Два цилиндрических сосуда имеющих площади оснований
Наглядная стереометрия
В 13 задании ЕГЭ базового уровня мы будем иметь дело с задачами по стереометрии, но не абстрактными, а наглядными примерами. Это могут быть задачи на уровень жидкости в сосудах, которую я разобрал ниже, или же задачи на модификации фигуры — например, у которой отрезали вершины. Нужно быть готовым к решению простых задач по стереометрии — они обычно сводятся сразу к задачам на плоскости, необходимо только правильно посмотреть на чертеж.
Разбор типовых вариантов заданий №13 ЕГЭ по математике базового уровня
Вариант 13МБ1
Вода в сосуде цилиндрической формы находится на уровне h = 80 см. На каком уровне окажется вода, если ее перелить в другой цилиндрический сосуд, у которого радиус основания в 4 раза больше, чем у данного? Ответ дайте в сантиметрах.
Алгоритм выполнения:
- Записать формулу объема цилиндра.
- Подставить значения для цилиндра с жидкостью в первом и во втором случае.
- Объем жидкости не изменялся, следовательно, можно приравнять объемы.
- Полученное уравнение решить относительно второй высоты h2.
- Подставить данные и вычислить искомую величину.
Решение:
Запишем формулу объема цилиндра.
Если вы забыли формулу объема цилиндра, то напомню, как ее можно легко вывести. Объем простых фигур, таких как куб и цилиндр, можно вычислить умножив площадь основания на высоту. Площадь основания в случае с цилиндром равна площади окружности, которую, вы, наверняка помните: π • r2.
Следовательно, объем цилиндра равен π • r2 • h
Подставим значения для цилиндра с жидкостью в первом и во втором случае. V1 = π r12 h1 V2 = π r22 h2 Объем жидкости не изменялся, следовательно, можно приравнять объемы.
V1 = V2
Левые части равны, значит можно приравнять и правые.
π r12 h1 = π r22 h2
Полученное уравнение решим относительно второй высоты h2.
h2 – неизвестный множитель. Чтобы найти неизвестный множитель нужно произведение разделить на известный множитель.
h2 =( π r12 h1)/ π r22
По условию площадь основания стала в 4 раза больше, то есть r2 = 4 r1 . Подставим r2 = 4 r1 в выражение для h1. Получим: h2 =( π r12 h1)/ π (4 r1) 2 Полученную дробь сократим на π, получим h2 =( r12 h1)/ 16 r12 Полученную дробь сократим на r1, получим h2 = h1/ 16. Подставим известные данные: h2 = 80/ 16 = 5 см. Ответ: 5.
Вариант 13МБ2
Даны две коробки, имеющие форму правильной четырёхугольной призмы. Первая коробка в четыре с половиной раза выше второй, а вторая втрое шире первой. Во сколько раз объём первой коробки меньше объёма второй?
Алгоритм выполнения:
- Записать формулу, для вычисления объема правильной четырехугольной призмы.
- Записать в общем виде формулу для нахождения объема в первом и втором случае.
- Найти отношение объемов.
- Преобразовать полученное выражение с учетом соотношения измерений первой и второй призмы.
- Сократить получившуюся дробь.
Решение:
Запишем формулу, для вычисления объема правильной четырехугольной призмы.
V = a · b · c
Запишем в общем виде формулу для нахождения объема в первом и втором случае.
V1 = a1 · b1 · c1
V2 = a2 · b2 · c2
Найдем отношение объемов.
V1 / V2 = (a1 · b1 · c1)/ ( a2 · b2 · c2)
Преобразуем полученное выражение с учетом соотношения измерений первой и второй призмы. По условию c1 = 4,5 c2 (первая коробка в четыре с половиной раза выше второй), b2 = 3 b1 (вторая коробка втрое шире первой). Так как это правильные четырехугольные призмы, то в основании лежит квадрат, а значит глубина второй коробки тоже втрое больше глубины первой, то есть a2 = 3 a1 Подставим эти выражения в формулу отношения объемов:
V1 / V2 = (a1 · b1 · c1)/ ( a2 · b2 · c2) = (a1 · b1 · 4,5c2)/ ( 3a1 · 3b1 · c2) = (a1 · b1 · 4,5c2)/ ( 9a1 · b1 · c2)
Сократим получившуюся дробь на a1 · b1 · c2. Получим:
V1 / V2 = (a1 · b1 · 4,5c2)/ ( 9a1 · b1 · c2) = 4,5/9 = ½.
Объем первой коробочки в 2 раза меньше объема второй. Ответ: 2.
