из которого свет распространяется во всех направлениях согласно с принципом Гюйгенса – Френеля. Происходит интерференция света, излученного всеми щелями, при этом если в каком-то направлении свет от двух соседних щелей оказывается в одинаковой фазе, происходит конструктивная интерференция, и в этом направлении появляется максимум. Так как для разных длин волн максимумы интерференции оказываются под разными углами (определяемыми разностью хода интерферирующих лучей), то белый свет раскладывается в спектр.

Формулы[править | править код]

Иллюстрация к нахождению условия максимума при отражении от дифракционной решетки при наклонном падении.

Иллюстрация к нахождению порядков дифракции.

Расстояние, через которое повторяются штрихи на решётке, называют периодом дифракционной решётки. Обозначают буквой d.

Если известно число штрихов (), приходящихся на 1 мм решётки, то период решётки находят по формуле: мм.

При нормальном падении плоской волны условия интерференционных максимумов дифракционной решётки, наблюдаемых под определёнными углами, имеют вид:

где

– период решётки, – угол максимума данного цвета, – порядок максимума, то есть порядковый номер максимума, отсчитанный от центра картинки, – длина волны.

Это условие может быть выведено исходя из того, что разность фаз между лучами, отраженными от поверхностей на расстоянии, равном периоду решетки, должна быть кратна , или, другими словами, разность оптических путей кратна длине волны. При этом положение максимумов зависит только от периода решетки, а ширина щели или форма штрихов влияет на плавную огибающую функции максимумов.

Если же свет падает на решётку под углом , то:

Эта формула может быть проиллюстрирована графически, для того, чтобы найти направление на какой-то порядок дифракции, необходимо нарисовать окружность с радиусом, равным периоду решетки, умноженному на показатель преломления вещества, в котором наблюдаются порядки. Затем через конец прошедшего или отражённого луча необходимо провести вертикальную прямую. После этого, необходимо провести еще несколько вертикальных прямых на расстоянии друг от друга, равным длине волны. Направления на порядки дифракции будут из центра окружности в точки, где она пересекается с вертикальными прямыми. Фактически, такая иллюстрация аналогична построению Эвальда в одномерном случае.

Характеристики[править | править код]

Одной из характеристик дифракционной решётки является угловая дисперсия. Предположим, что максимум какого-либо порядка наблюдается под углом φ для длины волны λ и под углом φ+Δφ – для длины волны λ+Δλ. Угловой дисперсией решётки называется отношение D=Δφ/Δλ. Выражение для D можно получить, если продифференцировать формулу дифракционной решётки

Таким образом, угловая дисперсия увеличивается с уменьшением периода решётки d и возрастанием порядка спектра k.

Вторая характеристика дифракционной решетки – разрешающая способность. Она обусловлена угловой шириной главного максимума и определяет возможность раздельного наблюдения 2 близких спектральных линий. При увеличении порядка спектра m возрастает

Также существует еще одна характеристика Дифракционной решетки – Дисперсионная область. Она определяет для каждого порядка спектральный диапазон от перекрытия спектров. Данный параметр обратно-пропорционален порядку спектра m

Изготовление[править | править код]

Хорошие решётки требуют очень высокой точности изготовления. Если хоть одна щель из множества будет нанесена с ошибкой, то решётка будет бракована. Машина для изготовления решёток прочно и глубоко встраивается в специальный фундамент. Перед началом непосредственного изготовления решёток, машина работает 5-20 часов на холостом ходу для стабилизации всех своих узлов. Нарезание решётки длится до 7 суток, хотя время нанесения штриха составляет 2-3 секунды.

Применение[править | править код]

Дифракционную решётку применяют в спектральных приборах, также в качестве оптических датчиков линейных и угловых перемещений (измерительные дифракционные решётки).

Дифракция на примере одной щели

Примеры[править | править код]

Дифракция на компакт-диске

Один из простейших и распространённых в быту примеров отражательных дифракционных решёток – компакт-диск. На поверхности компакт-диска – дорожка в виде спирали с шагом 1,6 мкм между витками. Примерно треть ширины (0,5 мкм) этой дорожки занята углублением (это записанные данные), рассеивающим падающий на него свет, примерно две трети (1,1 мкм) – нетронутая подложка, отражающая свет. Таким образом, компакт-диск – отражательная дифракционная решётка с периодом 1,6 мкм. Кроме того, такой же отражательной дифракционной решёткой является и пустой CD-R диск, и пустой DVD диск, поскольку на них имеется спиральная дорожка для направления луча лазера при записи информации. Причём период решётки для DVD – 0,74 мкм.

