Движение в сосудах может быть ламинарным
Ультразвуковой флоуметр. Ламинарное течение крови в сосудахПрибором, который имеет те же преимущества, что и электромагнитный флоуметр, является ультразвуковой флоуметр, действие которого основано на эффекте Допплера. На рисунке показан миниатюрный пьезоэлектрический кристалл, с одного конца вмонтированный в флоуметрический датчик. Кристалл, подключенный к соответствующему электронному аппарату, генерирует ультразвуковые волны частотой несколько сотен тысяч герц. Ультразвуковая волна распространяется вдоль сосуда с током крови. При этом часть звука отражается от эритроцитов текущей крови и возвращается к пьезоэлектрическому кристаллу. Отраженные волны имеют меньшую частоту, чем основная волна, потому что эритроциты движутся в направлении от кристалла. Этот эффект и называют эффектом Допплера. (Это тот же эффект, который можно заметить, когда прибывающий поезд, проходя мимо станции, издает гудок. Когда поезд удаляется, частота звука резко снижается по сравнению с частотой звука прибывающего поезда. По этой же причине гудок удаляющегося от вас поезда воспринимается как звук гораздо более низкий, чем гудок приближающегося поезда.) Что касается ультразвукового флоуметра, показанного на рисунке, то звуковая волна высокой частоты в какой-то момент прерывается, затем отраженная волна меньшей частоты поступает обратно к пьезокристаллу и усиливается с помощью электронного устройства. Другая часть аппарата сравнивает частоту основной звуковой волны и отраженной, определяя скорость движения крови. Ультразвуковой флоуметр способен регистрировать быстрые пульсовые колебания кровотока в кровеносных сосудах так же, как и электромагнитный прибор. Ламинарное течение крови в сосудахЕсли кровь с постоянной скоростью течет вдоль длинного сосуда, имеющего гладкую внутреннюю поверхность, характер течения крови — слоистый, причем каждый слой крови при движении находится на одном и том же расстоянии от стенки сосуда. Таким образом, центральная порция крови всегда протекает в центре кровеносного сосуда вдоль его продольной оси. Такой тип движения крови называют ламинарным (или слоистым) течением в противоположность турбулентному течению, во время которого кровь движется в сосуде во всех направлениях, постоянно перемешиваясь (об этом будет сказано далее). Параболический профиль распределения скоростей во время ламинарного течения. Во время ламинарного течения крови скорость ее движения в центре сосуда оказывается гораздо большей, чем скорость движения вблизи стенки сосуда. В сосуде на рисунке содержится две жидкости: одна окрашена в красный цвет, другая — бесцветная. Если жидкости начинают течь, то через 1 сек между ними образуется параболическая граница, как показано на рисунке. При этом слой жидкости, прилежащий к стенке сосуда, почти неподвижен; следующий слой жидкости продвигается на малое расстояние; порция жидкости, находящаяся в центральной части сосуда, продвигается на большое расстояние. Таким образом, формируется параболический профиль распределения скоростей. Причина такого распределения скоростей следующая: молекулы жидкости, прикасаясь к стенке сосуда, едва движутся, т.к. они «прилипают» к сосудистой стенке. Следующий слой молекул «прилипает» к предыдущему, третий слой — ко второму, четвертый — к третьему и т.д. Следовательно, жидкость в центральной части сосуда может двигаться с большой скоростью, потому что между ней и сосудистой стенкой находятся много слоев молекул, скользящих относительно друг друга. При этом каждый слой жидкости, расположенный ближе к центру, движется с большей скоростью, чем наружный слой, расположенный ближе к стенке. – Также рекомендуем “Турбулентное течение крови. Давление крови” Оглавление темы “Сосудистая система”: |
Источник
Ламинарный и турбулентный поток в эхокардиографии (ЭхоКГ)а) Характеристики потока. При низких скоростях обычно наблюдается ламинарное течение крови. Это означает, что в близко расположенных точках поперечного сечения сосуда или клапанного отверстия скорости движения крови мало отличаются друг от друга. В этих случаях поток крови «хорошо организован»: в середине потока кровь течет с большей скоростью, а на периферии возле стенок сосуда или сердца скорость потока меньше. В сосудах возникает «параболический» профиль скоростей движения жидкости. Начиная с определенного отношения поперечного сечения потока, скорости движения, а также плотности и вязкости крови характеристики потока меняются на «турбулентные»: профиль скоростей движения жидкости становится более плоским, сопротивление потоку растет и «частицы» жидкости попадают в вихревые движения. Вместо хорошо организованного ламинарного распределения скоростей получается вихреобразование и перемешивание частиц жидкости с различной скоростью и направлением движения. Кинетическая энергия необратимо теряется из-за вязкого трения и, в конечном итоге, превращения в теплоту. Движение частиц можно представить как сумму «хаотичного», турбулентного компонента скорости и относительно постоянного компонента скорости вдоль основного направления потока. В сумме усредненные по времени, быстро меняющиеся векторы турбулентного компонента взаимно уничтожаются, тогда как постоянный компонент обусловливает движение в сосуде вдоль основного направления потока.
