Древесина древесные волокна сосуды

Древесина древесные волокна сосуды thumbnail

В процессе эволюции у высших растений совершенствование организации сопровождалось усложнением внутреннего строения — появлением органов и тканей.

Ткань — совокупность клеток, сходных по морфологическим и физиологическим признакам и выполняющих определенные функции. Орган состоит обычно из нескольких тканей.

Различают ткани:

1.образовательная (меристема) появляется по мере деления зиготы. Формирует тело зародыша,   по мере роста растения перемещается во все его точки роста – верхушки корней, стеблей, в основания междоузлий и листьев – это первичные меристемы (их клетки делятся в поперечном, радиальном и тангенциальном – параллельным поверхности – направлениях; лежат беспорядочно):

Верхушечные (апикальные)

Боковые (латеральные)

Вставочные (интеркалярные)

Основное свойство меристем – способность делиться митозом и дифференцироваться (преобразовываться в другие ткани).

Меристемы могут возникать и из уже имеющихся тканей – это вторичные меристемы (клетки делятся только в тангенциальном – параллельным поверхности – направлении; лежат четкими рядами):

Камбий – образовательная ткань корня и стебля, состоящая из клеток, при делении и дифференцировке которых с внутренней стороны от слоя камбия откладывается древесина, с внешней – луб (у голосеменных и двудольных растений)

Феллоген (пробковый камбий)

Раневые меристемы

2. покровные ткани растений находятся на границе с внешней средой и защищают их от высыхания, механического повреждения, действия высоких и низких температур, чрезмерного испарения воды, проникновения микроорганизмов:

Кожица (эпидерма) в виде однорядного слоя клеток покрывает листья и однолетние побеги. Наружная поверхность клеток этой ткани часто покрыта кутикулой или восковым налетом, особенно развитых у растений засушливых местообитаний. Основные функции эпидермы — защитная и регуляция газообмена и испарения воды (связь с внешней средой – через устьица)

Пробка сменяет эпидерму, вследствие чего к осени зеленый цвет побегов переходит в бурый; из нескольких слоев отмерших клеток, стенки которых пропитаны жироподобным веществом суберином, непроницаемым для воды и газов.  Т.к. живые ткани, лежащие под пробкой, нуждаются в газообмене и удалении избытка влаги, то связь с внешней средой осуществляется через  разрывы в пробке, заполненные рыхло расположенными клетками — чечевички.

Пробка вместе со слоями отмерших клеток других тканей входит в состав корки, которая предохраняет стволы деревьев от механических повреждений, лесных пожаров, резкой смены температур и т. п. Корка ежегодно наращивается за счет клеток находящегося под ней камбия.

3. проводящие ткани служат для распространения по всему растению веществ, всасываемых корнями, и веществ, образующихся в листьях и молодых стеблях.

Различают:

Дальний  или осевой транспорт веществ (от листьев к корням и от корней к листьям)

Ближний или радиальный.

Проводящая система растений состоит из:

Ксилемы  или древесины – комплекс тканей, расположенных внутрь ль камбия или в проводящих пучках; обеспечивает восходящий ток воды и минеральных солей.                                                                            

Состоит из:

-сосудов (проводящая ткань)

– древесных волокон (механическая ткань)

-древесной паренхимы (основная ткань)

Флоэмы  или луба – комплекс тканей с внешней стороны от камбия или в проводящих пучках; служит для проведения нисходящим током продуктов фотосинтеза к местам их использования или отложения в запас (подземные органы, созревающие плоды и семена и др.).

Состоит из:

-ситовидных трубок (проводящая ткань)

-лубяных волокон  (механическая ткань)

-лубяной паренхимы (основная ткань)

Дальний, или осевой, восходящий ток осуществляется по трахеидам и сосудам. Трахеиды — мертвые вытянутые клетки, лишенные цитоплазмы, имеющие одревесневшие стенки, в которых находятся поры. Через поровую мембрану происходит фильтрация растворов. Ток жидкости по трахеидам медленный, так как поровая мембрана препятствует движению воды. Трахеиды встречаются у всех высших растений, а у большинства хвощей, плаунов, папоротников и голосеменных служат единственными проводящими элементами ксилемы. У покрытосеменных развиты сосуды — полые трубки, состоящие из отдельных члеников, расположенных друг над другом. В члениках имеются сквозные отверстия — перфорации, благодаря которым быстрота тока растворов многократно увеличивается. Оболочки сосудов пропитываются лигнином и придают стеблю дополнительную прочность.