См. также[править | править код]

Видеоурок: дифракционная решетка

  • Дифракция на N-щелях
  • Дифракция Фраунгофера
  • Дифракция Френеля
  • Интерференция света
  • Фурье-оптика
  • Оптическая решётка
  • Призма (оптика)

Примечания[править | править код]

  1. ↑ Letter from James Gregory to John Collins, d 13 May 1673. Reprinted in: Correspondence of Scientific Men of the Seventeenth Century…., ed. Stephen Jordan Rigaud (Oxford, England: Oxford University Press, 1841), vol. 2, page 254. Books.Google.com.
  2. ↑ И. Д. Багбая. К истории дифракционной решётки.. Успехи физических наук, т. 108, вып. 2, октябрь 1972. стр. 335-337..
Читайте также:  Ответственный за безопасное состояние сосудов

Литература[править | править код]

  • Эшелетты // Элоквенция – Яя. – М. : Советская энциклопедия, 1957. – С. 293. – (Большая советская энциклопедия : [в 51 т.] / гл. ред. Б. А. Введенский ; 1949-1958, т. 49).
  • Ландсберг Г. С. Оптика, 1976
  • Сивухин Д. В. Общий курс физики. – М.. – Т. IV. Оптика.
  • Тарасов К. И. Спектральные приборы, 1968

Ссылки[править | править код]

  • Экспериментальное определение периода решётки у компакт-диска – видео с пояснениями на английском языке

Источник

В сегодняшней статье традиционно разбираем решение задач по физике. Тема: дифракция света.

Подпишитесь на наш телеграм, чтобы регулярно получать интересные новости. А если хотите поучаствовать в акции или оформить заказ со скидкой, обязательно загляните на наш второй канал для клиентов.

Дифракция: решение задач

Глупо начинать решать задачи на дифракцию, не зная, что это такое. Поэтому, сначала почитайте теорию, а уже потом приступайте к практике. Рекомендуем держать под рукой полезные формулы и руководствоваться универсальной памяткой по решению физических задач.

Кстати, дифракцию многие путают с дисперсией. Чтобы такого не случилось с вами, читайте отдельный материал в нашем блоге.

Задача на дифракцию №1

Условие

Найти расстояние между кристаллографическими плоскостями кристалла, дифракционный максимум первого порядка от которых в рентгеновских лучах с длиной волны λ = 1,5 нм наблюдается под углом 30°.

Решение

Дифракция в кристалле описывается формулой Брэгга-Вульфа:

2 d sin θ = k λ

Отсюда находим искомое расстояние:

d = λ 2 sin θ

Вычислим:

d = 1 , 5 · 10 – 9 2 sin 30 = 1 , 5 · 10 – 9 м

Ответ: 1.5 нм.

Задача на дифракцию №2

Условие

На узкую щель шириной a = 2 · 10 – 4 c м падает по нормали плоская монохроматическая волна ( λ = 0 , 66 м к м ). Определите ширину центрального дифракционного максимума на экране, если расстояние от щели до экрана равно L = 1 м .

Решение

Ширина центрального максимума равна расстоянию между минимумами первого порядка. Эти минимумы наблюдаются под углами, которые находятся из соотношения:

a sin φ = ± λ

Дифракционная решетка в сосуде

Расстояние между минимумами равно (для малых углов):

l = 2 L t g φ ≈ 2 L sin φ

Получим:

l = 2 L λ a

Найдем:

l = 2 · 0 , 66 · 10 – 6 2 · 10 – 6 = 0 , 66 м

Ответ: 0.66 м.

Задача на дифракцию №3

Условие

На дифракционную решетку нормально падает пучок света от разрядной трубки. Чему должна быть равна постоянная дифракционной решетки, чтобы в направлении φ = 41 ° совпадали максимумы двух линий: λ1 = 6563 А ̇ и λ2 = 4102 А ̇?