Вариант 13МБ3
Даны две коробки, имеющие форму правильной четырёхугольной призмы. Первая коробка в полтора раза выше второй, а вторая втрое шире первой. Во сколько раз объём первой коробки меньше объёма второй?
Алгоритм выполнения:
- Записать формулу, для вычисления объема правильной четырехугольной призмы.
- Записать в общем виде формулу для нахождения объема в первом и втором случае.
- Найти отношение объемов.
- Преобразовать полученное выражение с учетом соотношения измерений первой и второй призмы.
- Сократить получившуюся дробь.
Решение:
Запишем формулу, для вычисления объема правильной четырехугольной призмы.
V = a · b · c
Запишем в общем виде формулу для нахождения объема в первом и втором случае.
V1 = a1 · b1 · c1
V2 = a2 · b2 · c2
Найдем отношение объемов.
V1 / V2 = (a1 · b1 · c1)/ ( a2 · b2 · c2)
Преобразуем полученное выражение с учетом соотношения измерений первой и второй призмы.
По условию c1 = 1,5 c2 (первая коробка в полтора раза выше второй), b2 = 3 b1 (вторая коробка втрое шире первой).
Так как это правильные четырехугольные призмы, то в основании лежит квадрат, а значит глубина второй коробки тоже втрое больше глубины первой, то есть a2 = 3 a1
Подставим эти выражения в формулу отношения объемов:
V1 / V2 = (a1 · b1 · c1)/ ( a2 · b2 · c2) = (a1 · b1 · 1,5c2)/ ( 3a1 · 3b1 · c2) = (a1 · b1 · 1,5c2)/ ( 9a1 · b1 · c2)
Сократим получившуюся дробь на a1 · b1 · c2. Получим:
V1 / V2 = (a1 · b1 · 1,5c2)/ ( 9a1 · b1 · c2) = 1,5/9 = 15/(10 · 9) = 3/(2 · 9) = 1/ (2 · 3) = 1/6.
Объем первой коробочки в 6 раза меньше объема второй. Ответ: 6.
Вариант 13МБ4
От деревянного кубика отпилили все его вершины (см. рис.). Сколько граней у получившегося многогранника (невидимые ребра на рисунке не изображены)?
Сначала вспомним сколько всего граней и вершин у куба: шесть граней и восемь вершин. Теперь на месте каждой вершины образуется новая грань после отпила, значит у модифицированного в задании куба шесть родных граней и восемь новых (после отпила). Итого получаем: 6 + 8 = 14 граней.
Ответ: 14.
Если бы нас спросили, а сколько вершин у нового «куба». Очевидно, если вместо одной становится три, а их всего восемь, то получаем: 8 • 3 = 24
Вариант 13МБ5
Даны два цилиндра. Радиус основания и высота первого цилиндра равны соответственно 2 и 6, а второго – 6 и 4. Во сколько раз объем второго цилиндра больше объема первого?
Алгоритм выполнения
- Записываем ф-лу для вычисления объема цилиндра.
- Вводим обозначения для радиуса основания и высоты 1-го цилиндра. Выражаем подобным образом аналогичные параметры 2-го цилиндра.
- Формируем формулы для объема 1-го и 2-го цилиндров.
- Вычисляем отношение объемов.
Решение:
Объем цилиндра равен: V=πR2H. Обозначим радиус основания 1-го цилиндра через R1, а его высоту – через Н1. Соответственно, радиус основания 2-го цилиндра обозначим через R2, а высоту – через Н2. Отсюда получим: V1=πR12H1, V2=πR22H2. Запишем искомое отношение объемов:
. Подставляем в полученное отношение числовые данные:
. Вывод: объем 2-го цилиндра больше объема 1-го в 6 раз.
Вариант 13МБ6
В бак, имеющий форму прямой призмы, налито 5 л воды. После полного погружения в воду детали уровень воды в баке поднялся в 1,4 раза. Найдите объем детали. Ответ дайте в кубических сантиметрах, зная, что в одном литре 1000 кубических сантиметров.
Алгоритм выполнения
- Вводим обозначения для объема до погружения детали и после. Пусть это будет соответственно V1 и V2.
- Фиксируем значение для V1. Выражаем V2 через V1. Находим значение V2.
- Переводим результат, полученный в литрах, в куб.см.
Решение:
Объем бака до погружения V1=5 (л). Т.к. после погружения детали объем стал равным V2. Согласно условию, увеличение составило 1,4 раза, поэтому V2=1,4V1. Отсюда получаем: V2=1,4·5=7 (л). Т.о., разница объемов, которая и составляет объем детали, равна:
V2–V1=7–5=2 (л).
