Если сосуд закрыть то плотность пара

Если сосуд закрыть то плотность пара thumbnail

Насыщенный пар.

Если сосуд закрыть то плотность пара

Если сосуд с жидкостью плотно закрыть, то сначала количество жидкости уменьшится, а затем будет оставаться постоянным. При неизменной температуре система жидкость – пар придет в состояние теплового равновесия и будет находиться в нем сколь угодно долго. Одновременно с процессом испарения происходит и конденсация, оба процесса в среднем компенсируют друг друга. В первый момент, после того как жидкость нальют в сосуд и закроют его, жидкость будет испаряться и плотность пара над ней будет увеличиваться. Однако одновременно с этим будет расти и число молекул, возвращающихся в жидкость. Чем больше плотность пара, тем большее число его молекул возвращается в жидкость. В результате в закрытом сосуде при постоянной температуре установится динамическое (подвижное) равновесие между жидкостью и паром, т. е. число молекул, покидающих поверхность жидкости за некоторый промежуток времени, будет равно в среднем числу молекул пара, возвратившихся за то же время в жидкость. Пар, находящийся в динамическом равновесии со своей жидкостью, называют насыщенным паром. Это определение подчеркивает, что в данном объеме при данной температуре не может находиться большее количество пара.

Более подробно здесь

Давление насыщенного пара.

Что будет происходить с насыщенным паром, если уменьшить занимаемый им объем? Например, если сжимать пар, находящийся в равновесии с жидкостью в цилиндре под поршнем, поддерживая температуру содержимого цилиндра постоянной. При сжатии пара равновесие начнет нарушаться. Плотность пара в первый момент немного увеличится, и из газа в жидкость начнет переходить большее число молекул, чем из жидкости в газ. Ведь число молекул, покидающих жидкость в единицу времени, зависит только от температуры, и сжатие пара это число не меняет. Процесс продолжается до тех пор, пока вновь не установится динамическое равновесие и плотность пара, а значит, и концентрация его молекул не примут прежних своих значений. Следовательно, концентрация молекул насыщенного пара при постоянной температуре не зависит от его объема. Так как давление пропорционально концентрации молекул (p=nkT), то из этого определения следует, что давление насыщенного пара не зависит от занимаемого им объема. Давление pн.п. пара, при котором жидкость находится в равновесии со своим паром, называют давлением насыщенного пара.

Зависимость давления насыщенного пара от температуры.

Состояние насыщенного пара, как показывает опыт, приближенно описывается уравнением состояния идеального газа, а его давление определяется формулой Р = nкТ С ростом температуры давление растет. Так как давление насыщенного пара не зависит от объема, то, следовательно, оно зависит только от температуры. Однако зависимость рн.п. от Т, найденная экспериментально, не является прямо пропорциональной, как у идеального газа при постоянном объеме. С увеличением температуры давление реального насыщенного пара растет быстрее, чем давление идеального газа (рис. участок кривой 12). Почему это происходит? При нагревании жидкости в закрытом сосуде часть жидкости превращается в пар. В результате согласно формуле Р = nкТ давление насыщенного пара растет не только вследствие повышения температуры жидкости, но и вследствие увеличения концентрации молекул (плотности) пара. В основном увеличение давления при повышении температуры определяется именно увеличением концентрации. (Главное различие в поведении идеального газа и насыщенного пара состоит в том, что при изменении температуры пара в закрытом сосуде (или при изменении объема при постоянной температуре) меняется масса пара. Жидкость частично превращается в пар, или, напротив, пар частично конденсируется. С идеальным газом ничего подобного не происходит.). Когда вся жидкость испарится, пар при дальнейшем нагревании перестанет быть насыщенным и его давление при постоянном объеме будет возрастать прямо пропорционально абсолютной температуре (см. рис., участок кривой 23).

Кипение.