Решение

Направление главных максимумов дифракционной решётки:

c sin φ = m λ , ( m = 1 , 2 , 3 . . . )

Запишем это условие для заданных длин волн и приравняем правые части:

c sin φ = m 1 λ 1 c sin φ = m 2 λ 2 m 1 λ 1 = m 2 λ 2 ⇒ m 2 = m 1 λ 1 λ 2 = m 1 6563 4102 = 1 , 6 m 1

Так как m1 и m2 целые числа, то последнее равенство справедливо при m1=5 и m2=8. Подставив m1=5 в самую первую формулу, получим:

с sin φ = 5 λ 1 c = 5 λ 1 sin φ

Произведём вычисления:

c = 5 · 6563 sin 41 ° = 50018 A ≈ 500 н м

Ответ: c=500 нм

Задача на дифракцию №4

Условие

На экран с отверстием диаметром 2 мм падает нормально плоская волна (0,5·10-6 м). Определить, на каком расстоянии от центра отверстия находится самый дальний дифракционный минимум.

Решение

Самый дальний минимум будет наблюдаться, когда будет открыто две зоны Френеля: k=2

Для параллельного пучка света имеем:

r k = k b λ

Так как r k = d 2 , то:

d 2 4 = k b λ b = d 2 4 k λ

Получаем:

b = 2 · 10 – 3 2 4 · 2 · 5 · 10 – 7 = 1 м

Ответ: b=1 м.

Задача на дифракцию №5

Условие

На дифракционную решётку падает нормально свет с длиной волны 590 нм. Найти угол, под которым наблюдается максимум 6-го порядка. Период решётки 37мкм. Ответ получить в градусах.

Решение

Направление на главный максимум m-го порядка определяется выражением:

d sin φ = m λ

Отсюда:

φ = a r c sin m λ d

Здесь m – порядок дифракции, λ – длина волны света, d – период решетки.

Получаем:

φ = a r c sin 6 · 590 · 10 – 9 37 · 10 – 6 = 5 , 49 °

Ответ: φ = 5 , 49 °

Нужно больше задач? Не проблема! Вот вам задачи на интерференцию света с решениями.

Вопросы на тему «Дифракция света»

Вопрос 1. Что такое дифракция?

Ответ. Дифракцией называется огибание волнами препятствий, встречающихся на их пути, или в более широком смысле – любое отклонение распространения волн вблизи препятствий от законов геометрической оптики. Благодаря дифракции волны могут попадать в область геометрической тени, огибать препятствия, проникать через небольшие отверстия в экранах и т. д.

Вопрос 2. Приведите пример проявления дифракции из жизни.

Ответ. Звук за углом дома хорошо слышен, это потому что звуковая волна огибает дом. Это ни что иное, как проявление дифракции.

Вопрос 3. Какие есть типы дифракции?

Ответ. В зависимости от дифракционной картины различают дифракцию Фраунгофера и дифракцию Френеля.

  • тип дифракции, при котором дифракционная картина образуется параллельными пучками, называется дифракцией Фраунгофера. Параллельные лучи проявятся, если экран и источник находятся в бесконечности. Практически применяются две линзы: в фокусе одной – источник света, а в фокусе другой – экран.
  • Если преграда, на которой происходит дифракция, находится вблизи от экрана или от источника света, на котором проистекает наблюдение, то фронт дифрагированных или падающих волн имеет криволинейную поверхность (в частности, сферическую). Этот случай называется дифракцией Френеля.

Вопрос 4. Что такое дифракционная решетка?

Ответ. Дифракционная решётка представляет собой оптический прибор, действие которого основано на применении явления дифракции света. Это совокупность большого числа регулярно расположенных штрихов (выступов, щелей), нанесённых на некоторую поверхность.

При падении на решетку плоской монохроматической волны в фокальной плоскости линзы наблюдается дифракционная картина. Она является результатом двух процессов: дифракции света от каждой щели и интерференции пучков света, дифрагированных от всех щелей.

Вопрос 5. Каким проявлением природы света является дифракция?

Ответ. Дифракция – проявление волновой природы света.

Нужна помощь в решении задач и других студенческих заданий? Обращайтесь за ней в специальный студенческий сервис в любое время суток.

Источник

Дифракция – явление, присущее всем волновым процессам подобно интерференции. Чтобы лучше понять, в чем заключается явление дифракции света, сначала рассмотрим дифракцию механических волн.