2 л=2·1000=2000 (куб.см).
Вариант 13МБ7
Вода в сосуде цилиндрической формы находится на уровне h=80 см. На каком уровне окажется вода, если ее перелить в другой цилиндрический сосуд, у которого радиус основания вдвое больше, чем у первого? Ответ дайте в сантиметрах.
Алгоритм выполнения
- Записываем ф-лу для расчета объема цилиндра.
- На основании этой формулы записываем 2 уравнения – для вычисления объема воды в 1-м и 2-м сосудах. Для этого используем в формуле соответствующие индексы 1 и 2.
- Поскольку воду просто переливают их одного сосуда в другой, то ее объем не изменяется. Поэтому приравниваем полученные уравнения. Из полученного единственного уравнения находим уровень воды во 2-м сосуде, выраженный высотой h2.
Решение:
Объем цилиндра равен: V=Sоснh=πR2h. Объем воды в 1-м сосуде: V1=πR12h1. Объем во 2-м сосуде: V2=πR22h2. Приравниваем V1 и V2: πR12h1=πR22h2. Сокращаем на π, выражаем h2:
. По условию R2=2R1. Отсюда:
.
Вариант 13МБ8
От деревянной правильной треугольной призмы отпилили все ее вершины (см. рис.). Сколько вершин у получившегося многогранника (невидимые ребра на рисунке не изображены)?
Алгоритм выполнения
- Определяем количество вершин у треугольной призмы.
- Анализируем изменения, которые произойдут при отпиливании всех вершин. Подсчитываем кол-во вершин у нового многогранника.
Решение:
Вершины призмы формируют вершины оснований (верхнего и нижнего). Поскольку основаниями правильной треугольной призмы являются правильные треугольники, то вершин у такой призмы 3·2=6 штук.
Спилив вершины призмы, получим вместо них небольшие (по сравнению с размерами самой призмы) треугольники. Это отображено и на рисунке. То есть вместо каждой вершины образуется 3 новых. Следовательно, их кол-во станет равным: 6·3=18.
Вариант 13МБ9
Даны две коробки, имеющие форму правильной четырехугольной призмы, стоящей на основании. Первая коробка в четыре с половиной раза ниже второй, а вторая второе уже первой. Во сколько раз объем первой коробки больше объема второй?
Алгоритм выполнения
- Вводим обозначения для линейных параметров коробок и их объемов.
- Определяем зависимость линейных параметров согласно условию.
- Записываем формулу для вычисления объема призмы.
- Адаптируем эту формулу для объемов коробок.
- Находим отношение объемов.
Решение:
Т.к. форма коробок – правильная призма, то в их основании лежат квадраты. Поэтому можем обозначить длину и ширину каждой коробки одинаково. Пусть для первой коробки это а1, а для второй а2. Высоты коробок обозначим соответственно h1 и h2. Объемы – V1 и V2.
Согласно условию, h2=4,5h1, а1=3а2. Объем призмы равен: V=Sоснh. Т.к. в основании коробок лежит квадрат, то Sосн=а2. Отсюда: V=a2h. Для 1-й коробки имеем: V1=a12h1. Для 2-й коробки: V2=a22h2. Тогда получаем отношение: Ответ: 2
Вариант 13МБ10
В сосуде, имеющем форму конуса, уровень жидкости достигает ½ высоты. Объем сосуда 1600 мл. Чему равен объем налитой жидкости? Ответ дайте в миллилитрах.
Алгоритм выполнения
- Доказываем, что данные в условии конусы подобны.
- Определяем коэффициент подобия.
- Используя свойство для объемов подобных тел, находим объем жидкости.
Решение:
Если рассматривать сечение конуса по двум его противоположно расположенным образующим (осевое сечение), то видим, что полученные таким способом треугольники большого конуса и малого (образованного жидкостью) подобны. Это следует из равенства их углов. Т.е. имеем: у конусов подобны высоты и радиусы основания. Отсюда делаем вывод: т.к. линейные параметры конусов подобны, то и конусы подобны.
По условию высота малого конуса (жидкости) составляет ½ высоты конуса. Значит, коэффициент подобия малого и большого конусов равен ½.
Применяем св-во подобия тел, которое заключается в том, их объемы относятся как коэффициет подобия в кубе. Обозначим объем большого конуса V1, малого – V2. Получим:
. Поскольку по условию V1=1600 мл, то V2=1600/8=200 мл.