Кипение – это интенсивный переход вещества из жидкого состояния в газообразное, происходящее по всему объему жидкости (а не только с ее поверхности). (Конденсация – обратный процесс.) По мере увеличения температуры жидкости интенсивность испарения увеличивается. Наконец, жидкость начинает кипеть. При кипении по всему объему жидкости образуются быстро растущие пузырьки пара, которые всплывают на поверхность. Температура кипения жидкости остается постоянной. Это происходит потому, что вся подводимая к жидкости энергия расходуется на превращение ее в пар. При каких условиях начинается кипение?

Если сосуд закрыть то плотность пара

В жидкости всегда присутствуют растворенные газы, выделяющиеся на дне и стенках сосуда, а также на взвешенных в жидкости пылинках, которые являются центрами парообразования. Пары жидкости, находящиеся внутри пузырьков, являются насыщенными. С увеличением температуры давление насыщенных паров возрастает и пузырьки увеличиваются в размерах. Под действием выталкивающей силы они всплывают вверх. Если верхние слои жидкости имеют более низкую температуру, то в этих слоях происходит конденсация пара в пузырьках. Давление стремительно падает, и пузырьки захлопываются. Захлопывание происходит настолько быстро, что стенки пузырька, сталкиваясь, производят нечто вроде взрыва. Множество таких микровзрывов создает характерный шум. Когда жидкость достаточно прогреется, пузырьки перестанут захлопываться и всплывут на поверхность. Жидкость закипит. Понаблюдайте внимательно за чайником на плите. Вы обнаружите, что перед закипанием он почти перестает шуметь. Зависимость давления насыщенного пара от температуры объясняет, почему температура кипения жидкости зависит от давления на ее поверхность. Пузырек пара может расти, когда давление насыщенного пара внутри него немного превосходит давление в жидкости, которое складывается из давления воздуха на поверхность жидкости (внешнее давление) и гидростатического давления столба жидкости . Кипение начинается при температуре, при которой давление насыщенного пара в пузырьках сравнивается с давлением в жидкости. Чем больше внешнее давление, тем выше температура кипения. И наоборот, уменьшая внешнее давление, мы тем самым понижаем температуру кипения. Откачивая насосом воздух и пары воды из колбы, можно заставить воду кипеть при комнатной температуре. У каждой жидкости своя температура кипения (которая остается постоянной, пока вся жидкость не выкипит), которая зависит от давления ее насыщенного пара. Чем выше давление насыщенного пара, тем ниже температура кипения жидкости.

Заполни опорный конспект Контрольные вопросы

Влажность воздуха и ее измерение.

В окружающем нас воздухе практически всегда находится некоторое количество водяных паров. Влажность воздуха зависит от количества водяного пара, содержащегося в нем. Сырой воздух содержит больший процент молекул воды, чем сухой. Большое значение имеет относительная влажность воздуха, сообщения о которой каждый день звучат в сводках метеопрогноза.

Читайте также:  Если лопается сосуд на теле

Относительная влажность – это отношение плотности водяного пара, содержащегося в воздухе, к плотности насыщенного пара при данной температуре, выраженное в процентах (показывает, насколько водяной пар в воздухе близок к насыщению).

Если сосуд закрыть то плотность пара

Если сосуд закрыть то плотность пара

Точка росы

Сухость или влажность воздуха зависит от того, насколько близок его водяной пар к насыщению. Если влажный воздух охлаждать, то находящийся в нем пар можно довести до насыщения, и далее он будет конденсироваться. Признаком того, что пар насытился является появление первых капель сконденсировавшейся жидкости – росы. Температура, при которой пар, находящийся в воздухе, становится насыщенным, называется точкой росы. Точка росы также характеризует влажность воздуха. Примеры: выпадение росы под утро, запотевание холодного стекла, если на него подышать, образование капли воды на холодной водопроводной трубе, сырость в подвалах домов. Для измерения влажности воздуха используют измерительные приборы – гигрометры. Существуют несколько видов гигрометров, но основные: волосной и психрометрический.

