Две сети кровеносных сосудов

Две сети кровеносных сосудов thumbnail

Благодаря сети мельчайших кровеносных сосудов каждая клетка организма получает необходимые ей кислород и питательные вещества.

Капилляры – мельчайшие кровеносные сосуды, пронизывающие все ткани и органы человеческого организма. По капиллярам кровь поступает к каждой клетке тела и доставляет ей кислород и питательные вещества, необходимые для жизни. Из клеток в кровь переходят продукты жизнедеятельности, которые в дальнейшем переносятся к другим органам или удаляются из организма. Обмен веществ между кровью и клетками тела может происходить только через стенку капилляров, поэтому их можно назвать главными элементами кровеносной системы. При расстройстве кровотока по капиллярам, изменении их стенки клетки тела будут испытывать голод, что постепенно приведет к нарушению их деятельности и даже гибели.

Артериолы и венулы

Капилляры – самые многочисленные и самые тонкие сосуды, их диаметр составляет в среднем 7-8 мкм. Капилляры широко соединяются (анастомозируют) между собой, образуя внутри органов сети (между доставляющими органам кровь артериями и выносящими кровь венами). Тонкие артерии, по которым кровь поступает в капиллярные сети, – это артериолы, а выносящие кровь мелкие вены – венулы. Артериолы, особенно те, от которых непосредственно ответвляются капилляры (прекапиллярные артериолы), регулируют поступление крови в капиллярные сети. Суживаясь или расширяясь, они перекрывают или, наоборот, возобновляют течение крови по капиллярам. Именно поэтому прекапиллярные артериолы называют кранами сердечно-сосудистой системы. Венулы вместе с более крупными венами выполняют емкостную функцию – удерживают имеющуюся в органе кровь.

Шунты

Есть сосуды, напрямую связывающие артериолы и венулы, – артериоловенулярные анастомозы (шунты). По ним кровь сбрасывается из артериального русла в венозное, минуя капиллярные сети. Значение артериоловенулярных анастомозов возрастает в неработающем, отдыхающем органе, когда нет необходимости в усиленном обмене веществ и большая часть поступившей крови без захода в капиллярные сети направляется дальше.

Микроциркуляция

Капилляры, артериолы и венулы относятся к микрососудам, т. е. сосудам с диаметром менее 200 мкм. Движение крови по ним получило название микроциркуляции, а сами микрососуды – микроциркуляторного русла. Микроциркуляции придается большое значение в создании оптимальных режимов работающих органов, а в случае ее нарушения – в развитии патологического процесса. Ежесуточно по кровеносным сосудам протекает 8000-9000 л крови. Благодаря постоянной циркуляции крови поддерживается необходимая концентрация веществ в тканях, что нужно для нормального течения обменных процессов и поддержания постоянства внутренней среды организма (гомеостаз).

Строение капилляра

Стенка капилляра состоит из одного слоя эндотелиальных клеток, снаружи от которых лежит базальная мембрана. Стенка капилляра представляет собой естественный биологический фильтр, через который осуществляются переход питательных веществ, воды и кислорода из крови в ткани и обратное – из тканей в кровь – поступление продуктов обмена. Современные методы исследования, в частности электронная микроскопия, свидетельствуют, что стенка капилляра – не пассивная перегородка и существуют специальные пути активного транспорта веществ через нее. В переносе веществ участвуют стыки между эндотелиальными клетками, специальные поры, пронизывающие наиболее тонкие участки стенки капилляров кишечника, почек, эндокринных желез, и пузырьки для переноса жидкостей, имеющиеся внутри эндотелиальных клеток в стенке капилляров большинства органов.

История изучения капиллярной сети

Хотя кровеносные капилляры были открыты М. Мальпиги еще в 1661 году, серьезное их исследование началось только в ХХ веке и привело к возникновению учения о микроциркуляции крови. Идея об исключительном значении капилляров в удовлетворении потребностей тканей в притоке крови была высказана А. Крогом, который за свои исследования в 1920 году был удостоен Нобелевской премии.

Собственно термин «микроциркуляция» стал употребляться только с 1954 года, когда в США состоялась первая научная конференция ученых, занимающихся капиллярным кровотоком. В России огромный вклад в изучение микроциркуляции внесли академики А. М. Чернух, В. В. Куприянов и созданные ими научные школы. Благодаря современным техническим достижениям, связанным с внедрением компьютерных и лазерных технологий, стало возможным исследовать микроциркуляцию в прижизненных условиях и широко использовать результаты в клинической практике для диагностики нарушений и мониторинга успешности лечения.