Вариант 13МБ11
Даны два шара с радиусами 4 и 1. Во сколько раз объем большего шара больше объема меньшего?
Алгоритм выполнения
- Записываем формулу для вычисления объема шара.
- Адаптируем формулу для каждого из шаров. Для этого используем индексы 1 и 2.
- Записываем отношение объемов, вычисляем его, подставив числовые данные из условия.
Решение:
Объем шара вычисляется по ф-ле: . Отсюда объем 1-го (большего) шара равен , 2-го (меньшего) шара – . Составим отношение объемов:
Подставляем в полученную формулу числовые данные из условия:
Вывод: объем большего шара в 64 раза больше.
Вариант 13МБ12
Даны два цилиндра. Радиус основания и высота первого цилиндра равны соответственно 4 и 18, а второго – 2 и 3. Во сколько раз площадь боковой поверхности первого цилиндра больше площади боковой поверхности второго?
Алгоритм выполнения
- Записываем формулу для определения площади бок.поверхности цилиндра.
- Переписываем ее дважды с использованием соответствующих индексов – для 1-го (большего) и 2-го (меньшего) цилиндров.
- Находим отношение площадей. Вычисляем отношения, используя числовые данные из условия.
Решение:
Площадь бок.поверхности цилиндра вычисляется так: S=2πRH. Для 1-го цилиндра имеем: S1=2πR1H1. Для 2-го цилиндра: S2=2πR2H2. Составим отношение этих площадей:
Найдем числовое значение полученного отношения:
Вывод: площадь боковой поверхности 1-го цилиндра больше в 12 раз.
Вариант 13МБ13
Однородный шар диаметром 3 см весит 162 грамма. Сколько граммов весит шар диаметром 2 см, изготовленный из того же материала?
Алгоритм выполнения
- Записываем формулу для определения массы большего шаров через плотность и объем.
- Объем в этой формуле расписываем через ф-лу объема шара (через его радиус).
- Записываем ф-лу для массы меньшего шара, расписываем объем через радиус (по аналогии с пп.1 и 2).
- Поскольку оба шара изготовлены из одного и того же материала, то найденное значение для плотности можем использовать в ф-ле для массы меньшего шара. Вычисляем искомую массу.
Решение:
Масса большего (1-го) шара равна: m1=ρV1. Объем этого шара составляет V1=(4/3)πR13. Отсюда получаем: m1=(4/3)πρR13. Из этого уравнения выразим плотность: . Масса меньшего (2-го) шара равна: m2=ρV2. Объем шара: V2=(4/3)πR23. В ур-ние для m2 подставим выражения для ρ и V2. Получаем:
Вычисляем m2:
Вариант 13МБ14
В бак, имеющий форму правильной четырехугольной призмы со стороной основания, равной 40 см, налита жидкость. Чтобы измерить объем детали сложной формы, ее полностью погружают в эту жидкость. Найдите объем детали, если после ее погружения уровень жидкости в баке поднялся на 10 см. Ответ дайте в кубических сантиметрах.
Алгоритм выполнения
- Определяем часть призмы, соответствующую объему погруженной детали.
- Вычисляем объем детали на основании формулы для определения объема прямой призмы с квадратом в основании.
Решение:
Погруженная в жидкость деталь занимает объем, соответствующий столбу жидкости, высота которого равна 10 см, т.е. разнице, возникшей между начальной высотой жидкости и конечной (после погружения). Это означает, что деталь имеет объем, равный части жидкости, занимающей объем 40х40х10 (см).
Найдем этот объем:
V=40·40·10=16000 (см3).
Даниил Романович | ???? Скачать PDF |
Источник
Автор
Тема: Жидкости и газы из сборника задач Савченко Н.Е. (Прочитано 43905 раз)
0 Пользователей и 3 Гостей просматривают эту тему.
361. В цилиндрических сообщающихся сосудах находится ртуть. Отношение диаметров сосудов n = d1/d2 = 0,25. В узкий сосуд наливают воду; высота столба воды h = 80 см. На сколько опустится уровень ртути в узком сосуде и на сколько он поднимется в широком? Плотность воды ρ1 = 1,0⋅103 кг/м3, ртути ρ2 = 13,6⋅103 кг/м3.