Так как непосредственно измерить давление водяных паров в воздухе сложно, относительную влажность воздуха измеряют косвенным путем. Известно, что от относительной влажности воздуха зависит скорость испарения. Чем меньше влажность воздуха, тем легче влаге испаряться. В психрометре есть два термометра. Один – обычный, его называют сухим. Он измеряет температуру окружающего воздуха. Колба другого термометра обмотана тканевым фитилем и опущена в емкость с водой. Второй термометр показывает не температуру воздуха, а температуру влажного фитиля, отсюда и название увлажненный термометр. Чем меньше влажность воздуха, тем интенсивнее испаряется влага из фитиля, тем большее количество теплоты в единицу времени отводится от увлажненного термометра, тем меньше его показания, следовательно, тем больше разность показаний сухого и увлажненного термометров. Определив разность показаний сухого и увлажненного термометров, по специальной таблице, расположенной на психрометре, находят значение относительной влажности.

Если сосуд закрыть то плотность пара

Источник: https://5fan.ru/wievjob.php?id=1361

Источник

Автор статьи – профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: насыщенные и ненасыщенные пары, влажность воздуха.

Если открытый стакан с водой оставить на долгое время, то в конце концов вода полностью улетучится. Точнее – испарится. Что такое испарение и почему оно происходит?

Испарение и конденсация

При данной температуре молекулы жидкости обладают разными скоростями. Скорости большинства молекул находятся вблизи некоторого среднего значения (характерного для этой температуры). Но попадаются молекулы, скорости которых значительно отличаются от средней как в меньшую, так и большую сторону.

На рис. 1 изображён примерный график распределения молекул жидкости по скоростям. Голубым фоном показано то самое большинство молекул, скорости которых группируются около среднего значения. Красный «хвост» графика – это небольшое число «быстрых» молекул, скорости которых существенно превышают среднюю скорость основной массы молекул жидкости.

Если сосуд закрыть то плотность пара

Рис. 1. Распределение молекул по скоростям

Когда такая весьма быстрая молекула окажется на свободной поверхности жидкости (т.е. на границе раздела жидкости и воздуха), кинетической энергии этой молекулы может хватить на то, чтобы преодолеть силы притяжения остальных молекул и вылететь из жидкости. Данный процесс и есть испарение, а молекулы, покинувшие жидкость, образуют пар.

Итак, испарение – это процесс превращения жидкости в пар, происходящий на свободной поверхности жидкости (при особых условиях превращение жидкости в пар может происходить по всему объёму жидкости. Данный процесс вам хорошо известен – это кипение).

Может случиться, что через некоторое время молекула пара вернётся обратно в жидкость.

Процесс перехода молекул пара в жидкость называется конденсацией. Конденсация пара – процесс, обратный испарению жидкости.

Динамическое равновесие

А что будет, если сосуд с жидкостью герметично закрыть? Плотность пара над поверхностью жидкости начнёт увеличиваться; частицы пара будут всё сильнее мешать другим молекулам жидкости вылетать наружу, и скорость испарения станет уменьшаться. Одновременно начнёт увеличиваться скорость конденсации, так как с возрастанием концентрации пара число молекул, возвращающихся в жидкость, будет становиться всё больше.

Наконец, в какой-то момент скорость конденсации окажется равна скорости испарения. Наступит динамическое равновесие между жидкостью и паром: за единицу времени из жидкости будет вылетать столько же молекул, сколько возвращается в неё из пара. Начиная с этого момента количество жидкости перестанет убывать, а количество пара – увеличиваться; пар достигнет «насыщения».

Насыщенный пар – это пар, который находится в состоянии динамического равновесия со своей жидкостью. Пар, не достигший состояния динамического равновесия с жидкостью, называется ненасыщенным.

