Если часть газа выпустить из сосуда то количество вещества
5.4. Практическое применение уравнения состояния идеального газа
5.4.1. Уравнение состояния для идеального газа в открытом сосуде
При рассмотрении идеального газа, находящегося в открытом сосуде, необходимо учитывать, что вследствие изменения термодинамических параметров часть газа выходит из сосуда. При этом уравнение состояния записывается только для той части газа, которая остается в сосуде.
Для идеального газа, находящегося в открытом сосуде, необходимо учитывать следующее:
- масса газа изменяется в результате изменения его термодинамических параметров:
m ≠ const;
- рассматривается газ, оставшийся в сосуде определенного объема, т.е. объем газа фиксирован:
V = const;
- давление газа может изменяться или оставаться постоянным (в зависимости от условия задачи), причем на изменение давления в условии задачи обычно бывает четкое указание.
Если давление идеального газа в открытом сосуде по условию задачи изменяется (p ≠ const), то уравнение Менделеева – Клапейрона записывается для двух состояний газа в виде системы (рис. 5.7):Рис. 5.7
p 1 V = m 1 M R T 1 , p 2 V = m 2 M R T 2 , }
где p 1, m 1, T 1 – давление, масса и температура газа в начальном состоянии; p 2, m 2, T 2 – указанные параметры газа в конечном состоянии; V – объем сосуда; M – молярная масса газа; R – универсальная газовая постоянная, R ≈ 8,31 Дж/(моль ⋅ К).
Если давление идеального газа в открытом сосуде по условию задачи остается постоянным (p = const), то изменения некоторых характеристик газа в открытом сосуде можно вычислить по следующим формулам:
- изменение массы
Δ m = m 1 − m 2 = m 1 ( 1 − T 1 T 2 ) ,
где m 1 – первоначальная масса газа; m 2 – масса газа в конце процесса; T 1 – термодинамическая (абсолютная) температура газа в начале процесса; T 2 – термодинамическая (абсолютная) температура газа в конце процесса;
- изменение плотности
Δ ρ = ρ 1 − ρ 2 = ρ 1 ( 1 − T 1 T 2 ) ,
где ρ1 – первоначальная плотность газа; ρ2 – плотность газа в конце процесса;
- изменение количества вещества
Δ ν = ν 1 − ν 2 = ν 1 ( 1 − T 1 T 2 ) ,
где ν1 – первоначальное количество вещества (газа) в сосуде; ν2 – количество вещества (газа) в сосуде в конце процесса.
Пример 11. В открытом сосуде объемом 450 дм3 содержится некоторое количество идеального газа. Температуру газа увеличивают от 27 до 177 °С. Давление газа остается постоянным и равным 166 кПа. Сколько моль газа выйдет из сосуда?
Решение. Запишем уравнение Менделеева – Клапейрона для двух состояний газа, находящегося в открытом сосуде, при нагревании:
- для начального состояния
pV = ν1RT 1;
- для конечного состояния
pV = ν2RT 2;
где p – давление газа, p = const; V – объем газа (сосуда), V = const; ν1, ν2 – количество вещества (газа) в начале и в конце процесса; R – универсальная газовая постоянная, R = 8,31 Дж/(моль ⋅ К); T 1, T 2 – температура газа в начале и в конце процесса.
Первое уравнение позволяет получить формулу для расчета количества вещества (газа) в начале процесса:
ν 1 = p V R T 1 .
Подстановка полученной формулы в уравнение
Δ ν = ν 1 ( 1 − T 1 T 2 )
дает искомую разность
Δ ν = p V R T 1 ( 1 − T 1 T 2 ) = p V ( T 2 − T 1 ) R T 1 T 2 .
Для вычисления искомой величины необходимо перевести температуру из градусов Цельсия в кельвины:
T 1 = t 1 + 273 = 27 + 273 = 300 К,
T 2 = t 2 + 273 = 177 + 273 = 450 К.
Произведем вычисление:
Δ ν = 166 ⋅ 10 3 ⋅ 450 ⋅ 10 − 3 ( 450 − 300 ) 8,31 ⋅ 450 ⋅ 300 = 10 моль.