Решение. Для сообщающихся сосудов выполняются условие равновесия жидкости (в однородной жидкости на одном уровне гидростатические давления равны) (рис. 1):
рА = рВ,
где pА = ρ2⋅g⋅h2, pВ = ρ1⋅g⋅h. Тогда
ρ2⋅g⋅h2 = ρ1⋅g⋅h или ρ1⋅h = ρ2⋅h2. (1)
Из рисунка 1 видно, что
h2 = Δh1 + Δh2, (2)
где Δh1 — высота, на которую опустится ртуть в узком сосуде, Δh2 — высота, на которую поднимется ртуть в широком сосуде.
Из условия не сжимаемости воды
ΔV1 = ΔV2, S1⋅Δh1 = S2⋅Δh2,
где [ S_{1} = frac{pi cdot d_{1}^{2} }{4}, ; ; ; S_{2} =frac{pi cdot d_{2}^{2} }{4} ] — площади поперечного сечения сосудов, d1/d2 = n — по условию. Тогда
[ frac{pi cdot d_{1}^{2} }{4} cdot Delta h_{1} =frac{pi cdot d_{2}^{2} }{4} cdot Delta h_{2}, ; ; ; Delta h_{2} =Delta h_{1} cdot left(frac{d_{1} }{d_{2} } right)^{2} =n^{2} cdot Delta h_{1}.
]
После подстановки в уравнение (2) получаем:
h2 = Δh1 + n2⋅Δh1 = Δh1⋅(1 + n2).
Подставим в уравнение (1)
[ rho _{1} cdot h=rho _{2} cdot Delta h_{1} cdot left(1+n^{2} right), ; ; ; Delta h_{1} =frac{rho _{1} cdot h}{rho _{2} cdot left(1+n^{2} right)}, ; ; ; Delta h_{2} =frac{rho _{1} cdot h cdot n^{2} }{rho _{2} cdot left(1+n^{2} right)}, ]
Δh1 = 5,5⋅10–2 м, Δh2 = 3,5⋅10–3 м.
Записан
362. В сообщающиеся сосуды налита ртуть, поверх которой в один из сосудов налита вода. Разность уровней ртути Δh = 20 мм. Плотность ртути ρ1 = 13,6⋅103 кг/м3, воды ρ2 = 1,0⋅103 кг/м3. Найти высоту столба воды.
Решение. Для сообщающихся сосудов выполняются условие равновесия жидкости (в однородной жидкости на одном уровне гидростатические давления равны) (рис. 1):
рА = рВ,
где pА = ρ1⋅g⋅Δh, pВ = ρ2⋅g⋅h2. Тогда
ρ1⋅g⋅Δh = ρ2⋅g⋅h2 или ρ1⋅Δh = ρ2⋅h2,
[ h_{2} =frac{rho _{1} cdot Delta h}{rho _{2}}, ]
h2 = 0,27 м.
Записан
363. В двух сообщающихся цилиндрических сосудах с одинаковыми поперечными сечениями площадью S = 1⋅10–2 м2 находится ртуть. В одни из сосудов поверх ртути наливают воду массой m1 = 20 кг и опускают в нее плавать груз массой m2 = 7,2 кг. На сколько поднимется уровень ртути во втором сосуде? Плотность ртути ρ = 13,6⋅103 кг/м3.
Решение. Для сообщающихся сосудов выполняются условие равновесия жидкости (в однородной жидкости на одном уровне гидростатические давления равны) (рис. 1):
рА = рВ,
где pА = ρ⋅g⋅h. Давление в точке В можно найти разными способами.
1 способ. Давление pВ = ρ1⋅g⋅h3, где ρ1 — плотность воды, h3 = h1 + h2, h1 — высота столбца воды массой m1, h2 — высота столбца воды, вытесненная при погружении в воду тела массой m2 и т.п.
2 способ. Так как тело плавает в воде, то давление воды и плавающего тела в точке В
[ p_{B} = frac{left(m_{1} +m_{2} right)cdot g}{S}. ]
Тогда
[ rho cdot g cdot h=frac{left(m_{1} +m_{2} right)cdot g}{S}, ;; ; rho cdot h=frac{m_{1} +m_{2} }{S}.;;; (1) ]
Из рисунка 1 видно, что
h = Δh1 + Δh2,
где Δh1 — высота, на которую поднимется ртуть, Δh2 — высота, на которую ртуть опустится.
Из условия не сжимаемости воды
ΔV1 = ΔV2, S⋅Δh1 = S⋅Δh2, Δh1 = Δh2.
В итоге получаем, с учетом уравнения (1):
[ h=2Delta h_{1} =frac{m_{1} +m_{2} }{Scdot rho }, ; ; ; Delta h_{1} =frac{m_{1} +m_{2} }{2Scdot rho }, ]
Δh1 = 0,1 м.