Давление и плотность насыщенного пара обозначаются и . Очевидно, и – это максимальные давление и плотность, которые может иметь пар при данной температуре. Иными словами, давление и плотность насыщенного пара всегда превышают давление и плотность ненасыщенного пара.

Свойства насыщенного пара

Оказывается, что состояние насыщенного пара (а ненасыщенного – тем более) можно приближённо описывать уравнением состояния идеального газа (уравнением Менделеева – Клапейрона). В частности, имеем приближённое соотношение между давлением насыщенного пара и его плотностью:

(1)

Это весьма удивительный факт, подтверждаемый экспериментом. Ведь по своим свойствам насыщенный пар существенно отличается от идеального газа. Перечислим важнейшие из этих отличий.

1. При неизменной температуре плотность насыщенного пара не зависит от его объёма.

Если, например, насыщенный пар изотермически сжимать, то его плотность в первый момент возрастёт, скорость конденсации превысит скорость испарения, и часть пара конденсируется в жидкость – до тех пор, пока вновь не наступит динамическое равновесие, в котором плотность пара вернётся к своему прежнему значению.

Аналогично, при изотермическом расширении насыщенного пара его плотность в первый момент уменьшится (пар станет ненасыщенным), скорость испарения превысит скорость конденсации, и жидкость будет дополнительно испаряться до тех пор, пока опять не установится динамическое равновесие – т.е. пока пар снова не станет насыщенным с прежним значением плотности.

2. Давление насыщенного пара не зависит от его объёма.

Это следует из того, что плотность насыщенного пара не зависит от объёма, а давление однозначно связано с плотностью уравнением (1).

Как видим, закон Бойля – Мариотта, справедливый для идеальных газов, для насыщенного пара не выполняется. Это и не удивительно – ведь он получен из уравнения Менделеева – Клапейрона в предположении, что масса газа остаётся постоянной.

Читайте также:  В одном из сообщающихся сосудов находится вода в другом керосин

3. При неизменном объёме плотность насыщенного пара растёт с повышением температуры и уменьшается с понижением температуры.

Действительно, при увеличении температуры возрастает скорость испарения жидкости.

Динамическое равновесие в первый момент нарушается, и происходит дополнительное испарение некоторой части жидкости. Пара будет прибавляться до тех пор, пока динамическое равновесие вновь не восстановится.

Точно так же при понижении температуры скорость испарения жидкости становится меньше, и часть пара конденсируется до тех пор, пока не восстановится динамическое равновесие – но уже с меньшим количеством пара.

Таким образом, при изохорном нагревании или охлаждении насыщенного пара его масса меняется, поэтому закон Шарля в данном случае не работает. Зависимость давления насыщенного пара от температуры уже не будет линейной функцией.

4. Давление насыщенного пара растёт с температурой быстрее, чем по линейному закону.

В самом деле, с увеличением температуры возрастает плотность насыщенного пара, а согласно уравнению (1) давление пропорционально произведению плотности на температуру.

Зависимость давления насыщенного пара от температуры является экспоненциальной (рис. 2). Она представлена участком 1-2 графика. Эту зависимость нельзя вывести из законов идеального газа.

Если сосуд закрыть то плотность пара

Рис. 2. Зависимость давления пара от температуры

В точке 2 вся жидкость испаряется; при дальнейшем повышении температуры пар становится ненасыщенным, и его давление растёт линейно по закону Шарля (участок 2-3).

Вспомним, что линейный рост давления идеального газа вызван увеличением интенсивности ударов молекул о стенки сосуда. В случае нагревания насыщенного пара молекулы начинают бить не только сильнее, но и чаще – ведь пара становится больше. Одновременным действием этих двух факторов и вызван экспоненциальный рост давления насыщенного пара.

Влажность воздуха

Воздух, содержащий водяной пар, называется влажным.Чем больше пара находится в воздухе, тем выше влажность воздуха.