б) Число Рейнольдса. Переход от ламинарного течения к турбулентному можно представить себе как следствие преобладания инерционных сил потока над вязким сопротивлением, например, из-за возрастающей скорости движения жидкости. Точка такого перехода зависит от многих отдельных факторов, однако приблизительно ее можно представить в виде безразмерного числа Рейнольдса: 2r • v • ρ/η, где r – радиус потока, v – средняя скорость движения жидкости, ρ – плотность и η – вязкость жидкости. Поток становится турбулентным, если это число превышает пограничное значение, приблизительно равное 2300. в) Появление турбулентных потоков. В покое на нормальных сердечных клапанах турбулентные потоки не возникают, однако они появляются в области стенозированных клапанных отверстий или в области регургитации, а также других потоков с высокой скоростью движения, например, при дефекте межжелудочковой перегородки. При переходе от ламинарного потока к турбулентному в одном сосуде исходный параболический профиль скоростей уплощается, а сопротивление увеличивается (в противоположность уравнению Хагена-Пуазейля при турбулентном движении сопротивление возрастает не линейно, а пропорционально квадрату потока). г) Локализация. Переход в турбулентное движение в области измененного просвета клапанных отверстий (стеноза, недостаточности) или дефектов межжелудочковой или межпредсердной перегородки происходит вскоре после места сужения потока. Непосредственно после прохождения через место сужения поток еще сохраняет ламинарное ядро, имеющее максимальную исходную скорость. Это ядро разрушается со всех сторон увеличивающимися турбулентными завихрениями. Приблизительно через 5 диаметров того отверстия, где был сужен поток, движение полностью становится турбулентным, и его максимальная осевая скорость теперь обратно пропорциональна расстоянию от места сужения.
д) Мозаичность. В режиме цветовой допплерографии турбулентный поток представлен интенсивной, светлой, разноцветной струей («мозаичность»), В связи с характеристиками турбулентного потока при высоких скоростях, например, в случае аортального стеноза, максимально острый угол между основным направлением движения крови и ультразвуковым лучом при непрерывноволновом допплеровском исследовании менее критичен, чем в случае ламинарного потока, так как высокие скорости направлены в пространстве во все стороны и поэтому могут быть зарегистрированы. Следует учитывать, что принцип непрерывности и уравнение Бернулли справедливы независимо от ламинарности или турбулентности потока. е) Другие подходы для количественной оценки потока и его сужений. Vena contracta. Из-за вышеописанных трудностей количественной оценки потоков по величине струи в цветовой допплерографии были предприняты другие попытки количественного анализа потока крови. Одна из них использует диаметр или сечение струи в самом узком месте, т.е. непосредственно после места сужения потока. Там поток конвергирует в самом узком месте, называемом vena contracta. Это самое узкое место соответствует эффективному сечению стеноза или регургитации и всегда меньше, чем анатомический размер отверстия. Его величина задается геометрией поперечного сечения потока и в физиологических условиях почти не зависит от скорости потока или градиента давления по обе стороны сужения. Конечно, применение этой теоретически очень привлекательной концепции лимитировано разрешающей способностью и техническими факторами режима цветного допплеровского исследования. Однако он успешно валидирован прежде всего для расчета регургитации и (в меньшей степени) для случая митрального стеноза.
– Также рекомендуем “Биоэффекты и безопасность ультразвука” Редактор: Искандер Милевски. Дата публикации: 17.12.2019 |
Источник
Движение жидкости, наблюдаемое при малых скоростях, при котором отдельные струйки жидкости движутся параллельно друг другу и оси потока, называют ламинарный режим движения жидкости.
В этой статье подробно описывается процесс ламинарного режима, переход в ламинарного режима из турбулентный, формула и закон этого режима и многое другое.
Ламинарный режим движения в опытах
Очень наглядное представление о ламинарном режиме движения жидкости можно получить из опыта Рейнольдса. Подробное описание здесь.
Жидкая среда вытекает из бака через прозрачную трубу и через кран уходит на слив. Таким образом жидкость течет с определенным небольшим и постоянным расходом.
На входе в трубу установлена тонкая трубочка по которой в центральную часть потока поступает подкрашенная среда.
При попадании краски в поток жидкости движущейся с небольшой скоростью красная краска будет двигаться ровной струйкой. Из этого опыта можно сделать вывод о слоистом течении жидкости, без перемешивания и вихреообразования.
Такой режим течения жидкости принято назыать ламинарным.
Рассмотрим основные закономерности ламинарного режима при равномерном движении в круглых трубах, ограничиваясь случаями, когда ось трубы горизонтальна.
При этом мы будем рассматривать уже сформировавшийся поток, т.е. поток на участке, начало которого находится от входного сечения трубы на расстоянии, обеспечивающем окончательный устойчивый вид распределения скоростей по сечению потока.