Дифракция механических волн

Иногда на пути волны встречаются препятствия разных размеров. Если препятствия небольшие, волны легко их огибают и смыкаются за ними. Поэтому морские волны свободно огибают выглядывающие из воды камни и распространяются за ними так, как если бы их не было совсем. Если размер препятствия больше длины волны, за ним образуется «тень» – область, в которую волны проникнуть не могут.

На рисунке ниже видно, что за мелкими камнями волны распространяются так же, как если бы их не было. Но за большой глыбой поверхность воды спокойная – волны в эту область не проникают.

Внимание! Малыми препятствиями будем считать те, размеры которых намного меньше длины распространяющейся волны или сравнимы с ней.

Способность волн огибать препятствия является следствием отклонения распространения волн от их прямолинейного распространения. Такой способностью обладают не только волны на поверхности воды, но и звуковые волны. Вы услышите, как сигналит автомобиль за домом, который стоит между ним и вами препятствием именно благодаря дифракции. Звуковая волна обогнет дом и продолжит распространяться за ним. По этой же причине в лесу так далеко распространяется клик «Ау!» – деревья для звуковой волны не являются серьезным препятствием, и она их легко огибает.

Читайте также:  От ношения линз могут лопаться сосуды в глазах

Дифракция – явление отклонения от прямолинейного распространения волн.

Дифракция волн проявляется особенно отчетливо в случаях, когда размеры препятствий меньше длины волны или сравнимы с ней. Это явление встречается в природе, но его также можно вызвать искусственно. К примеру, дифракцию волн на поверхности воды можно наблюдать, налив воду в ванночку и поставив на пути возбуждаемых волн искусственное препятствие.

Если на пути распространения волн поставить экран с узкой щелью, размеры которой меньше длины волны, то увидим, что за ней начинает распространяться круговая волна. Такая же волна получилась, если бы в щели экрана находилось колеблющееся тело – источник волн.

Если же на пути распространения волны поставить экран с широкой щелью, за ним будет распространяться волна почти такой же формы. Волновая поверхность в этом случае искривляется только по краям щели.

Понять, почему появляется явление дифракции волн, помогает принцип Гюйгенса. Согласно ему, каждая точка волновой поверхности является источником вторичных волн. Вторичные волны, испускаемые участками среды, проникают за края препятствия, расположенного на пути распространения волны.

Дифракция световых волн

Если свет – это волна, то ему тоже должно быть присуще явление дифракции. Однако наблюдать дифракцию света сложно. Ведь дифракцию можно наблюдать тогда, когда препятствие сравнимо с длиной волны или меньше ее. А длина световой волны очень мала. Поэтому чтобы наблюдать дифракцию света, нужны очень малые препятствия.

Дифракция света на узкой щели

Наблюдать отклонение от прямолинейного распространения света можно, если пропустить пучок световых волн через узкую щель. При этом светлое пятно на экране будет больше, чем сама щель. Это возможно только в случае, если свет отклоняется от своего прямолинейного распространения.

Опыт Юнга

В 1802 г. Т. Юнг, который открыл интерференцию света, поставил классический опыт по наблюдению дифракции. В непрозрачной ширме он проколол булавкой два небольших отверстия В и С на малом расстоянии друг от друга. Эти отверстия он осветил узким световым пучком, прошедшим через малое отверстие А в другой ширме. Именно эта деталь, до которой очень трудно было додуматься в то время, определила успех эксперимента. Интерферируют ведь только когерентные волны. Возникшая в соответствии с принципом Гюйгенса сферическая волна от отверстия А вызвала в отверстиях В и С образование когерентных источников световых волн. Вследствие дифракции от отверстий В и С выходили два световых конуса, которые частично перекрывались. В результате интерференции этих двух световых волн на экране появлялись картина, состоящая из чередующихся светлых и темных полос.

Закрыв одно из отверстий, Юнг обнаружил, что интерференционные полосы исчезали. Именно с помощью этого опыта впервые ученый измерил длины волн, соответствующие световым лучам разного цвета. И ему удалось сделать это с высокой точностью.