Записан
364. Шарик массой m = 40 г плавает в одном из двух одинаковых цилиндрических сообщающихся сосудов, заполненных водой (рис. 1). Площадь поперечного сечения каждого сосуда S = 20 см2. На сколько изменится уровень воды, если вынуть шарик? Плотность воды ρ = 1,0 г/см3.
Решение. На шарик действуют силы тяжести (m⋅g) и архимедова сила (FA). Запишем условие плавания тела:
FA = m⋅g,
где FA = ρ⋅g⋅Vn, Vn — объем части шарика, погруженного в воду. Тогда
ρ⋅g⋅Vn = m⋅g или ρ⋅Vn = m.
Если шарик вынуть из воды, то объем воды уменьшиться на Vn. Так как вода занимается два сообщающихся сосуда площадью S каждый, то уровень воды (высота столбца) уменьшиться на
[ Delta h=frac{V_n}{2S}=frac{m}{2rho cdot S}, ]
Δh = 1⋅10–2 м.
Записан
365. Два цилиндрических сосуда соединены у дна тонкой трубкой с краном (рис. 1). Один сосуд имеет площадь поперечного сечения S1 = 15 см2, второй — S2 = 5,0 см2. Сосуды заполнены водой: первый до высоты h1 = 20 см, второй до высоты h2 = 40 см. Каков будет уровень воды в сосудах, если открыть кран К в соединительной трубке?
Решение. Так как давление на дно сосуда больше в правом сосуде, то после открытия кран К вода будет перетекать с правого сосуда в левый. Пусть высота столбца жидкости в сосудах станет равной h3, уровень воды в сосуде площадью S1 увеличится на Δh1, в сосуде площадью S2 уменьшится на Δh2 (рис. 2). Из рисунка видно, что
Δh1 = h3 – h1, (1)
Δh2 = h2 – h3. (2)
Из условия не сжимаемости воды
ΔV1 = ΔV2, S1⋅Δh1 = S2⋅Δh2. (3)
Решим систему уравнений (1)-(3). Например,
S1⋅(h3 – h1) = S2⋅(h2 – h3), h3⋅(S1 + S2) = S1⋅h1 + S2⋅h2,
[ h_{3} =frac{S_{1} cdot h_{1} +S_{2} cdot h_{2} }{S_{1} +S_{2}}, ]
h3 = 0,25 м.
« Последнее редактирование: 13 Декабря 2011, 19:00 от alsak »
Записан
366. Деталь отлита из сплава железа и никеля. Определить, сколько процентов по объему составляют железо и никель, а также объем всей детали, если в воздухе деталь весит Р1 = 33,52 Н, а в воде — Р2 = 29,60 Н. Плотность железа ρ1 = 7,9⋅103 кг/м3, никеля ρ2 = 8,9⋅103 кг/м3, воды ρ3 = 1,0⋅103 кг/м3. Архимедову силу в воздухе не учитывать.
Решение. Будем считать, что вес детали определяют при помощи динамометра. Тогда вес детали — это сила упругости пружины динамометра.
В воздухе на деталь, подвешенной к динамометру, действует сила тяжести ((m1 + m2)⋅g) и сила упругости (Fy1) (архимедову силу в воздухе не учитывать) (рис. 1). Из проекции второго закона Ньютона получаем:
P1 = Fy1 = (m1 + m2)⋅g,
где m1 = ρ1⋅V1 — масса железа в детали, V1 — объем железа, m2 = ρ2⋅V2 — масса никеля в детали, V2 — объем никеля. Тогда
P1 = (ρ1⋅V1 + ρ2⋅V2)⋅g. (1)
В воде на деталь, подвешенной к динамометру, действует сила тяжести ((m1 + m2)⋅g), сила упругости (Fy2) и архимедова сила (FA) (рис. 2). Из проекции второго закона Ньютона получаем:
P2 = Fy2 = (m1 + m2)⋅g – FA,
где FA = ρ3⋅g⋅V, V = V1 + V2 — объем всей детали. Тогда
P2 = (ρ1⋅V1 + ρ2⋅V2)⋅g – ρ3⋅g⋅(V1 + V2). (2)
Решим систему уравнений (1)-(2) и найдем V1, V2 и V. Например,
[ P_{2} =P_{1} -rho _{3} cdot gcdot left(V_{1} +V_{2} right), ; ; ; V=V_{1} +V_{2} =frac{P_{1} -P_{2} }{rho _{3} cdot g}, ]
V = 4⋅10–4 м3.