Абсолютная влажность – это парциальное давление водяного пара, находящегося в воздухе (т. е. давление, которое водяной пар оказывал бы сам по себе, в отсутствие других газов). Иногда абсолютной влажностью называют также плотность водяного пара в воздухе.

Относительная влажность воздуха – это отношение парциального давления водяного пара в нём к давлению насыщенного водяного пара при той же температуре. Как правило, это отношение выражают в процентах:

Из уравнения Менделеева-Клапейрона (1) следует, что отношение давлений пара равно отношению плотностей. Так как само уравнение (1), напомним, описывает насыщенный пар лишь приближённо, мы имеем приближённое соотношение:

Одним из приборов, измеряющих влажность воздуха, является психрометр. Он включает в себя два термометра, резервуар одного из которых завёрнут в мокрую ткань. Чем ниже влажность, тем интенсивнее идёт испарение воды из ткани, тем сильнее охлаждается резервуар «мокрого» термометра, и тем больше разность его показаний и показаний сухого термометра. По этой разности с помощью специальной психрометрической таблицы определяют влажность воздуха.

Источник

Над свободной поверхностью жидкости всегда имеются пары этой жидкости. Если сосуд с жидкостью не закрыт, то всегда найдутся молекулы пара, которые удаляются от поверхности жидкости и не могут вернуться назад в жидкость. В закрытом сосуде одновременно с испарением жидкости происходит конденсация пара. Сначала число молекул, вылетающих из жидкости за 1 с, больше числа молекул, возвращающихся обратно, и плотность, а значит, и давление пара растет. Число молекул пара возрастает до тех пор, пока число молекул, покинувших жидкость (испарившихся), не станет равно числу молекул, возвратившихся у жидкость (сконденсировавшихся) за один и тот же промежуток времени. Такое состояние называют динамическим равновесием.

Пар, находящийся в состоянии динамического равновесия со своей жидкостью, называется насыщенным паром. Для описания насыщенного пара применяют следующие величины: давление насыщенного пара pн и плотность насыщенного пара ρн. При данной температуры насыщенный пар обладает максимально возможным значением давления и плотности пара.

Пар, давление которого меньше давления насыщенного пара при данной температуре, называется ненассыщенным. Аналогично можно было дать определение и через плотность пара.

Опыт показывает, что ненасыщенные пары подчиняются всем газовым законам, и тем точнее, чем дальше они от насыщения.

Свойства насыщенных паров

Для насыщенных паров характерны следующие свойства:

  1. плотность и давление насыщенного пара зависят от рода вещества. Чем меньше удельная теплота парообразования жидкости, тем быстрее она испаряется и тем больше давление и плотность ее паров;
  2. давление и плотность насыщенного пара однозначно определяются его температурой (не зависят от того, каким образом пар достиг этой температуры: при нагревании или при охлаждении);
  3. в замкнутом сосуде (V = const) давление и плотность пара быстро возрастают с увеличением температуры (рис. 1, а, б). Более сильное увеличение давления насыщенного пара по сравнению с идеальным газом объясняется тем, что здесь происходит рост давления не только за счет роста средней кинетической энергии молекул (как у идеального газа), но и за счет увеличения концентрации молекул (было замечено, что при нагревании уровень жидкости в закрытом сосуде понижается, следовательно, масса и плотность пара возрастают). Таким образом, газовый закон для изохорного процесса не применим к насыщенному пару.

    Если сосуд закрыть то плотность пара

    Рис. 1

  4. при постоянной температуре давление и плотность насыщенного пара не зависят от объема. На рисунке 2 для сравнения приведены изотермы идеального газа (а) и насыщенного пара (б). Опыт показывает, что при изотермическом расширении уровень жидкости в сосуде понижается, при сжатии – повышается, т.е. изменяется число молекул пара так, что плотность пара остается постоянной. Таким образом, газовый закон для изотермического процесса также не применим к насыщенному пару;

    Если сосуд закрыть то плотность пара

    Рис. 2

  5. уравнение p = n⋅k⋅T описывает состояние насыщенного пара только приближенно.