Нисходящий ток органических веществ осуществляется по ситовидным трубкам, входящим в состав проводящей ткани — флоэмы (луб). Ситовидные трубки состоят из члеников, поперечные перегородки которых пронизаны мелкими отверстиями, образующими «сито». Клетки ситовидных трубок лишены ядер, но содержат живую цитоплазму, образующую единое целое с цитоплазмой соседних клеток. Скорость движения по ситовидным трубкам меньше, чем скорость движения по сосудам.

Элементы проводящей системы вместе с волокнами механической ткани образуют пучки. Сосудисто-волокнистые пучкихорошо видны в листьях в виде жилок, они распространены в стебле, корнях, плодах и объединяют растение в единое целое.

4. механические ткани формируют «внутренний скелет» растения; обеспечивают прочность его органов: сопротивление нагрузкам на растяжение, сжатие и изгиб. Прочность и упругость клеток механических тканей достигается утолщением и одревеснением их оболочек. В молодых участках растущих органов механических тканей нет, т.к. живые клетки, находясь в состоянии тургора, благодаря плотным клеточным стенкам приобретают упругость.

Наиболее распространенная классификация механических тканей:

Читайте также:  Именно так называется наука о кровеносных и лимфатических сосудах

Склеренхима – представлена волокнами – длинными узкими клетками с равномерно утолщенной одревесневающей клеточной стенкой и обычно отмершим протопластом. В корне, стебле, плодах. В составе ксилемы (древесные волокна), флоэмы (лубяные волокна) и т.д.

Склереиды – клетки округлой или кубовидной формы с толстыми стенками, способными раздревесневать (утрачивать лигнин). В тканях мезофилла листа, мякоти сочных плодов (каменистые клетки), «косточек» плодов костянок

Колленхима – свойственна только двудольным, под эпидермой надземных органов. Округлая или кубовидная форма клеток, живой протопласт, неравномерное утолщение клеточных стенок (свойства пружины)

5. основная ткань  или паренхима, состоит из живых тонкостенных клеток, располагающихся между другими тканями:

основная паренхима – в сердцевине стеблей

древесная паренхима – между сосудами и древесными волокнами в древесине

лубяная паренхима – между ситовидными трубками и волокнами в лубе

хлорофиллоносная паренхима – столбчатая ткань в листе под верхней эпидермой, губчатая – под нижней

запасающая паренхима – в эндосперме семян, клубнях, корнеплодах, плодах

воздухоносная паренхима – у водных растений с плавающими листьями и стеблями.

Источник

Как и в хвойных породах, сердцевина лиственных пород образована довольно крупными паренхимными клетками, среди которых иногда встречаются мелкие толстостенные клетки, расположенные поодиночке или небольшими группами и заполненные бурым содержимым; у березы, дуба и ясеня клетки сердцевины могут оставаться живыми до 20-летнего возраста.

Древесина лиственных пород построена более сложно и состоит из большего числа разных элементов, причем на поперечном разрезе радиальное их расположение обнаруживается только у сердцевинных лучей. Сильное развитие отдельных элементов, особенно сосудов, смещает соседние клетки, вследствие чего древесина лиственных пород не имеет того правильного строения, которое характерно для древесины хвойных пород. В состав древесины лиственных пород входят проводящие элементы — сосуды и трахеиды, механические элементы — волокна либриформа и запасающие элементы — паренхимные клетки. Между этими основными видами элементов встречаются переходные (промежуточные) формы; это еще более усложняет строение древесины лиственных пород. На рис. 20 и 21 показаны схемы микроскопического строения древесины дуба (кольцесосудистая порода) и березы (рассеяннососудистая порода).

Сосуды — типичные водопроводящие элементы только лиственных пород представляют собой длинные тонкостенные трубки, образовавшиеся из длинного вертикального ряда коротких клеток, называемых члениками сосудов, путем растворения перегородок между ними. Если при этом в перегородке образуется одно большое округлое отверстие, такая перфорация называется простой. Если после растворения в перегородке остается ряд полос, между которыми расположены щелевидные отверстия, то такая перфорация называется лестничной (рис. 22). У многих пород встречается какой-либо один тип перфораций в сосудах, например: у дуба только простые, а у березы только лестничные. Некоторые породы имеют и те и другие, но и в этом случае преобладает какой-либо один тип перфораций.