V2 = V – V1, P1 = (ρ1⋅V1 + ρ2⋅(V – V1))⋅g,
(ρ1 – ρ2)⋅V1⋅g = P1 – ρ2⋅V⋅g,
[ V_{1} =frac{P_{1} }{left(rho _{1} -rho _{2} right)cdot g} -frac{rho _{2} cdot V}{rho _{1} -rho _{2} }, ; ; ; frac{V_{1} }{V} =frac{P_{1} }{left(rho _{1} -rho _{2} right)cdot g} cdot frac{1}{V} -frac{rho _{2} }{rho _{1} -rho _{2} } = ]
[ =frac{P_{1} }{left(rho _{1} -rho _{2} right)cdot g} cdot frac{rho _{3} cdot g}{P_{1} -P_{2} } -frac{rho _{2} }{rho _{1} -rho _{2} } =left(frac{P_{1} cdot rho _{3} }{P_{1} -P_{2} } -rho _{2} right)cdot frac{1}{rho _{1} -rho _{2}}, ]
V1/V = 0,35 (35%), V2/V = 1 – 0,35 = 0,65 (65%).
Записан
367. Браслет массой М = 80 г сделан из сплава золота и серебра. Вычислить массу золота, содержащегося в браслете, располагая следующими данными: плотность золота ρ1 = 19,3 г/см3, плотность серебра ρ2 = 10,5 г/см3; при погружении браслета в воду, находящуюся в сосуде с вертикальными стенками и площадью основания S = 25 см2, уровень воды поднимается на h = 2,0 мм.
Решение. Масса браслета равна
M = m1 + m2,
где m1 = ρ1⋅V1 — масса золота в браслете, V1 — объем золота, m2 = ρ2⋅V2 — масса серебра в браслете, V2 — объем серебра. Тогда
M = ρ1⋅V1 + ρ2⋅V2. (1)
При погружении в воду браслет вытесняет объем воды, равный объему тела, т.е.
V = S⋅h = V1 + V2. (2)
Решим систему уравнений (1)-(2). Например,
V2 = S⋅h – V1, M = ρ1⋅V1 + ρ2⋅(S⋅h – V1),
(ρ1 – ρ2)⋅V1 = M – ρ2⋅S⋅h,
[ V_{1} =frac{M-rho _{2} cdot Scdot h}{rho _{1} -rho _{2}}, ; ; ; m_{1} =rho _{1} cdot V_{1} =rho _{1} cdot frac{M-rho _{2} cdot Scdot h}{rho _{1} -rho _{2}}, ]
m1 = 6,0⋅10–2 кг.
Записан
368. Согласно желанию сиракузского властителя, Архимед должен был определить содержание золота в короне, состоящей из золотых и серебряных частей, не разрушая ее. Для этого Архимед взвесил корону в воздухе и получил вес P1 = 25,4 Н, а затем в воде, получив вес Р2 = 23,4 Н. Зная плотность золота, серебра и воды (соответственно ρ1 = 19,3 г/см3, ρ2 = 10,5 г/см3 и ρ3 = 1,00 г/см3), определить, как и Архимед, массу золота, содержащегося в этой короне. Ускорение свободного падения считать равным g = 10,0 м/с2.
Решение. Будем считать, что вес короны определяли при помощи динамометра. Тогда вес короны — это сила упругости пружины динамометра.
В воздухе на корону, подвешенной к динамометру, действует сила тяжести ((m1 + m2)⋅g) и сила упругости (Fy1) (архимедову силу в воздухе не учитывать) (рис. 1). Из проекции второго закона Ньютона получаем:
P1 = Fy1 = (m1 + m2)⋅g,
где m1 = ρ1⋅V1 — масса золота в короне, V1 — объем золота, m2 = ρ2⋅V2 — масса серебра в детали, V2 — объем серебра. Тогда
P1 = (ρ1⋅V1 + ρ2⋅V2)⋅g. (1)
В воде на корону, подвешенной к динамометру, действует сила тяжести ((m1 + m2)⋅g), сила упругости (Fy2) и архимедова сила (FA) (рис. 2). Из проекции второго закона Ньютона получаем:
P2 = Fy2 = (m1 + m2)⋅g – FA,
где FA = ρ3⋅g⋅V, V = V1 + V2 — объем всей короны. Тогда
P2 = (ρ1⋅V1 + ρ2⋅V2)⋅g – ρ3⋅g⋅(V1 + V2). (2)
Решим систему уравнений (1)-(2), найдем V1 и m1. Например,
[ P_{2} =P_{1} -rho _{3} cdot gcdot left(V_{1} +V_{2} right), ; ; ; V=V_{1} +V_{2} =frac{P_{1} -P_{2} }{rho _{3} cdot g}, ]
V2 = V – V1, P1 = (ρ1⋅V1 + ρ2⋅(V – V1))⋅g,
(ρ1 – ρ2)⋅V1⋅g = P1 – ρ2⋅V⋅g,
[ V_{1} =frac{P_{1} -rho _{2} cdot Vcdot g}{left(rho _{1} -rho _{2} right)cdot g} =frac{rho _{3} cdot P_{1} -rho _{2} cdot left(P_{1} -P_{2} right)}{left(rho _{1} -rho _{2} right)cdot rho _{3} cdot g}, ; ; ; m_{1} =rho _{1} cdot V_{1} =rho _{1} cdot frac{rho _{3} cdot P_{1} -rho _{2} cdot left(P_{1} -P_{2} right)}{left(rho _{1} -rho _{2} right)cdot rho _{3} cdot g} , ]
m1 = 0,965 кг.