Принцип Гюйгенса – Френеля

Исследование дифракции завершил французский ученый О. Френель. Он занимался детальным исследованием различных случаев дифракции, что позволило ему разработать количественную теорию дифракции. Она помогла физику получить точные расчеты дифракционной картины, которая возникала при огибании светом различных препятствий. Френелю также удалось впервые объяснить, почему в однородной среде свет распространяется прямолинейно.

Успех Френеля объясняется тем, что он стал первым, кто решил объединить принцип Гюйгенса с идеей интерференции вторичных волн. В результате зародилась теория, которая получила название принципа Гюйгенса – Френеля:

Волновая поверхность в любой момент времени представляет собой не просто огибающую вторичных волн, а результат их интерференции.

Чтобы вычислить амплитуду световой волны в любой точке пространства, необходимо мысленно окружить источник света замкнутой поверхностью. Интерференция волн от вторичных источников, расположенных на этой поверхности, определяет амплитуду колебаний в рассматриваемой точке пространства. Такие расчеты дали объяснение тому, как свет от точечного источника S, являющегося источником сферических волн, достигает любой точки В пространства.

Если рассмотреть вторичные источники на сферической волновой поверхности радиусом R, то результат сложения вторичных волн от этих источников в точке В оказывается таким, как если бы только вторичные источники на малом сферическом сегменте ab посылали свет в точку В. Вторичные волны, распространяющие от источников, расположенных на остальной части поверхности, гасят друг друга в результате сложения. Поэтому все происходит так, как если бы свет распространялся вдоль прямой SB, т. е. прямолинейно. Эта теория Френеля доказала закон прямолинейного распространения света в однородной среде и позволила рассмотреть дифракцию с количественной точки зрения.

Внимание! Закон прямолинейного распространения света и другие законы геометрической оптики выполняются достаточно точно лишь в том случае, если размеры препятствий на пути распространения света много больше длины световой волны.

Дифракционные картины от различных препятствий

Расчеты Френеля получили экспериментальное подтверждение. Из-за малой длины световой волны угол ее отклонения от прямолинейного направления распространения небольшой. Поэтому наблюдать дифракцию можно только при использовании очень маленьких препятствий. Другой вариант наблюдения этого явления – расположение экрана вдали от препятствия.

Так, чтобы наблюдать дифракцию при расстоянии между экраном и препятствием в 1 м, размеры этого препятствия должны составлять сотые доли миллиметра. Если расстояние от препятствия до экрана увеличить до нескольких сотен метров, то размеры препятствия могут быть несколько сантиметров. Если расстояние между экраном и препятствием будет составлять несколько километров, дифракцию можно будет наблюдать при размерах препятствия в несколько метров.

Дифракционная картина – картина на экране, полученная в результате интерференции вторичных световых волн.

Подобную картину вы уже видели на картинке, иллюстрирующей опыт Юнга. Так, дифракционная картина от двух малых щелей – это чередующиеся темные и светлые полосы. Если использовать другие препятствия, картина будет меняться. На рисунке ниже схематично показаны дифракционные картины от различных препятствий: а – от тонкой проволочки; б – от круглого отверстия; в – от круглого экрана.

Вместо тени проволочка оставляет на экране светлые и темные полосы. В центре дифракционной картины, полученного от отверстия, появляется темное пятно, окруженное светлыми и темными кольцами. В центре тени, образованной круглым экраном, видно светлое пятнышко, а сама тень окружена темными кольцами. Если изменять диаметр отверстия, в центре дифракционной картины можно получить как светлое, так и темное пятно, окруженное либо темными, либо светлыми кольцами соответственно.

Дифракционная решетка

Дифракционная решетка – оптический прибор, принцип действия которого основан на явлении дифракции.

Дифракционная решетка представляет собой совокупность большого числа очень узких щелей, разделенных непрозрачными промежутками. Ее изготавливают путем нанесения на стекло штрихов. Их число может доходить до нескольких тысяч на 1 мм. Общее их число часто превышает 100 тысяч. Решетку также можно получить из металла, на котором чередуются участки, отражающие и рассеивающие свет.

Условные обозначения:

  • a – ширина прозрачных щелей (отражающих полос);
  • b – ширина непрозрачных промежутков (рассеивающих полос);
  • d – период дифракционной решетки.

Период дифракционной решетки равен сумме ширины прозрачных щелей и ширины непрозрачных промежутков:

d=a+b

Внимание! Обычно изготавливают дифракционные решетки с периодом в 10 мкм.