Древесина древесные волокна сосуды

Рис. 20. Схема микроскопического строения древесины дуба: 1 – годичный слой; 2 – сосуды; 3 – крупный сосуд ранней зоны; 4 – узкий сосуд поздней зоны; 5 широкий сердцевинный луч; 6 – узкий сердцевинный луч; 7 – либриформ.

После соединения клеток, образующих сосуд, протоплазма и ядро отмирают и сосуды превращаются в мертвые капиллярные трубки, заполненные водой. В крупных сосудах диаметр члеников большой, длина же их нередко меньше диаметра; перегородки между члениками перпендикулярны длине сосуда, перфорации простые. В мелких сосудах диаметр члеников мал, а длина их в несколько раз превышает поперечные размеры; перегородки между члениками сильно наклонены и у многих пород снабжены лестничными перфорациями.

Древесина древесные волокна сосуды

Рис. 21. Схема микроскопического строения древесины березы: 1 — годичный слой; 2— сосуды; 3— сердцевинные лучи; 4 — либриформ.

Таким образом, форма члеников сосудов может быть различной — от веретенообразной в мелких сосудах до цилиндрической или бочкообразной в крупных сосудах; длина их в ранней древесине кольцесосудистых лиственных пород (крупные сосуды) от 0,23 до 0,39 мм, а в поздней древесине (мелкие сосуды) от 0,27 до 0,58 мм. Боковые стенки сосудов разных пород отличаются разнообразием утолщений, возникающих большей частью путем отложения вторичных слоев на первичную оболочку, которая в неутолщенных местах остается целлюлозной и служит для пропускания воды в соседние элементы; утолщенные места обычно древеснеют, так как предназначены для придания прочности стенке сосуда, подверженного давлению со стороны соседних элементов.

Древесина древесные волокна сосуды

Рис. 22. Детали строения сосудов: а — членик сосуда с лестничной перфорацией; б — два членика сосуда с простой перфорацией; в — спиральный сосуд; г — типы окаймленных пор на стенках сосудов; д — сосуд с тиллами; 1 — округлые поры (береза); 2— ромбовидные поры (клен); 3— многогранные поры (вяз); 4 — стенка сосуда; 5 — тиллы.

Утолщение стенок сосудов делят на кольчатое, спиральное и сетчатое (см. рис. 22). Наименее утолщены кольчатые сосуды. У них утолщения имеют форму колец, расположенных на заметном расстоянии друг от друга; такие сосуды есть только в первичной древесине. Сильнее укреплена стенка сосудов со спиральными утолщениями. У сетчатых сосудов стенка утолщена почти сплошь так, что остаются только поры, заметные в виде частых точек на боковой поверхности сосуда. В древесине большинства лиственных пород встречаются сетчатые, а некоторых пород, например у липы, клена, спиральные сосуды.

Читайте также:  О женщина сосуд греха

В местах соприкосновения стенок с соседним сосудом есть окаймленные поры разной формы, которые отличаются от окаймленных пор хвойных пород меньшей величиной и отсутствием торуса. В местах, где стенка примыкает к паренхимным клеткам, сосуды имеют полуокаймленные поры (окаймление только со стороны сосуда). В местах соприкосновения с клетками сердцевинного луча на стенках сосуда находятся прямоугольные участки, на которых тесно расположены овальные или округлые поры с очень узким окаймлением. В местах соприкосновения с волокнами либриформа стенки сосудов пор не имеют.

Исследования древесины ясеня показали, что сосуды в стволе, отклоняясь от вертикали в тангенциальном и отчасти в радиальном направлениях, сообщаются с соседними сосудами через многочисленные окаймленные поры и перфорационные пластинки. Благодаря указанным конечным и промежуточным контактам в древесине лиственных пород образуется единая пространственно разветвленная водопроводящая система. У некоторых пород с образованием ядра сосуды закупориваются тиллами и выводятся из строя как проводящие элементы. Тиллы представляют собой выросты в большинстве случаев соседних клеток сердцевинных лучей и, редко, древесной паренхимы; они имеют форму пузырей с одревесневшими стенками. Врастание паренхимных клеток в сосуд происходит через поры на его стенках (см. рис. 22).