Записан
369. В цилиндрическом сосуде с не смешивающейся с водой жидкостью, плотность которой ρ = 1,2 г/см3, при температуре t = 0 °С плавает льдинка массой m = 1 кг. На сколько изменится уровень этой жидкости в сосуде, когда льдинка растает? Площадь основания сосуда S = 0,1 м2.
Решение. После того как льдинка растаяла, объем жидкости в сосуде увеличился на объем воды V, полученной из льдинки. Но плотность воды меньше плотности жидкости, поэтому вся вода окажется сверху, и уровень жидкости опустится до первоначальной высоты h.
1 способ. Объем вытесненной жидкости
[V_{vt} =V_{1} +V_{2} =frac{mcdot g}{rho cdot g} =frac{m}{rho } =S_{1} cdot left(h_{1} +h_{2} right).]
Объем жидкости, которая поднялась — это
[V_{1} =left(S-S_{1} right)cdot h_{2} =S_{1} cdot h_{1} .]
Из второго уравнения получаем
[S_{1} cdot left(h_{1} +h_{2} right)=Scdot h_{2} .]
И тогда
[S_{1} cdot left(h_{1} +h_{2} right)=Scdot h_{2} =frac{m}{rho } ,; ; h_{2} =frac{m}{Scdot rho } .]
2 способ. Изменение давления на дно сосуда равно
[Delta p=frac{mcdot g}{S} =rho cdot gcdot Delta h,; ; Delta h=h_{2} =frac{m}{rho cdot S} .]
Ответ. Уровень жидкости опустится на h2 = 8,3⋅10–3 м.
« Последнее редактирование: 21 Августа 2019, 17:27 от alsak »
Записан
370. Теплоход, войдя в гавань, выгрузил часть груза; при этом его осадка уменьшилась на h = 0,6 м. Найти массу груза, оставленного теплоходом в гавани, если площадь поперечного сечения теплохода на уровне ватерлинии S = 5400 м2. Плотность воды ρ = 1⋅103 кг/м3.
Решение. На теплоход с грузом действуют сила тяжести теплохода (m1⋅g), архимедова сила (FA1) и вес груза (m2⋅g) (рис. 1, а). Тело неподвижно, поэтому уравнение второго закона Ньютона в проекции на вертикальную ось имеет вид:
FA1 – m1⋅g – m2⋅g = 0,
где FA1 = ρ⋅g⋅V1, V1 = S⋅h1, h1 — глубина погружения теплохода с грузом. Тогда
ρ⋅g⋅S⋅h1 – m1⋅g – m2⋅g = 0. (1)
На теплоход без груза действуют сила тяжести теплохода (m1⋅g), архимедова сила (FA2) (рис. 1, б). В проекции на вертикальную ось получаем:
FA2 – m1⋅g = 0,
где FA2 = ρ⋅g⋅V2, V2 = S⋅h2, h2 — глубина погружения теплохода без груза, h2 = h1 – h. Тогда
ρ⋅g⋅S⋅(h1 – h) – m1⋅g = 0. (2)
Решим систему уравнений (1)-(2). Например,
ρ⋅g⋅S⋅h1 – m1⋅g = m2⋅g, ρ⋅g⋅S⋅h1 – m1⋅g – ρ⋅g⋅S⋅h = 0,
m2⋅g = ρ⋅g⋅S⋅h, m2 = ρ⋅S⋅h,
m2 = 3,2⋅106 кг.
Записан
Источник