При нагревании из сосуда вышло 10 моль газа.
Пример 12. В баллоне при температуре 15 °С находится идеальный газ. Из баллона выходит 40 % газа, а температура при этом понижается на 8,0 °С. Во сколько раз уменьшится давление газа в баллоне?
Решение. Запишем уравнение Менделеева – Клапейрона для двух состояний газа, находящегося в открытом сосуде:
- для начального состояния
p 1V = ν1RT 1;
- для конечного состояния
p 2V = ν2RT 2;
где p 1 – давление газа в начальном состоянии; p 2 – давление газа в конечном состоянии; V – объем газа (сосуда), V = const; ν1, ν2 – количество вещества (газа) в начале и в конце процесса соответственно; R – универсальная газовая постоянная, R = 8,31 Дж/(моль ⋅ К); T 1, T 2 – температура газа в начале и в конце процесса соответственно.
Искомой величиной является отношение давлений p 1/p 2, которое определим из отношения уравнений:
p 1 V p 2 V = ν 1 R T 1 ν 2 R T 2 , т.е. p 1 p 2 = ν 1 T 1 ν 2 T 2 .
В результате процесса из баллона выходит 40 % газа, поэтому количество вещества (газа) ν2, оставшегося в баллоне, составляет 60 % от количества вещества (газа) ν1, которое было в начале процесса:
ν2 = 0,6ν1.
Для вычисления искомой величины необходимо сделать перевод температуры, заданной в градусах Цельсия, в кельвины:
T 1 = t 1 + 273 = 15 + 273 = 288 К,
T 2 = t 2 + 273 = (t 1 − Δt) + 273 = (15 − 8,0) + 273 = 280 К.
Подстановка температур и количества вещества (газа), оставшегося в баллоне, в выражение для искомой величины дает
p 1 p 2 = ν 1 T 1 0,6 ν 1 T 2 = T 1 0,6 T 2 = 288 0,6 ⋅ 280 = 1,7 .
Давление газа в баллоне понизится в 1,7 раза.
Источник
8. Молекулярно-кинетическая теория
1. Вспоминай формулы по каждой теме
2. Решай новые задачи каждый день
3. Вдумчиво разбирай решения
В сосуде объёмом 2 л находится 10 г идеального газа при давлении 1 атм. и температуре 300 К. Во втором сосуде объёмом 4 л находится 20 г того же газа при давлении 2 атм. Чему равна температура газа во втором сосуде? (Ответ дайте в кельвинах.)
Уравнение состояния газа: [pV=nu RT=dfrac{m}{mu}RT] где (p) – давление газа, (V) – объем, занимаемый газом, (nu) – количество вещества, (R) – универсальная газовая постоянная, (T) – температура газа, (m) – масса газа, (mu) – молярная масса газа.
Для первого сосуда: [p_1V_1=dfrac{m_1}{mu}RT_1] Для второго сосуда: [p_2V_2=dfrac{m_2}{mu}RT_2] Поделим уравнения друг на друга: [dfrac{p_1V_1}{p_2V_2}=frac{m_1T_1}{m_2T_2}] [T_2=T_1cdotdfrac{m_1}{m_2}cdotdfrac{V_2}{V_1}cdotdfrac{p_2}{p_1}=300text{ К}cdotdfrac{1}{2}cdot2cdot2=600 text{ К}]
Ответ: 600
При уменьшении абсолютной температуры газа на 300 К давление уменьшилось в 5 раз. Какова начальная температура газа, если в ходе эксперимента количество вещества уменьшилось втрое, а объём оставался постоянным? (Ответ дайте в кельвинах.)
Запишем уравнение Менделеева-Клапейрона для первого и второго состояния: [begin{cases} p_1 V=nu_1 R T_1\ p_2 V=nu_2 R T_2 end{cases}] где (p_1) и (p_2) – давления газа в первом и втором состояниях, V – объём газа, (nu_1) и (nu_2)- количество вещества в первом и втором состояниях, (R) – универсальная газовая постоянная, (T_1) и (T_2) – абсолютная температура в первом и втором состояниях.