У некоторых пород тиллы образуются нормально уже после одного или нескольких лет работы сосуда; так, у белой акации и фисташки крупные сосуды частично закупориваются тиллами уже в конце первого года существования. У многих пород тиллами закупориваются обычно сосуды ядра (у дуба, вяза), но и у безъядровых пород в определенных случаях наблюдается сильное тиллообразование (например, в ложном ядре бука). Роль тилл в растущем дереве может быть различной: тиллы закупоривают водопроводящие пути; заполнение сосудов ядра тиллами, особенно толстостенными (у фисташки), повышает твердость древесины; если клетки тилл живые, они играют роль запасающих элементов наряду с древесной паренхимой. В срубленном дереве наличие тилл сильно затрудняет пропитку древесины; например, ложное ядро бука почти не поддается пропитке. Трахеиды у лиственных пород могут быть двух типов: сосудистые и волокнистые (рис. 23). Сосудистые трахеиды — преимущественно водопроводящие элементы, длина которых редко превышает 0,5 мм; по своей форме, размерам, а также по расположению пор они сходны с члениками мелких сосудов; стенки их нередко бывают снабжены спиральными утолщениями. Сосудистую трахеиду можно рассматривать как промежуточный элемент между типичной трахеидой и члеником сосуда.

Волокнистая трахеида в свою очередь представляет собой переходный элемент от трахеиды к волокну либриформа; она имеет форму довольно длинного волокна с заостренными концами, толстую оболочку и малую полость; поры на стенках мелкие, окаймленные, большей частью с отверстием щелевидной формы. От волокон либриформа волокнистые трахеиды отличаются несколько меньшей толщиной стенок, но главным образом наличием ясно окаймленных пор, в то время как у волокон либриформа поры простые. Трахеиды есть в древесине не всех лиственных пород; трахеиды обоих типов есть в древесине дуба, где они приурочены к поздней зоне годичных слоев; волокнистые трахеиды есть в древесине груши и яблони.

Либриформ — главная составная часть древесины лиственных пород; у некоторых пород он занимает до 76% общего объема. Волокна либриформа представляют собой прозенхимные клетки веретенообразной формы с толстыми одревесневшими стенками (см. рис. 23), малой полостью и минимальным количеством простых пор на стенках; сбоку поры видны, как узкие щели, расположенные по спирали (косые щелевидные поры). В большинстве случаев заостренные концы волокон либриформа гладкие, но у некоторых пород они расщеплены или имеют зазубрины (у бука, эвкалипта), в результате чего достигается более плотное соединение волокон между собой. Длина волокон либриформа колеблется от 0,3 до 2 мм, а толщина — от 0,02 до 0,05 мм.

Древесина древесные волокна сосуды

Рис. 23. Элементы древесины лиственных пород: а — сосудистая трахеида; б — волокнистая трахеида; в – волокно либриформа; г — волокно перегородчатого либриформа; д — тяж древесной паренхимы; е — веретенообразная клетка древесной паренхимы; ж — клетки сердцевинных лучей.

Вполне сформировавшиеся волокна либриформа лишены живого содержимого, и полости их заполнены воздухом. Стенки волокон либриформа сильно утолщены в древесине твердых пород (дуба, ясеня, бука, граба и др.) и слабее в древесине мягких пород (липы, тополя, ивы). На рис. 24 показан либриформ с разной толщиной стенок. У некоторых пород, например у кленов, встречаются волокна с менее утолщенными стенками и живым содержимым; эти элементы можно рассматривать как промежуточные между волокнами либриформа и веретенообразными клетками древесной паренхимы.

По радиусу ствола размеры волокон либриформа, и толщина, их стенок увеличиваются в направлении от сердцевины к коре, достигают максимума, после чего остаются неизменными или несколько уменьшаются. По высоте ствола длина волокон либриформа и толщина их стенок убывают в направлении от комля к вершине. От количества либриформа и размеров отдельных волокон, главным образом от толщины их стенок, зависят плотность и прочность древесины лиственных пород. Размеры волокон либриформа зависят от условий произрастания: с улучшением этих условий увеличивается длина волокон и толщина их оболочек. Рубки ухода вызывают увеличение количества и длины волокон либриформа.

Читайте также:  Спазм сосудов глазного дна у грудничка

Древесина древесные волокна сосуды

Рис. 24. Фрагменты поперечных разрезов древесины тополя (слева), бука (посредине) и железного дерева (справа): 1 — сосуды; 2— сердцевинный луч; 3, 4 и 5 — волокна либриформа со стенками тонкими, средней толщины и очень толстыми.

