Два сосуда с несмешивающейся жидкостью
Решебник по физике Л.А. Кирик Самостоятельные и контрольные работы
1. а) Два сосуда одинаковой формы и размеров установлены так, как показано на рисунке. Что можно сказать: а) о массах воды в сосудах; б) о давлении на дно сосудов; в) о силах давления на дно сосудов?
а) массы одинаковы
б) давление на дно одинаково
в) сила давления на дно в первом сосуде больше, так как площадь дна больше
б) В сосуде находится один над другим три слоя несмешивающихся жидкостей: воды, керосина и ртути. Высота каждого слоя 5 см. Сделайте пояснительный рисунок и укажите на нем порядок расположения слоев. Определите давление жидкостей на дно сосуда и на глубине 7,5 см.
2. а) Под колоколом воздушного насоса находится сосуд, закупоренный пробкой. Почему при интенсивном выкачивании воздуха из-под колокола пробка может вылететь (см. рисунок)?
Давление под колоколом на пробку по мере выкачивания воздуха уменьшается, а внутри колбы остается постоянным. Когда сила давления газа, обусловленная разностью давлений, превысит максимальное значение силы трения покоя пробки о стекло, пробка вылетит.
б) Кубик с длиной ребра 10 см погружен в воду так, что его нижняя грань находится на глубине 25 см. С какой силой вода давит на нижнюю грань?
3. а) Будет ли гидравлический пресс работать на Луне? Если да, то будет ли какое-то различие в его работе на Луне по сравнению с работой на Земле?
Давление пресса на Луне будет меньше, чем на Земле, так как сила тяжести на Луне меньше.
б) В левое колено U-образной трубки с водой долили слой керосина высотой 20 см. На сколько поднимется уровень воды в правом колене?
4. а) Сосуды имеют одинаковые площади дна. Что можно сказать: а) о массах воды в сосудах; б) о давлении на дно сосудов; в) о силах давления на дно сосудов?
а) масса в 1-ом сосуде больше
б) давления одинаковы
в) силы давления одинаковы, так как площади дна равны
б) Малый поршень гидравлического пресса площадью 2 см2 под действием внешней силы опустился на 16 см. Площадь большего поршня 8 см2. Определите вес груза, поднятого поршнем, если на малый поршень действовала сила 200 Н. На какую высоту был поднят груз?
5. а) Справедлив ли закон сообщающихся сосудов в условиях невесомости?
Нет. В состоянии невесомости вес тела равен 0, следовательно, жидкость не будет оказывать давление.
б) Со дна аквариума убрали камень массой 780 г. В результате давление на дно сосуда уменьшилось на 50 Па. Какова плотность камня, если известно, что длина аквариума 30 см, а ширина 20 см? Камень был погружен в воду полностью.
6. а) Что вы можете сказать о величине давления и силах давления на дно сосуда во всех трех отсеках, изображенных на рисунке?
Давление зависит только от высоты сосуда и плотности жидкости. Сила давления на дно будет больше там, где площадь дна больше. => Давление одинаково во всех трёх отсеках, сила давления в 1-ом сосуде больше, чем во 2,3 отсеках.
б) В цилиндрических сообщающихся сосудах находится вода. Площадь поперечного сечения широкого сосуда в 4 раза больше площади поперечного сечения узкого сосуда. В узкий сосуд наливают керосин, который образует столб высотой 20 см. На сколько повысится уровень воды в широком сосуде и на сколько опустится в узком?
Пусть относительно начального уровня воды в сосудах в узком сосуде уровень воды понизится на h2, а в широком повысится на h1. Тогда давление столба керосина высотой Н в узкой трубке будет равно g ρк Н, давление воды в широкой трубке равно g ρв (h1 + h2), где ρк – плотность керосина и ρв – плотность воды. Так как жидкости находятся в равновесии, то
g ρк Н = g ρв (h1 + h2), или ρк Н = ρв (h1 + h2)
Воду считаем несжимаемой жидкостью, поэтому уменьшение объёма в узкой трубке площадью S должно быть равно увеличению объёма в широкой трубке площадью 4S:
Sh2 = 4Sh1, или h2 = 4h1.
Определим h1 = ρк Н/ 5 ρв.
Получаем h1 = 3,2 см и h2 = 12,8 см.
Источник
Источник
Методы и средства для измерения давления
Задача 1-1
В герметически закрытом сосуде (рис. 1.15) налиты две несмешивающиеся жидкости до уровня h3 = 7 м. Показание манометра, установленного в верхней части сосуда, p = 16 кПа. Удельный вес жидкости, образующей верхний слой γ1 = 8 кН/м3, толщина этого слоя h1 = 3 м. Удельный вес жидкости нижнего слоя γ2 = 10 кН/м3. На глубине h2 = 5 м от свободной поверхности жидкости в сосуде присоединен открытый пьезометр. Определить высоту hх, на которую поднимется жидкость в пьезометре. Чему будет равно избыточное давление на дне сосуда?