Особенности строения микроциркуляторного русла

Трудности изучения микрососудов на протяжении десятилетий были связаны с чрезвычайно малыми их размерами и сильной разветвленностью капиллярных сетей. Наиболее узкие капилляры находятся в скелетных мышцах и нервах – диаметр их составляет 4,5-6,5 мкм. В этих органах обмен веществ очень интенсивен. Более широкие капилляры имеют кожа и слизистые оболочки – 7-11 мкм. Самые широкие капилляры (синусоиды) расположены в костях, печени и железах, где их диаметр достигает 20-30 мкм.

Длина капилляров варьирует в различных органах от 100 до 400 мкм. Однако если все капилляры, имеющиеся в теле человека, вытянуть в одну линию, то их длина составит около 10 000 км. Такая колоссальная протяженность капилляров создает чрезвычайно большую обменную поверхность их стенки – около 2500-3000 кв. м, что примерно в 1500 раз превышает поверхность тела. Количество капилляров в разных органах неодинаково. Густота их расположения связана с интенсивностью работы органа. Например, в сердечной мышце на 1 кв. мм поперечного сечения приходится до 5500 капилляров, в скелетных мышцах – около 1400, а в коже всего 40 капилляров.

Читайте также:  В открытый сосуд заполненный водой в области а поместили

В настоящее время точно установлено, что разные органы имеют характерные особенности строения микроциркуляторного русла (количество, диаметр, плотность и взаимное расположение микрососудов, характер их ветвления и т. п.), обусловленные спецификой работы органа. При этом в большинстве случаев микроциркуляторное русло состоит из повторяющихся модулей, каждый из которых обслуживает свой участок органа. Это позволяет быстро приспосабливать кровоснабжение органа к изменениям его функционирования. Усложнение строения микроциркуляторного русла органов происходит постепенно, вместе с ростом и развитием человеческого организма. Нарастание количества микрососудов приурочено ко времени интенсивного увеличения массы органа, а структурное созревание (оформление модулей) микроциркуляторного русла завершается к моменту окончательного полового созревания (к 15-17 годам).

Функциональные характеристики капиллярной сети

Общая емкость капиллярного русла составляет 25-30 л, тогда как объем крови в теле человека равен 5 л. Поэтому большая часть капилляров периодически выключается из кровотока. У человека в условиях покоя одновременно открыто только 20-35% капилляров. В мышце при спокойном состоянии заполнено кровью не более 40% капилляров. При физических нагрузках в кровоток включаются почти все капилляры работающей мышцы. Капилляры сами не способны изменять свой просвет. Как уже было сказано, кровоток в них регулируется посредством сужения или расширения приносящих кровь артериол и использования артериоловенулярных анастомозов. Наблюдения свидетельствуют, что в органах постоянно происходит замена одних функционирующих капилляров другими. Высокая изменчивость кровотока в капиллярах – необходимое условие приспособления микроциркуляторной системы к потребностям органов и тканей в доставке питательных веществ.

Особенности кровотока в капиллярах

Поскольку емкость капиллярного русла очень большая, это ведет к значительному замедлению тока крови в капиллярах. Скорость движения крови по капиллярам колеблется от 0,3 до 1 мм/с, тогда как в крупных артериях она достигает 80-130 мм/с. Медленный кровоток обеспечивает наиболее полный обмен веществ между кровью и тканями. При движении крови ее клетки (эритроциты) выстраиваются в капилляре в один ряд, поскольку их радиус приблизительно равен радиусу капилляра. Значение такого приспособления становится понятно, если вспомнить, что кислород переносится эритроцитами и его передача клеткам органов будет происходить наиболее эффективно, если эритроциты наилучшим образом соприкасаются со стенкой капилляра. При движении по капиллярам эритроциты легко деформируются, поэтому даже наиболее узкие капилляры не являются для них препятствием. В отличие от эритроцитов другие клетки крови (лимфоциты) с трудом преодолевают узкие участки капиллярного русла и могут на какое-то время закупоривать просвет капилляра.