Поделив одно уравнение на другое, получим: [dfrac{p_1}{p_2} = dfrac{nu_1 T_1}{nu_2 T_2}] Так как (nu_1 = 3nu_2) и (p_1 = 5p_2), то: [dfrac{5p_2}{p_2} = dfrac{3nu_2cdot T_1}{nu_2cdot T_2} hspace{0,4 cm} Rightarrow hspace{0,4 cm} 5=dfrac{3T_1}{T_2} hspace{0,4 cm} Rightarrow hspace{0,4 cm} 5T_2 = 3T_1] Так как (T_2 = (T_1 – 200) К), то: [5(T_1 – 300text{ K}) = 3T_1 hspace{0,4 cm} Rightarrow hspace{0,4 cm} 5T_1 – 1500text{ K } = 3T_1 hspace{0,4 cm} Rightarrow hspace{0,4 cm} 2T_1 = 1500text{ K } hspace{0,4 cm} Rightarrow hspace{0,4 cm} T_1 = 750text{ K }]
Ответ: 750
На графиках приведены зависимости давления (p) и объема (V) от времени (t) для 1 моля идеального газа. Чему равна температура газа в момент (t) = 30 минут? (Ответ дайте в градусах Кельвина с точностью до 10 К.)
Уравнение состояния идеального газа: [displaystyle pV=nu RT,] где (p)-давление газа, (V)-объем газа, (nu) – количество вещества газа, (R) – универсальная газовая постоянная, (T) – температура. Выразим температуру газа: [T=dfrac{pV}{nu R}] Из графика найдем давление и объем в момент времени 30 мин:
(p=1,2cdot10^5) Па
(V=8,3cdot10^{-3}text{ м$^3$})
Подставим известные и найденные значения в формулу: [T=dfrac{1,2cdot10^5text{ Па}cdot8,3cdot10^{-3}text{ м$^3$}}{1text{ моль}cdot8,31text{ }dfrac{text{Дж}}{text{моль}}} approx 120 text{ К}]
Ответ: 120
В сосуде неизменного объёма находится разреженный газ в количестве 3 моль. Во сколько раз изменится давление газа в сосуде, если выпустить из него 1 моль газа, а абсолютную температуру газа уменьшить в 2 раза?
“Демоверсия 2019”
Запишем уравнение Клапейрона – Менделеева: [p1V=nu_1RT_1=3RT_1] [p_2V=nu_2RT_2=2Rdfrac{T_1}{2}=RT_1] [dfrac{p_1}{p_2}=dfrac{3RT_1}{RT_1}=3]
Ответ: 3
В сосуде неизменного объёма находится идеальный газ. Во сколько раз нужно увеличить количество газа в сосуде, чтобы после уменьшения абсолютной температуры газа в 2 раза его давление стало вдвое больше начального?
“Досрочная волна 2020 вариант 1”
Из уравнения Клапейрона -Менделеева: [pV=nu RT] чтобы давление ((p)) увеличилось в 2 раза, при уменьшении температуры ((T)) в 2 раза, количество вещества ((nu)) должно увеличится в 4 раза
Ответ: 4
В сосуде неизменного объема находится разреженный газ в количестве 4 моль. Во сколько раз нужно увеличить абсолютную температуру газа, чтобы после удаления из сосуда 3 моль газа, давление осталось неизменным?
“Основная волна 2020 “
Уравнение Клайперона – Менделеева: [pV=nu RT] если удалить 3 моль газа, то количество вещества уменьшится в 4 раза (nu_1=dfrac{nu}{4}), следовательно, температуру надо увеличить в 4 раза.
Ответ: 4
Математика: Наперегонки со временем + самый сложный №19
Источник
В сосуде неизменного объема находится идеальный газ. Если часть газа выпустить из сосуда при постоянной температуре, то как изменятся величины: давление газа, его плотность и количество вещества в сосуде?
Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.
Поскольку из сосуда выпускают часть газа, количество вещества в сосуде уменьшается. При этом плотность газа также уменьшается, так как теперь прежний объем занимает меньшая масса газа:
Макроскопические параметры газа не независимы, они связаны уравнением Клапейрона – Менделеева: Согласно условию, температура содержимого газа не изменяется, объем сосуда также постоянен, следовательно, давление в сосуде после выпускания части газа уменьшается.