Задача 2-1
Два герметичных сосуда (рис. 1.16) наполнены жидкостями с удельными весами γ1 = 10 кН/м3 и γ2 = 12 кН/м3 на высоту h1 = 1 м и h2 = 2 м соответственно. Сосуды соединены изогнутой трубкой, частично заполненной жидкостями из сосудов. Между точками А и В находится воздух. Уровень свободной поверхности жидкости γ1 в ле вой ветви трубки относительно основания сосудов h3 = 0,4 м. Вертикаль ное расстояние между точками А и В h4 = 1 м. В верхних точках сосудов установлены манометры. Показание первого манометра р1 =5 кПа. Чему равно показание второго манометра р2, а также избыточное давление воздуха в точках А и В?
Задача 3-1
Две запаянные с одного конца трубки и заполненные жидкостями с удельными весами γ1 = 11 кН/м3 и γ2 = 10 кН/м3, опрокинуты в открытые сосуды с теми же жидкостями (рис. 1.17). В запаянных трубках жидкость поднялась на высоту h1 и h2, соответственно. Принимая давление паров рассматриваемых жидкостей равным нулю, определить величину атмосферного давления, если разность высот столбов этих жидкостей составляет 0,9 м. Как изменится разность уровней жидкостей в трубках, если атмосферное давление повысится на 2%?
https://www.engineer-oht.ru/katalog-studencheskih-rab..
Задача 4-1
Герметически закрытый сосуд (рис. 1.18) наполнен жидкостью с удельным весом γ1 до высоты h1 = 2 м. Избыточное давление в верхней части сосуда, измеренное манометром, p = 100 кПа. От сосуда отходит изогнутая трубка, заполненная жидкостью с удельным весом γ1, ртутью (ρрт = 13600 кг/м3) и жидкостью с удельным весом γ2 = 12 кН/м3. Высота уровней жидкостей в трубке h2 = 0,8 м, h3 = 1,5 м, h4 = 3,5 м. Определить удельный вес жидкости γ1.
Задача 5-1
Две трубы, заполненные жидкостями γ1 = 10 кН/м3 и γ2 = 15 кН/м3, соединены изогнутой трубкой, частично заполненной ртутью γ3 = 133,4 кН/м3 (рис. 1.19). Определить разность давлений Δр = р2 – р= в центрах этих труб, расположенных в одной горизонтальной плос-кости, если уровень ртути в правой ветви находится на высоте h1 = 0,5 м, а разность уровней ртути h2 = 2 м.
Задача 6-1
Герметично закрытый сосуд на высоту h1 = 1,5 м заполнен жидкостью, имеющей удельный вес γ1 = 10 кН/м3 (стр. 1.20). От дна сосуда отходит изогнутая трубка, заполненная в нижней части ртутью (γ2 = 133,4 кН/м3). Уровень ртути в правой ветви трубки находится ниже дна сосуда на h2 = 1,2 м. Разность уровней ртути h3 = 0,8 м. Над ртутью в левой ветви находится жидкость, плотность которой ρ3 = 2000 кг/м3. Показание манометра, установленного на крышке сосуда р = 127,72 кПа. Определить высоту столба жидкости h4 над ртутью в левой ветви.
https://www.engineer-oht.ru/katalog-studencheskih-rab..
Задача 7-1
Два герметичных сосуда (рис. 1.21), основания которых расположены на одной горизонтальной плоскости, наполнены жидкостями, имеющими разные удельные веса γ1 = 20 кН/м3 и γ2 = 10 кН/м3, на высоту h1 = 2 м и h2 = 1 м. Сосуды соединены изогнутой трубкой, в которой между точками А и В находится воздушный пузырь. Нижний край пузыря расположен на высоте h3 = 0,8 м над основанием сосуда. Определить положение верхнего края пузыря hх, если показания манометров на крышках сосудов р1 = 100 кПа, р2 = 78 кПа. Чему равно избыточное давление в точках А и В?
https://www.engineer-oht.ru/katalog-studencheskih-rab..
Задача 8-1
Два резервуара установлены на одной горизонтальной плоскости (рис. 1.22), соединены изогнутой трубкой, в которой между точками А и В находится газовый пузырь. Показание манометра левого резервуара, установленного на высоте h1 = 1 м над плоскостью оснований резервуаров, р1 = 100 кПа, уровень жидкости в пьезометре правого резервуара h2 = 4,75 м. Жидкость в левом резервуаре имеет удельный вес γ1 = 10 кН/м3, в правом — γ2 =20 кН/м3. Определить положение верхнего края пузыря hх, если его нижний край находится на высоте h3 = 1 м от оснований резервуаров.
https://www.engineer-oht.ru/katalog-studencheskih-rab..