Читайте также:  Дисплазия сосудов что это

Пусть на дифракционную решетку с периодом d падает плоская монохроматическая волна, длина волны которой составляет λ.

При этом вторичные источники, расположенные в щелях решетки, создают световые волны, распространяющиеся по всем направлениям. Найдем условие, при котором идущие от щелей волны усиливают друг друга (складываются). Для этого рассмотрим волны, распространяющиеся в направлении под углом φ к дифракционной решетке.

Разность хода между волнами от краев соседних щелей равна длине отрезка АС. Если на этом отрезке вмещается целое число длин волн, то волны от всех щелей при сложении будут усиливать друг друга. Из треугольника АВС найдем длину катета АС:

AC=ABsinφ−dsinφ

При этом максимумы будут наблюдаться под углом φ в соответствии с условием:

dsinφ=±kλ

где величина k = 0, 1, 2, … определяет порядок спектра.

Нужно учитывать, что при выполнении условия друг друга усиливают как волны, распространяющиеся от нижних краев щелей, так и волны, распространяющиеся от всех других точек щелей. Каждой точке в первой щели соответствует точка во второй щели, находящаяся на расстоянии d от первой точки. Поэтому разность хода испущенных этими точками вторичных волн равна kλ, и эти волны взаимно усиливаются.

Рассмотрим следующий случай. За решеткой поместим собирающую линзу, а за ней – экран на фокусном расстоянии от линзы. Линза фокусирует лучи, идущие параллельно, в одной точке (в фокусе). В этой точке волны складываются и взаимно усиливаются. Углы φ, удовлетворяющие условию, определяют положение так главных максимумов на экране (соответствующих 1, 2 и т.д. порядку).

Наряду с картиной, получаемой в результате дифракции света, в случае дифракционной решетки наблюдается дифракционная картина и от отдельных щелей. Интенсивности максимумов в ней меньше интенсивности главных максимумов. Так как положение максимумов (кроме центрального, соответствующего k = 0) зависит от длины волны, то решетка разлагает белый свет в спектр. Чем больше λ, тем дальше от центрального максимума располагается тот или иной максимум, соответствующий данной длине волны.

Каждому значению k соответствует свой порядок спектра. Между максимумами расположены минимумы освещенности. Чем больше число щелей, тем более резко очерчены максимумы и тем более широкими минимумами они разделены.

Пример №1. В опыте Юнга по дифракции расстояние между щелями равно d = 7∙10-4 м. Расстояние от двойной щели до экрана равно D = 2 м. При освещении прибора зеленым светом расстояние между соседними светлыми дифракционными полосами оказалось равным ∆h = 16∙10-2 м. Вычислите длину волны.

В некоторой точке С экрана будет наблюдаться максимум освещенности при выполнении условия:

d2−d1=kλ

где величина k = 0, 1, 2, … – целые числа.

Применим теорему Пифагора к треугольникам S1CE и SsCB:

d22=D2+(hk+d2)2

d21=D2+(hk−d2)2

Вычитая из первого равенства второе, получаем:

d22−d21=2hkd

Отсюда:

(d2+d1)(d2−d1)=2hkd

Так как расстояние между щелями много меньше расстояния между ними и экраном, то можем считать, что:

d2+d1≈2D

Тогда:

d2−d1≈hkdD

Учитывая, что d2−d1=kλ, можем считать, что:

kλ≈hkdD

Отсюда можем найти расстояние k-той светлой полосы от центра экрана:

hk≈kλDd

Расстояние между соседними полосами равно:

Δh=hk+1−hk≈λDd

Следовательно:

λ≈dΔhD≈7·10−4·16·10−22=56·10−6(м)=56 (мкм)

Задание EF17638

На плоскую непрозрачную пластину с узкими параллельными щелями падает по нормали плоская монохроматическая волна из красной части видимого спектра. За пластиной на параллельном ей экране наблюдается интерференционная картина, содержащая большое число полос. При переходе на монохроматический свет из синей части видимого спектра

Ответ:

а) расстояние между интерференционными полосами увеличится

б) расстояние между интерференционными полосами уменьшится

в) расстояние между интерференционными полосами не изменится

г) интерференционная картина станет невидимой для глаза

Алгоритм решения

  1. Записать, как зависит расстояние между интерференционными полосами от частоты световых лучей.
  2. Выбрать ответ, удовлетворяющий установленной зависимости.