Следовательно, насыщенный пар не подчиняется газовым законам идеального газа. Значения давления и плотности насыщенного пара при заданной температуре определяются из таблиц (см. таблицу).

Таблица. Давление (р) и плотность (ρ) насыщенных паров воды при различных температурах (t).

t, °Ср, кПаρ, г/м3
0,6114,84
202,3417,3
407,3751,2
6019,9130
8047,3293
100101,3598
1201961122
Читайте также:  Как проходит узи сосудов ног

В результате испарения воды с многочисленных водоемов (морей, озер, рек и др.), а также с растительных покровов в атмосферном воздухе всегда содержится водяной пар. От количества водяного пара, содержащегося в воздухе, зависит погода, самочувствие человека, функционирование многих его органов, жизнь растений, а также сохранность технических объектов, архитектурных сооружений, произведений искусств. Поэтому очень важно следить за влажностью воздуха, уметь измерять ее.

Водяной пар в воздухе обычно является ненасыщенным. Перемещение воздушных масс, обусловленное в конечном счете излучением Солнца, приводит к тому, что в одних местах нашей планеты в данный момент испарение воды преобладает над конденсацией, а в других, наоборот, преобладает конденсация.

Воздух, содержащий водяные пары, называют влажным. Для характеристики содержания водяного пара в воздухе вводят ряд величин: абсолютную влажность и относительную влажность.

Абсолютной влажностью ρ воздуха называют величину, численно равную массе водяного пара, содержащегося в 1 м3 воздуха (т.е. плотность водяного пара в воздухе при данных условиях).

В СИ единицей абсолютной влажности является килограмм на кубический метр (кг/м3). Иногда используются внесистемные единицы грамм на кубический метр (г/м3).

Абсолютная влажность ρ и давление p водяного пара связаны между собой уравнением состояния

(~p cdot V = dfrac {m cdot M}{R cdot T} Rightarrow p = dfrac{rho}{M} cdot R cdot T)

Если известна только абсолютная влажность, еще нельзя судить, насколько сух или влажен воздух. Для определения степени влажности воздуха необходимо знать, близок или далек водяной пар от насыщения.

Относительной влажностью воздуха φ называют выраженное в процентах отношение абсолютной влажности к плотности ρ0 насыщенного пара при данной температуре (или отношение давления p водяного пара к давлению p0 насыщенного пара при данной температуре):

(~varphi = dfrac{rho}{rho_0} cdot 100;%, ;; ~varphi = dfrac{p}{p_0} cdot 100;%.)

Чем меньше относительная влажность, тем дальше пар от насыщения, тем интенсивнее происходит испарение. Давление насыщенного пара p0 при заданной температуре – величина табличная. Давление p водяного пара (а значит, и абсолютную влажность) определяют по точке росы.

Пусть при температуре t1 давление водяного пара p1. Состояние пара на диаграмме р, t изобразится точкой А (рис. 5).

Если сосуд закрыть то плотность пара

Рис. 5

При изобарном охлаждении до температуры tp пар становится насыщенным и его состояние изобразится точкой В. Температуру tp, при которой водяной пар становится насыщенным, называют точкой росы. При охлаждении ниже точки росы начинается конденсация паров: появляется туман, выпадает роса, запотевают окна. Точка росы позволяет определить давление водяного пара p1, находящегося в воздухе при температуре t1.

Действительно, из рисунка 5 видим, что давление p1 равно давлению насыщенного пара при точке росы p1 = p0tp . Следовательно, (~varphi = dfrac{p_{0tp}}{p_0} cdot 100 ;%)

Психрометр. Гигрометр

При понижении температуры, относительная влажность воздуха увеличивается. При некоторой температуре (точке росы) водяной пар становится насыщенным. Дальнейшее понижение температуры приводит к тому, что образующийся излишек водяных паров начинает конденсироваться в виде капелек росы или тумана.