При значительном снижении скорости капиллярного кровотока эритроциты могут склеиваться между собой и образовывать агрегаты по типу монетных столбиков из 25-50 эритроцитов. Крупные агрегаты могут полностью закупорить капилляр и вызвать в нем остановку крови. Усиление агрегации эритроцитов происходит при различных заболеваниях.

Регулирование микроциркуляции крови

Как же происходит регуляция микроциркуляции? Во-первых, микрососуды реагируют на растяжение: при повышении давления крови артериолы суживаются и ограничивают приток крови в капилляры, при снижении давления расширяются. Во-вторых, к наиболее крупным из микрососудов (но не к капиллярам) подходят симпатические нервы, при раздражении которых происходит сужение крупных артериол и венул. В-третьих, микрососуды очень чувствительны к растворенным в крови вазоактивным веществам и реагируют даже на такую их концентрацию, которая в 10-100 раз меньше необходимой для сужения или расширения крупных сосудов. Так, кожные сосуды проявляют высокую чувствительность к адреналину (полное закрытие просвета артериол происходит при его ничтожной концентрации в крови – кожные покровы бледнеют), в то время как микрососуды внутренних органов гораздо менее чувствительны, а микрососуды скелетных мышц и сердца при действии адреналина могут расширяться. Ионы калия, кальция, натрия, а также вещества, накапливающиеся в тканях при их интенсивной деятельности, приводят к расширению микрососудов. Наибольшей чувствительностью к действию вазоактивных веществ обладают прекапиллярные артериолы, наименьшей – крупные артериолы и венулы.

Диагностика расстройств микроциркуляции крови

Актуальные для современной клинической практики оценка состояния микроциркуляции и диагностика ее расстройств при самых различных заболеваниях можно сделать с помощью таких методов, как капилляроскопия кожи и слизистых оболочек, биомикроскопия сосудов конъюнктивы, лазерная допплеровская флоуметрия. Состояние микроциркуляции в любом участке тела с большой степенью точности дает возможность судить о ее состоянии в организме в целом.

Ранними признаками нарушений капиллярного кровотока являются сужение артериол, застойные явления в венулах, приводящие к их расширению и значительной извитости, а также снижение интенсивности кровотока в капиллярах. На более поздних стадиях выявляется распространенная внутрисосудистая агрегация эритроцитов, что неизбежно влечет за собой остановку кровотока в капиллярах. Финал микроциркуляторных расстройств – стаз, т. е. полная блокада кровотока и резкое нарушение барьерной функции микрососудов, что нередко сопровождается кровоизлияниями – выходом эритроцитов через стенку капилляров, которые являются наиболее ранимыми. Артериоловенулярные анастомозы более устойчивы к расстройствам микроциркуляции и проявляют тенденцию к сохранению кровотока даже в условиях распространения стаза на значительную часть микроциркуляторного русла.

Читайте также:  Гемодинамика движение по сосудам

Расстройства микроциркуляции лежат в основе большого числа заболеваний, поэтому при их лечении необходимо восстановление функций микрососудов с помощью различных лекарственных средств.

Автор: Ольга Гурова, кандидат биологических наук, старший научный сотрудник, доцент кафедры анатомии человека РУДН

Источник

Движение крови по организму, за счет которого происходит взаимозамена веществ внутри тканей и органов, в медицине называют кровообращение. Кровь постоянно двигается по сердечно-сосудистой системе, которая замкнута. Такое движение становится возможным только благодаря ритмическим сокращением сердца. Последнее, кстати, считается главным органом сердечно-сосудистой системы. Кроме сердца, система органов кровообращения включает в себя еще и кровеносные сосуды. Сосуды берут кровь у сердца, а потом доводят ее до тканей и органов. Их еще называют артериями. А вот те сосуды, благодаря которым кровь имеет возможность вернуться к сердцу – венами. Внутри тканей и органов тончайшие артерии и вены образуют густую сеть кровеносных капилляров.

Кровь за счет сердечно-сосудистой системы доставляет до тканей кислород, полезные вещества, ну и гормоны. Она также выбрасывает продукты, образовавшиеся после обмена веществ, органам, через которые они выходят наружу. В легких кровь поглощает кислородом, а в органах пищеварения она поглощает питательные вещества. Печень и почки служат нейтрализатором и органами вывода продуктов метаболизма. Кровообращение поддерживает в нормальном состоянии и гормоны, и нервную систему.