Имея ввиду, что ламинарный режим течения имеет слоистый(струйный) характер и происходит без перемешивания частиц, следует считать, что в ламинарном потоке будут иметь место только скорости, параллельные оси трубы, поперечные же скорости будут отсутствовать.
Можно представить себе, что в этом случае движущаяся жидкость как бы разделяется на бесконечно большое число бесконечно тонких цилиндрических слоев, параллельных оси трубопровода и движущихся один внутри другого с различными скоростями, увеличивающимися в направлении от стенок к оси трубы.
При этом скорость в слое, непосредственно соприкасающемся со стенками из-за эффекта прилипания равна нулю и достигает максимального значения в слое, движущемся по оси трубы.
Формула ламинарного режима течения
Принятая схема движения и введенные выше предположения позволяют теоретическим путем установить закон распределения скоростей в поперечном сечении потока при ламинарном режиме.
Для этого сделаем следующее. Обозначим внутренний радиус трубы через r и выберем начало координат в центре её поперечного сечения O, направив ось х по оси трубы, а ось z по вертикали.
Теперь выделим внутри трубы объем жидкости в виде цилиндра некоторого радиуса y длиной L и применим к нему уравнение Бернулли. Так как вследствии горизонтальности оси трубы z1=z2=0,
то
где R – гидравлический радиус сечения выделенного цилиндрического объема = у/2
τ – единичная сила трения = – μ * dυ/dy
Подставляя значения R и τ в исходное уравнение получим
Задавая различные значения координаты y, можно вычислить скорости в любой точке сечения. Максимальная скорость, очевидно, будет при y=0, т.е. на оси трубы.
Для того, чтобы изобразить это уравнения графически, необходимо отложить в определенном масштабе от некоторой произвольной прямой АА скорости в виде отрезков, направленных по течению жидкости, и концы отрезков соединить плавной кривой.
Полученная кривая и представит собой кривую распределения скоростей в поперечном сечении потока.
График изменения силы трения τ по сечению выглядит совсем по другому. Таким образом, при ламинарном режиме в цилиндрической трубе скорости в поперечном сечении потока изменяются по параболическому закону, а касательные напряжения – по линейному.
Полученные результаты справедливы для участков труб с вполне развитым ламинарным течением. В действительности, жидкость, которая поступает в трубу, должна пройти от входного сечения определенный участок, прежде чем в трубе установится соответствующий ламинарному режиму параболический закон распределения скоростей.
Развитие ламинарного режима в трубе
Развитие ламинарного режима в трубе можно представить себе следующим образом. Пусть, например, жидкость входит в трубу из резервуара большого размеры, кромки входного отверстия которого хорошо закруглены.
В этом случае скорости во всех точках входного поперечного сечения будут практически одинаковы, за исключением очень тонкого, так называемого пристенного слоя(слоя вблизи стенок), в котором вследствие прилипания жидкости к стенкам происходит почти внезапное падение скорости до нуля. Поэтому кривая скоростей во входном сечении может быть представлена достаточно точно в виде отрезка прямой.
По мере удаления от входа, вследствие трения у стенок, слои жидкости, соседние с пограничным слоем, начинают затормаживаться, толщина этого слоя постепенно увеличивается, а движение в нем, наоборот, замедляется.
Центральная же часть потока (ядро течения), еще не захваченная трением, продолжает двигаться как одно целое, с примерно одинаковой для всех слоев скоростью, причем замедление движения в пристенном слое неизбежно вызывает увеличение скорости в ядре.
Таким образом, в середине трубы, в ядре, скорость течения все время возрастает, а у стенок, в растущем пограничном слое, уменьшается. Это происходит до тех пор, пока пограничный слой не захватит всего сечения потока и ядро не будет сведено к нулю. На этом формирование потока заканчивается, и кривая скоростей принимает обычную для ламинарного режима параболическую форму.
Переход от ламинарного течения к турбулентному
Ламинарное течения жидкости при некоторых условиях способно перейти в турбулентное. При повышении скорости течения потока слоистая структура потока начинает разрушаться, появляются волны и вихри, распространение которых в потоке говорит о нарастающем возмущении.
Постепенно количество вихрей начинает возрастать, и возрастает пока струйка не разобьется на множество перемешивающихся между собой более мелких струек.
Хаотичное движение таких мелких струек позволяет говорить о начале перехода ламинарного режима течения в турбулентное. С увеличением скорости ламинарное течение теряет свою устойчивость, при этом любые случайные небольшие возмущения, которые раньше вызывали только лишь малые колебания, начинают быстро развиваться.
Видео о ламинарном течении
В бытовом случае переход одного режима течения в другой можно отследить на примере струи дыма. Сначала частицы движутся практически параллельно по неизменяемым во времени траекториям. Дым практически неподвижен. Со временем в некоторых местах вдруг возникают крупные вихри, которые двигаются по хаотичным траекториям. Эти вихри распадаются на более маленькие, те – на еще более мелкие и так далее. В конце концов, дым практически смешивается с окружающим воздухом.
Вместе со статьей “Ламинарный режим движения жидкости” читают:
Источник