Немного не поняла с доказательством изменения давления газа.
Я исходила из объединенного газового закона, где при постоянных объеме и температуре, выходит, что давление тоже неизменно.. Помогите разрешить этот казус)
Не очень понимаю, что Вы называете объединенным газовым законом. Если
, то ответ на Ваш вопрос очень прост. Этот закон попросту нельзя здесь использовать, как и любой другой газовый закон (Бойля-Мариотта, Гей-Люссака, Шарля), поскольку они верны только для постоянного количества вещества,а у нас количество вещества изменяется.
, на самом деле, ведь просто следствие уравнения Клапейрона-Менделеева в случае, если . Действительно, . Таким образом, данный закон неформально можно называть законом «изоколичества вещества». А закон Шарля – это «изобрано/изоколичественный» закон.
В сосуде неизменного объема находится идеальный газ. Если часть газа выпустить из сосуда при постоянной температуре, то как изменятся величины: давление газа, его плотность и количество вещества в сосуде?
Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.
Поскольку из сосуда выпускают часть газа, количество вещества в сосуде уменьшается. При этом плотность газа также уменьшается, так как теперь прежний объем занимает меньшая масса газа:
Макроскопические параметры газа не независимы, они связаны уравнением Клапейрона – Менделеева: Согласно условию, температура содержимого газа не изменяется, объем сосуда также постоянен, следовательно, давление в сосуде после выпускания части газа уменьшается.
Немного не поняла с доказательством изменения давления газа.
Я исходила из объединенного газового закона, где при постоянных объеме и температуре, выходит, что давление тоже неизменно.. Помогите разрешить этот казус)
Не очень понимаю, что Вы называете объединенным газовым законом. Если
, то ответ на Ваш вопрос очень прост. Этот закон попросту нельзя здесь использовать, как и любой другой газовый закон (Бойля-Мариотта, Гей-Люссака, Шарля), поскольку они верны только для постоянного количества вещества,а у нас количество вещества изменяется.
, на самом деле, ведь просто следствие уравнения Клапейрона-Менделеева в случае, если . Действительно, . Таким образом, данный закон неформально можно называть законом «изоколичества вещества». А закон Шарля – это «изобрано/изоколичественный» закон.
В сосуде неизменного объема находится идеальный газ. Часть газа выпускали из сосуда так, что давление оставалось неизменным. Как изменились при этом температура газа, оставшегося в сосуде, его плотность и количество вещества?
Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.
Поскольку из сосуда выпускают часть газа, количество вещества в сосуде уменьшается. При этом плотность газа также уменьшается, так как теперь прежний объем занимает меньшая масса газа:
Макроскопические параметры газа не независимы, они связаны уравнением Клапейрона – Менделеева: Согласно условию, давление содержимого газа не изменяется, объем сосуда также постоянен, следовательно, температура в сосуде после выпускания части газа увеличится.
Объясните пожалйуста,почему температура увеличивается,ведь давление остается постоянным
Если температура будет увеличиваться, тогда получится, что правая часть(URT) уравнения Клапейрона-Менделлева больше левой(PV), а они должны быть равны.
уменьшается.
По условию: «Часть газа выпускали из сосуда».
(При этом плотность газа также уменьшается, так как теперь прежний объем занимает меньшая масса газа: p=mV)
По условию: «В сосуде неизменного объема находится идеальный газ».
В сосуде неизменного объема находилась при комнатной температуре смесь двух идеальных газов, по 1 моль каждого. Половину содержимого сосуда выпустили, а затем добавили в сосуд 1 моль первого газа. Как изменились в результате парци-альные давления газов и их суммарное давление, если температура газов в сосуде поддерживалась неизменной? Для каждой величины определите соответствующий характер изменения:
Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.