Задача 9-1
Два сосуда (рис. 1.23), основания которых расположены в одной горизонтальной плоскости, наполнены разными жидкостями с удельными весами γ1 = 10 кН/м3, γ2 = 20 кН/м3, соединены изогнутой трубкой, в которой между жидкостями находится ртуть (γ3 = 133,4 кН/м3). В левом сосуде на высоте h1 = 3 м над плоскостью основания установлен манометр, показывающий давление р1 = 100 кПа. На крышке правого сосуда установлен манометр, его показание р2 = 192,72 кПа. Уровень жидкости в правом сосуде h2 = 1 м над плоскостью оснований. Определить разность уровней ртути hх, если ее верхний уровень находится на h3 = 0,8 м ниже плоскости оснований сосудов.
https://www.engineer-oht.ru/katalog-studencheskih-rab..
Задача 10-1
Герметично закрытый резервуар (рис. 1.24) заполнен водой до уровня h1 = 2,6 м относительно основания резервуара. Слева к резервуару присоединен пьезометр, уровень воды в котором относительно основания резервуара H. Справа к резервуару присоединена изогнутая трубка, заполненная водой и ртутью, уровни которых расположены на высоте h2 = 0,6 м, h3 = 1,6 м, h4 = 0,8 м, h5 = 1,8 м от основания сосуда. Плотность ртути ρ = 13 600 кг/м3.
Определить избыточное давление р0 воздуха в напорном баке. Какой высоты H должен быть пьезометр для измерения того же давления р0? Как изменится высота H, если р0 увеличится на 10%?
https://www.engineer-oht.ru/katalog-studencheskih-rab..
Источник
Рекомендованные сообщения
Решение задач, рефераты, курсовые – онлайн сервис
помощи учащимся. Цены в 2-3 раза ниже!
В миллионный раз взглянув на старую игрушку с несмешивающимися жидкостями,задался странным вопросом,и не нашел ответ. Согласно закона архимеда,сила выталкивания действует на ПОГРУЖЕННОЕ в жидкость тело,и равна весу ВЫТЕСНЕННОЙ ЖИДКОСТИ.
В случае-же с несмешивающимися жидкостями,граница между ними очень ровная(на глаз), и ПОГРУЖЕНИЯ,и ВЫТЕСНЕНИЯ нет.
Но сила АРХИМЕДА всё еще есть.
Где я запутался?
Капля масла(жира) в горячем супе нифига не ровная и достаточно наглядно показывает закон Архимеда.
Небольшие капли несмешивающейся жидкости из-за сил поверхностного натяжения ведут себя подобно твердым объектам.
плотность масла,не намного меньше плотности воды,соответственно капля масла,должна,как айсберг,быть сильно погружена в суп
Но в моей игрушке не капля,а кАнкретно два слоя с плоской границей
А если капнуть в воду,допустим ДХЭ,то дхэ лежит на дне вообще выпуклой каплей,как бусинка.
Ну а какая должна быть граница ,если в сосуде две жидкости одинаково смачивающие стенки сосуда ?
Была бы разная смачиваемость то граница имела бы сферическую форму из-за капиллярного давления.
То что дело явно в поверхностном натяжении,но не пойму с какой стороны. Поскольку для действия силы Архимеда,факт погруженности существеннен.
Тело, впернутое в воду,
Выпирает на свободу
На такой объем воды,
Сколько впернуто туды!
Несколько вольная интерпретация закона Архимеда.
Несмешивающиеся жидкости в виде двух слоев лучше рассматривать не как случай погружения тела в жидкость (про который как раз закон Архимеда и говорит), а как попытку сжатия нижнего слоя жидкости поршнем, состоящем из верхнего слоя жидкости. Нижняя более плотная жидкость еще немного уплотняется и выталкивает более легкую жидкость наверх. Нет погружения в нижний слой – значит, закон Архимеда в данном случае неприменим.
Но это-же не объясняет,почему верхний легкий слой плавает сверху. Что плавал,нужна сила которая будет поддерживать-сила АРХИМЕДА.
Объясняет. Система находится в равновесии. Если локальная область верхней жидкости начнет погружение (вследствии какой-либо причины) сила Архимеда вновь все уравновесит.
Как раз наоборот, доходчиво объясняет.
1. Жидкости практически несжимаемы – это не газы.
2. Жидкости занимают всю ширину сосуда, от стенки до стенки.
3. Если бы верхнего слоя не было, нижний слой занимал бы практически тот же объем
4. Верхний слой жидкости лишь чуть-чуть добавляет давления на нижний слой (там еще атмосфера давит сверху).
Сила Архимеда проявится, если Вы капельку жидкости из верхнего слоя погрузите в нижний слой. Вот тут будет вытеснение, сработает сила Архимеда, которая вытолкнет более легкую каплю наверх, и система жидкостей снова придет в равновесие.
Архивировано
Эта тема находится в архиве и закрыта для публикации сообщений.