В нашем организме действуют два круга кровообращения, а именно малый и большой. Прохождение крови по малому кругу берет свое начало у правого предсердия, затем кровь идет в правый желудочек сердца, за счет его сокращения, она может идти в легочный ствол. Он в свою очередь расходится, превращаясь в сеть легочных капилляров. Именно в этой части нашего организма кровь поглощает кислород. Дальше она идет по легочным венам, совершая круг, приходит к левому предсердию.

Кровообращение большого круга позволяет добраться крови до органов и тканей организма. Левое предсердие одновременно с правым сокращается, отправляя кровь в левые желудочек. Затем отсюда она попадает в аорту. А та в свою очередь делится на артерии и артериолы, которые добираются до всех частей организма. Они заканчиваются сетью, разместившейся в тканях и органах.

Сердце человека размещается в грудной полости, а именно позади грудины. Оно находится в окружении соединительнотканной оболочки, которая получила название околосердечной сумки. Главной функцией этой сумки считается защита сердца. Помимо всего прочего она вырабатывает слизистый секрет, не позволяющий трению во время сокращения сердца возрастать. Вес сердца составляет 300г, а форму оно имеет конусовидную. Самая широкая часть в медицине освещается, как основание. Оно разместилось вверху и справа. Узкая его часть, а именно верхушка находится внизу и слева. Больше половины сердца расположилось в левой части грудной полости, а остальная часть – в правой.

У каждого человека сердце обладает четырьмя камерами. Оно делится за счет продольной перегородки на левую и правую половины. Все они делятся еще на две камеры, которые называют предсердием и желудочком. Они контактируют между собой с помощью отверстий, которые оснащены створчатыми клапанами.

Работа сердца – это постоянная смена сердечных циклов, а точнее периодов, которые охватывают сокращение и затем расслабление сердца. Сокращение сердечной мышцы принято называть систолой, а вот расслабление – диастолой. Направленное движение крови из предсердий в желудочки, а потом из желудочков в малый и большой круги кровообращения происходит за счет деятельности клапанов сердца.

Подключичная артерия

Сердце

Дуга аорты

Почечная артерия

Брыжеечная артерия

Грудная аорта

Верхняя полая вена

Подвздошная артерия

Нижняя полая вена

Брюшная аорта

Сонная артерия

Вены нижних конечностей

Источник

И артерии и вены являются типами кровеносных сосудов в сердечно-сосудистой системе

Артерия уносит кровь от сердца, а вена приносит кровь обратно к сердцу.

Кровеносные сосуды необходимы для транспортировки крови по всему организму. Кровь переносит кислород и питательные вещества к различным тканям организма, позволяя им функционировать.

Сердце и кровеносные сосуды составляют сердечно-сосудистую систему. Эта система содержит сложную сеть сосудов с различными структурами и функциями.

В этой статье мы обсуждаем различия между артериями и венами. Мы также выделяем различные типы кровеносных сосудов и то, как они работают, как часть сердечно-сосудистой системы.

Артерии и вены: определения

Артерии и вены – это типы кровеносных сосудов, которые транспортируют кровь по всему организму.

Кровеносные сосуды образуют две системы, идущие к сердцу и от него. Эти две системы образуют систему кровообращения.

Системная циркуляция поставляет кислород и другие жизненно важные вещества в органы, ткани и клетки.

Читайте также:  Меняется ли вместимость сосудов при изменении температуры

Системные артерии транспортируют богатую кислородом кровь от левого желудочка к остальной части тела. После этого кровь с низким содержанием кислорода собирается в системных венах и направляется в правое предсердие.

Легочное кровообращение – это место, где свежий кислород поступает в кровь.

Легочные артерии транспортируют кровь с низким содержанием кислорода из правого желудочка в легкие. Затем легочные вены транспортируют богатую кислородом кровь обратно в сердце через левое предсердие.

Капилляры – это третий тип кровеносных сосудов в организме. Они поставляют кровь непосредственно в органы.

Типы артерий

Существует три типа артерий:

Эластичные артерии

Эластичные артерии – это крупные сосуды, выходящие из сердца. Например, они включают легочную артерию и аорту. Аорта – это главная артерия, которая уносит кровь от сердца.

Сердце принудительно выкачивает кровь, чтобы она двигалась по всему телу. Эластичные артерии должны быть гибкими, чтобы справляться с приливами крови. Они расширяются, когда сердце выталкивает кровь.