Парциальное давление первого газа | Парциальное давление второго газа | Давление смеси газов Вначале оба идеальных газа в сосуде находились в полностью равных условиях. Полное количество вещества было равно 2 моля. Когда выпустили половину содержимого сосуда, и количество первого газа, и количество второго газа уменьшилось, в сосуде остался 1 моль газов. Затем в сосуд добавили еще 1 моль первого газа. Количество вещества вновь стало равно 2 моля. Следовательно, давление смеси газов в сосуде не изменилось, поскольку оно определяется только полной концентрацией молекул в сосуде. Парциальные давления газов, напротив, изменились. Первого газа стало больше, чем 1 моль, значит, его парциальное давление увеличилось. Второго газа стало меньше, чем 1 моль: парциальное давление второго газа уменьшилось. «давление смеси газов в сосуде не изменилось, поскольку оно определяется только полной концентрацией молекул в сосуде» мы же не знаем пропорции и концентрации газов, как можно тогда считать что давление не изменилось? Отношение между получившимися концентрациями знать и не нужно. Существенно только, что температура остается неизменной. Смотрите. Обозначим объем сосуда через . Изначально обоих газов по 1 моль, то есть число молекул каждого газа равно числу Авагадро . То есть парциальные давления равны: , . Полное давление: После выпускания газов,число молекул первого и второго газов уменьшилось до и соответственно. При этом , поскольку всего в сосуде остался 1 моль. Теперь добавляют 1 моль первого газа, следовательно, число молекул становится и . Теперь . Тогда парциальное давление первого газа после всех операций: . Парциальное давление второго газа: . Новое общее давление: . спасибо большое, тоесть В сосуде неизменного объема находится идеальный газ. Если часть газа выпустить из сосуда при постоянной температуре, то как изменятся величины: давление газа, его плотность и количество вещества в сосуде? Для каждой величины определите соответствующий характер ее изменения: Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.
Поскольку из сосуда выпускают часть газа, количество вещества в сосуде уменьшается. При этом плотность газа также уменьшается, так как теперь прежний объем занимает меньшая масса газа: Макроскопические параметры газа не независимы, они связаны уравнением Клапейрона – Менделеева: Согласно условию, температура содержимого газа не изменяется, объем сосуда также постоянен, следовательно, давление в сосуде после выпускания части газа уменьшается. Немного не поняла с доказательством изменения давления газа. Я исходила из объединенного газового закона, где при постоянных объеме и температуре, выходит, что давление тоже неизменно.. Помогите разрешить этот казус) Не очень понимаю, что Вы называете объединенным газовым законом. Если , то ответ на Ваш вопрос очень прост. Этот закон попросту нельзя здесь использовать, как и любой другой газовый закон (Бойля-Мариотта, Гей-Люссака, Шарля), поскольку они верны только для постоянного количества вещества,а у нас количество вещества изменяется. Закон , на самом деле, ведь просто следствие уравнения Клапейрона-Менделеева в случае, если . Действительно, . Таким образом, данный закон неформально можно называть законом «изоколичества вещества». А закон Шарля – это «изобрано/изоколичественный» закон. В сосуде неизменного объема при комнатной температуре находилась смесь водорода и гелия, по 1 моль каждого. Половину содержимого сосуда выпустили, а затем добавили в сосуд 1 моль водорода. Считая газы идеальными, а их температуру постоянной, выберите из предложенного перечня два утверждения, которые соответствуют результатам проведенных экспериментальных исследований, и укажите их номера. 1) Парциальное давление водорода уменьшилось. 2) Давление смеси газов в сосуде не изменилось. 3) Концентрация гелия увеличилась. 4) В начале опыта концентрации газов были одинаковые. 5) В начале опыта массы газов были одинаковые. Вначале сосуде находилась смесь 1 моль водорода и 1 моль гелия. После выпускания половины содержимого сосуда в нём стало 0,5 моль водорода и 0,5 моль гелия. Затем в сосуд добавили 1 моль водорода, в нём стало 1,5 моль водорода и 0,5 моль гелия. Объём сосуда и температура по условию постоянны. 1) Количество водорода увеличилось, значит, его парциальное давление увеличилось. 2) Общее количество вещества одинаково (2 моль), давление смеси газов в сосуде не изменилось. 