В древесине некоторых пород (например, тика) встречается так называемый перегородчатый либриформ (см. рис. 23). Его волокна после окончания роста в длину и утолщения оболочек делятся поперечными перегородками на ряд секций; перегородки остаются тонкими и не древеснеют. Таким образом, волокно перегородчатого либриформа несколько напоминает тяж древесной паренхимы, от которого оно отличается характером пор и толщиной боковых (продольных) стенок; кроме того, полости перегородчатого либриформа не имеют содержимого. Сердцевинные лучи. Паренхимные клетки в лиственных породах, как и в древесине хвойных пород, образуют прежде всего сердцевинные лучи, которые у лиственных пород развиты значительно сильнее, нежели в хвойных. Они состоят исключительно из паренхимных клеток, несколько вытянутых по длине луча, с тонкими одревесневшими стенками и многочисленными простыми порами, особенно в тех местах, где клетки луча касаются сосудов или трахеид.

По ширине сердцевинные лучи лиственных пород имеют от одного (ясень) до нескольких десятков (широкие лучи дуба, бука) рядов клеток, а по высоте — от нескольких рядов (самшит) до нескольких десятков и даже сотен рядов клеток (дуб, бук). На тангенциальном разрезе однорядные лучи представлены вертикальной цепочкой клеток, а многорядные имеют вид веретена или чечевицы. Строение упоминавшегося выше ложноширокого луча показано на рис. 25.

Древесина древесные волокна сосуды

Рис. 25. Сердцевинный луч на радиальном разрезе древесины ивы (слева), и тангенциальный разрез древесины граба (справа): 1 — стоячие клетки; 2 — лежачие клетки; 3 — сосуд; 4 — ложноширокий луч; 5,6 — узкие лучи; 7 — либриформ.

У отдельных пород (ивы) краевые клетки, т. е. верхний и нижний ряды по высоте луча, вытянуты поперек луча и называются стоячими (рис. 25); такие лучи получили название лучей разнородных, в отличие от лучей однородных, у которых все клетки по форме одинаковы. Ширина клеток сердцевинных лучей в древесине летнего дуба 15 μ, а высота 17 μ; длина клеток в узких лучах 50—55μ, в широких 69—94 μ. Срединные (по высоте) клетки сердцевинных лучей как у лиственных, так и у хвойных пород по обеим сторонам сопровождаются узкими, заполненными воздухом межклетными ходами, пронизывающими луч по всей длине и через межклетники коровой паренхимы примыкающими к чечевичкам коры; через эти ходы осуществляется газообмен с окружающей дерево атмосферой. Клетки сердцевинных лучей у лиственных пород могут долго оставаться живыми; так, у яблони найдены живые клетки около сердцевины 24-летнего, у бука — 98-летнего, а у граба — даже 107-летнего возраста.

Древесная паренхима. Лиственные породы, сбрасывающие листву на зиму, нуждаются в большем, чем хвойные, количестве запасных питательных веществ, необходимых для образования листьев в начале следующего вегетационного периода. Вследствие этого у лиственных пород наряду с большим содержанием (объемом) сердцевинных лучей сильнее развивается древесная паренхима, почти отсутствующая у хвойных пород. Клетки древесной паренхимы собраны в вертикальные ряды и снабжены простыми порами; концевые клетки имеют заостренную форму, благодаря чему весь ряд производит впечатление волокна, разделенного на участки поперечными перегородками (см. рис. 23). Такие ряды паренхимных клеток называют тяжами древесной паренхимы. У некоторых пород (березы, липы, ивы) встречаются веретенообразные паренхимные клетки (веретенообразная паренхима) без поперечных перегородок. Веретенообразная паренхима отличается от трахеиды типом пор и отсутствием спиральных утолщений, от волокон либриформа — толщиной стенок, типом пор и формой окончаний.

Древесная паренхима у лиственных пород занимает от 2 до 15% всего объема древесины. У некоторых тропических пород древесная паренхима образует основную массу древесины; такие породы дают особенно легкую древесину (например, бальза). Распределение древесной паренхимы в годичном слое зависит от породы и имеет большое диагностическое значение. Различают следующие основные типы распределения древесной паренхимы: рассеянная (диффузная) паренхима, когда клетки ее распределены по годичному слою более или менее равномерно (береза, бук и др.); приграничная (терминальная) паренхима, когда годичный слой оканчивается одним или несколькими рядами древесной паренхимы (ива, клены и др.); тангенциальная (метатрахеальная) паренхима, когда клетки ее образуют тангенциальные ряды в поздней зоне годичных слоев (дуб, орех грецкий и др.); околососудистая (вазицентрическая) паренхима, когда клетки ее группируются около сосудов. Примерное содержание различных элементов в древесине лиственных пород может быть иллюстрировано данными табл. 6.

Источник