Эластин – это белок, содержащийся во многих тканях, который обеспечивает гибкость органов, включая эластические артерии.

Мышечные артерии

Эластичные артерии приносят кровь в мышечные артерии, такие как бедренные или коронарные артерии.

Гладкие мышечные волокна составляют стенки мышечных артерий. Мышцы позволяют этим артериям расширяться и сжиматься. Эти изменения в размере контролируют, сколько крови движется по артериям.

Артериолы

Артериолы – это самый маленький тип артерий. Они распределяют кровь из более крупных артерий через сети капилляров.

Наружный слой артериол также содержит гладкую мускулатуру, которая регулирует расширения и сокращения.

Типы вен

Артерии и вены устроены примерно одинаково, но вены тоньше и имеют меньше мышц, что позволяет им удерживать больше крови. Вены обычно содержат около 70% крови в организме за один раз.

Венулы – самый маленький тип вены. У них очень тонкие стенки, для того, чтобы удерживать много крови. Они подают низкокислородную кровь через капилляры из артерий прямо в вены. Затем кровь возвращается к сердцу через ряд вен увеличивающегося размера и мышц.

Существует два основных типа вен: легочные и системные.

В дальнейшем системные вены классифицируются на:

  • Глубокие вены: Эти вены обычно имеют соответствующую артерию поблизости и находятся в мышечной ткани. Эти вены могут иметь односторонний клапан, чтобы предотвратить отток крови назад.
  • Поверхностные вены: Эти вены не имеют артерии с таким же названием поблизости и находятся близко к поверхности кожи. Они также могут иметь односторонний клапан.
  • Соединительные вены: Эти маленькие вены позволяют крови течь из поверхностных вен в глубокие вены.

Анатомия

Вены и артерии состоят из трех слоев:

  • Адвентициальная оболочка: Внешний слой кровеносного сосуда, состоит из коллагена и эластина. Этот слой позволяет сосуду расширяться или сжиматься, в зависимости от типа вены или артерии. Эта функция важна для контроля артериального давления.
  • Средняя оболочка: Это середина кровеносного сосуда. Эластин и мышечные волокна образуют оболочку носителей. Количество эластина или мышц варьируется в зависимости от типа кровеносного сосуда. Например, эластичные артерии содержат мало мышечных волокон в их оболочках.
  • Внутренняя оболочка: Это название относится к внутреннему слою кровеносного сосуда. Он в основном содержит эластичные мембраны и ткани и может включать клапаны, которые помогают крови двигаться в правильном направлении.

Сердечно-сосудистая система

Сердечно-сосудистая система объединяет сердце и кровеносные сосуды вместе. Система образует замкнутый контур сосудов, которые транспортируют кровь по всему организму.

Сердечно-сосудистая система необходима для поддержания жизни. Это первая крупная сеть органов, которая развивается у эмбрионов.

Все ткани организма нуждаются в кислороде и питательных веществах, чтобы выжить. Они также требуют удаления отходов, которые являются побочным продуктом обмена веществ.

Кровь необходима как для обеспечения кислородом и питательными веществами, так и для удаления отходов из тканей.

Сердце качает кровь по всему телу. Оно должно работать постоянно и с достаточной силой, чтобы все ткани организма получали достаточно крови для функционирования. Нарушения сердечно-сосудистой системы могут иметь серьезные последствия.

Сердечно-сосудистые заболевания представляют собой группу нарушений, которые поражают сердце и кровеносные сосуды, к примеру, такие как ишемическая болезнь сердца.

Эти заболевания являются основной причиной смерти во всем мире, в 2016 году на их долю пришлось около 17.9 миллиона смертей.

Артерии и вены: выводы

Артерии – это тип кровеносных сосудов, который транспортирует кровь от сердца. Вены несут кровь обратно к сердцу. Наряду с капиллярами, эти кровеносные сосуды ответственны за движение крови к тканям вокруг тела.

Сердце качает кровь через сложную систему кровеносных сосудов. Существует несколько типов артерий и вен с различными функциями. Например, некоторые содержат больше мышц для изменения количества крови, которую они несут.

Сердечно-сосудистая система имеет важное значение для жизни. Изменения в сердце или кровеносных сосудах могут быть серьезными и иногда смертельными.

Источник