3) Количество гелия уменьшилось, значит, его концентрация уменьшилась. 4) В начале опыта количество вещества водорода и гелия было одинаковым, концентрации газов были одинаковые. 5) Молярные массы водорода и гелия разные, при одинаковом количестве вещества массы газов были разными. Верны второе и четвёртое утверждения. В сосуде неизменного объема при комнатной температуре находилась смесь водорода и гелия, по 1 моль каждого. Половину содержимого сосуда выпустили, а затем добавили в сосуд 1 моль гелия. Считая газы идеальными, а их температуру постоянной, выберите из предложенного перечня два утверждения, которые соответствуют результатам проведенных экспериментальных исследований, и укажите их номера. 1) Парциальное давление водорода уменьшилось. 2) Давление смеси газов в сосуде уменьшилось. 3) Концентрация водорода увеличилась. 4) В начале опыта концентрации водорода была больше, чем концентрация гелия. 5) В начале опыта масса гелия была больше, чем масса водорода. Вначале сосуде находилась смесь 1 моль водорода и 1 моль гелия. После выпускания половины содержимого сосуда в нём стало 0,5 моль водорода и 0,5 моль гелия. Затем в сосуд добавили 1 моль гелия, в нём стало 0,5 моль водорода и 1,5 моль гелия. Объём сосуда и температура по условию постоянны. 1) Количество водорода уменьшилось, значит, его парциальное давление уменьшилось. 2) Общее количество вещества одинаково (2 моль), давление смеси газов в сосуде не изменилось. 3) Количество водорода уменьшилось, значит, его концентрация уменьшилась. 4) В начале опыта количество вещества водорода и гелия было одинаковым, концентрации газов были одинаковые. 5) Молярная масса гелия больше, чем у водорода, при одинаковом количестве вещества масса гелия больше. Верны первое и пятое утверждения. В сосуде неизменного объёма находится идеальный газ. Во сколько раз нужно увеличить количество газа в сосуде, чтобы после уменьшения абсолютной температуры газа в 2 раза его давление стало вдвое больше начального? Из уравнения Менделеева-Клапейрона: Следовательно, для увеличения давления в два раза после уменьшения в два раза температуры газа нужно увеличить количество газа в сосуде в 4 раза. В сосуде неизменного объёма находится идеальный газ. Во сколько раз нужно уменьшить количество вещества газа в сосуде, чтобы после увеличения абсолютной температуры газа в 2 раза его давление стало вдвое меньше начального? Из уравнения Менделеева-Клапейрона: Следовательно, для уменьшения давления в два раза после увеличения в два раза температуры газа нужно уменьшить количество газа в сосуде в 4 раза. В сосуде неизменного объёма находится разреженный газ в количестве 3 моль. Во сколько раз уменьшится давление газа в сосуде, если выпустить из него 1 моль газа, а абсолютную температуру газа уменьшить в 2 раза? Согласно уравнению Менделеева – Клапейрона давление разреженного газа равно При уменьшении количества вещества газа на треть и абсолютной температуры в 2 раза давление уменьшится в 3 раза. Среднеквадратичная скорость молекул идеального одноатомного газа, заполняющего закрытый сосуд, равна Как и на сколько изменится среднеквадратичная скорость молекул этого газа, если давление в сосуде вследствие охлаждения газа уменьшить на 19%? Среднеквадратичная скорость молекул идеального газа при температуре равна где – постоянная Больцмана, – масса одной молекулы этого газа. Учитывая соотношение , где – универсальная газовая постоянная, – молярная масса газа, – постоянная Авогадро, выразим среднеквадратичную скорость молекул в виде Согласно уравнению Клапейрона – Менделеева где р – давление газа, V – объем сосуда, – масса газа. Из этих выражений следует, что Тогда начальная и конечная среднеквадратичная скорости равны и здесь учтено, что изменение давления в сосуде происходит при неизменном объёме (сосуд закрытый). Согласно условию задачи, Следовательно, Отсюда следует, что изменение среднеквадратичной скорости молекул Таким образом, среднеквадратичная скорость молекул газа уменьшится на 45 м/с. Ответ: среднеквадратичная скорость молекул газа уменьшится на 45 м/с. Приведём другое решение. Запишем основное уравнение МКТ, для первого и второго состояний газа: Объём сосуда и число молекул в нём не изменяются, следовательно, концентрация остаётся неизменной. Получаем: Откуда Ответ: Источник ➤ Adblock detector |
Источник