Для определения относительной влажности воздуха, можно искусственно понизить температуру воздуха в какой-то ограниченной области до точки росы. Абсолютная влажность и, соответственно, давление водяных паров при этом останутся неизменными. Сравнивая давление водяного пара при точке росы с давлением насыщенного пара, которое могло бы быть при интересующей нас температуре, мы тем самым, найдем относительную влажность воздуха. Быстрого охлаждения можно добиться при интенсивном испарении какой-нибудь летучей жидкости. Такой метод применяют для измерении влажности при помощи конденсационного гигрометра.

Конденсационный гигрометр состоит из металлической коробочки с двумя отверстиями (рис. 6).

Рис. 6

В коробочку заливается эфир. С помощью резиновой груши через коробочку прокачивается воздух. Эфир очень быстро испаряется, температура коробочки и воздуха, находящегося вблизи нее, понижается, а относительная влажность растет. При некоторой температуре, которая измеряется термометром, вставленным в отверстие прибора, поверхность коробочки покрывается мельчайшими капельками росы. Чтобы точнее зафиксировать момент появления на поверхности коробочки росы, эта поверхность полируется до зеркального блеска, а рядом с коробочкой для контроля располагается отполированное металлическое кольцо.

В современных конденсационных гигрометрах для охлаждения зеркальца пользуются полупроводниковым элементом, принцип действия которого основан на Пельтье эффекте, а температура зеркальца измеряется вмонтированным в него проволочным сопротивлением или полупроводниковым микротермометром.

Действие волосного гигрометра основано на свойстве обезжиренного человеческого волоса изменять свою длину при изменении влажности воздуха, что позволяет измерять относительную влажность от 30 до 100%. Волос 1 (рис. 7) натянут на металлическую рамку 2. Изменение длины волоса передаётся стрелке 3, перемещающейся вдоль шкалы.

  • Если сосуд закрыть то плотность пара

    а

  • Если сосуд закрыть то плотность пара

    б

Рис. 7

Действие керамического гигрометра основано на зависимости электрического сопротивления твердой и пористой керамической массы (смесь глины, кремния, каолина и некоторых окислов металла) от влажности воздуха.

Относительную влажность определяют также с помощью психрометра.

Психрометр состоит из двух термометров, шарик одного из них обмотан тканью, нижние концы которой опущены в сосуд с дистиллированной водой (рис. 8). Сухой термометр регистрирует температуру воздуха, а влажный – температуру испаряющейся воды. Но при испарении жидкости ее температура понижается. Чем суше воздух (меньше его относительная влажность), тем интенсивнее испаряется вода из влажной ткани и тем ниже ее температура. Следовательно, разность показаний сухого и влажного термометров (так называемая психрометрическая разность) зависит от относительной влажности воздуха. Зная эту разность температур, определяют относительную влажность воздуха по специальным психрометрическим таблицам.

Рис. 8

  • Гигрометр – от греч.Hygros – влажный.
  • Психрометр – от греч.Psychros – холодный + Metreo – измеряю

См. также

  1. Гигрометр Wikipedia.org
  2. Измерители влажности воздуха и газов (гигрометр ВИТ, гигрометр электронный, гигрометр психометрический …)
  3. Относительная влажность Wikipedia.org
  4. Психрометр Wikipedia.org
  1. Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. – Мн.: Адукацыя i выхаванне, 2004. – C. 197-203.
  2. Жилко В.В. Физика: Учеб. пособие для 11-го кл. общеобразоват. шк. с рус. яз. обучения / В.В. Жилко, А.В.Лавриненко, Л.Г. Маркович. – Мн.: Нар. асвета, 2002. – С. 194-203.
  3. Открытая Физика

Источник