Решение

Зависимость расстояния между интерференционными полосами от частоты световых лучей удалось установить экспериментально. Было выяснено, что чем выше частота, тем меньше расстояние между ними. Частота света из синего части спектра больше частоты из красной части спектра. Поэтому при переходе из красной части спектра в синюю часть расстояние между полосами интерференционной картины уменьшится.

Ответ: б

pазбирался: Алиса Никитина | обсудить разбор | оценить

Задание EF18119

В прозрачном сосуде, заполненном водой, находится дифракционная решётка. Решётка освещается лучом света лазерной указки, падающим перпендикулярно её поверхности через боковую стенку сосуда. Как изменятся частота световой волны, длина волны, падающей на решётку, и угол между падающим лучом и первым дифракционным максимумом при удалении воды из сосуда?

Для каждой величины определите соответствующий характер изменения:

  1. Увеличится
  2. Уменьшится
  3. Не изменится

Запишите в таблицу выбранные цифры для каждого ответа. Цифры в ответе могут повторяться.

Алгоритм решения

1.Объяснить, что изменится, когда вода будет извлечена из сосуда.

2.Установить, как при этом изменится частота светового луча, достигающей решетки.

3.Установить, как при этом изменится длина световой волны, достигающей решетки.

4.Установить, как при этом изменится угол между нормалью к решётке и первым дифракционным максимумом.

Решение

Когда воды в сосуде не станет, изменится оптическая плотность среды – ею будет воздух, имеющий абсолютный показатель преломления 1 (у воды он равен 1,33).

Частота световой волны – величина постоянная. Она не меняется при изменении любых величин.

Длина световой волны меняется с учетом оптической плотности среды. Она определяется формулой:

λ=vν

В оптически более плотной среде скорость распространения волны уменьшается. Но когда их сосуда была удалена вода, оптическая плотность уменьшилась, значит, скорость волны увеличилась. Так как частота волны – постоянная, а длина волны прямо пропорциональна ее скорости, то при увеличении скорости длина волны тоже увеличится.

В оптически более плотной среде волны отклоняются от прямолинейного распространения сильнее в сторону нормали. Поэтому при удалении воды, когда оптическая среда станет менее плотной, лучи отклонятся от нормали. В этом случае угол между нормалью к решётке и первым дифракционным максимумом увеличится.

Ответ: 311

pазбирался: Алиса Никитина | обсудить разбор | оценить

Задание EF18230

Дифракционная решётка с периодом 10-5 м расположена параллельно экрану на расстоянии 0,75 м от него. На решётку по нормали к ней падает пучок света с длиной волны 0,4 мкм. Какого порядка максимум в спектре будет наблюдаться на экране на расстоянии 3 см от центра дифракционной картины? Считать sina ≈ tga.

Алгоритм решения

1.Записать исходные данные и перевести единицы измерения в СИ.

2.Выполнить пояснительный рисунок.

3.Записать условие интерференционных максимумов дифракционной решётки.

4.Выполнить решение в общем виде.

5.Подставить неизвестные данные и вычислить искомую величину.

Решение

Запишем исходные данные:

• Длина волны пучка света: λ = 0,4 мкм.

• Период дифракционной решетки: d = 10-5 м.

• Расстояние между дифракционной решеткой и экраном: L = 0,75 м.

• Расстояние от k-того максимума до центра дифракционной картины: a = 3 см.

0,4 мкм = 0,4∙10-6 м.

3 см = 3∙10-2 м

Сделаем пояснительный чертеж:

Запишем условие интерференционных максимумов дифракционной решётки:

dsinα=kλ

Из курса геометрии известно, что тангенс угла равен отношению прилежащего катета к противолежащему. Следовательно:

tanα=aL

Из условия задачи синус и тангенс этого угла равны. Следовательно:

sinα=tanα=aL

Найдём номер дифракционного максимума, который будет наблюдаться на экране на расстоянии 3 см от центра дифракционной картины:

daL=kλ

Ответ: 1

pазбирался: Алиса Никитина | обсудить разбор | оценить

Алиса Никитина | ???? Скачать PDF | Просмотров: 238 | Оценить:

Источник