Если жидкость перелить из одного сосуда в другой она

Если жидкость перелить из одного сосуда в другой она thumbnail

В этом состоянии сохраняется объем, но не сохраняется форма. Например, если перелить молоко из кувшина в стакан – молоко, имевшее форму кувшина, примет форму стакана. Кстати, в корове у молока тоже была другая форма.

Расстояние между молекулами в жидком состоянии чуть больше, чем в твердом, но все равно невелико. При этом частицы не собраны в кристаллическую решетку, а расположены хаотично. Молекулы почти не двигаются, но при нагревании жидкости делают это более охотно.

Вспомните, что происходит, если залить чайный пакетик холодной водой – он почти не заваривается. А вот если налить кипяточку – чай точно будет готов.

Агрегатных состояния точно три?

На самом деле, есть еще четвертое – плазма. Звучит, как что-то из научной фантастики, но это просто ионизированный газ – газ, в котором помимо нейтральных частиц, есть еще и заряженные. Ионизаторы воздуха как раз строятся на принципе перехода из газообразного вещества в плазму.

Сообщающиеся сосуды

Поскольку жидкость принимает форму сосуда, в который ее поместили, имеет место быть такое явление, как сообщающиеся сосуды.

  • Сообщающиеся сосуды – это сосуды, соединенные между собой ниже уровня жидкости (в каждом сосуде). Так жидкость может перемещаться из одного сосуда в другой.

Какую бы форму не имели такие сосуды, на поверхности однородных жидкостей в состоянии покоя на одном уровне действует одинаковое давление.

Если в колена сообщающихся сосудов налить жидкости, плотности которых будут различны, то меньший объём более плотной жидкости в одном колене уравновесит больший объём менее плотной жидкости в другом колене сосуда.

Другими словами, высота столба жидкости с меньшей плотностью больше, чем высота столба жидкости с большей плотностью. Давайте рассчитаем, во сколько высота столба жидкости с меньшей плотностью больше высоты столба жидкости с большей плотностью, если эти две несмешивающиеся жидкости находятся в сообщающихся сосудах.

p = ρgh, p1 = p2, ρ1 gh1= ρ2 gh2,

Отсюда:

h1/h2 = ρ1/ρ2

ρ2 = (h1/h2) * ρ1

Применение сообщающихся сосудов

На принципе сообщающихся сосудов основано устройство очень простого прибора для определения плотности жидкости. Этот прибор состоит из двух сообщающихся сосудов: двух вертикальных стеклянных трубок, соединенных между собой третьей изогнутой трубкой.

Одна из вертикальных трубок заполняется жидкостью, плотность которой нужно определить, а другая – жидкостью известной плотности (например, водой, плотность которой равна 1000 кг/м^3). Жидкости должны заполнить трубки настолько, чтобы их уровень в изогнутой трубке посередине был на отметке прибора 0. Высоты жидкостей в трубках над этой отметкой измеряют и находят плотность исследуемой жидкости, зная, что высоты обратно пропорциональны плотностям (об этом мы говорили выше).

Также на законе сообщающихся сосудах основаны устройства, которые определяют уровень жидкости в закрытых сосудах: резервуарах, паровых котлах.

Чтобы судно могло переплыть из одной водного бассейна в другой, если уровни воды в них разные, необходимо использовать шлюз. Устройство шлюза также основано на принципе сообщающихся сосудов. В первых воротах шлюза открывается клапан, камера соединяется с водоёмом, они становятся сообщающимися сосудами, уровни воды в них выравниваются. После этого ворота открываются, и судно проходит в первую камеру. Открывается следующий клапан, после выравнивания уровней воды открываются ворота, и так повторяется столько раз, сколько камер имеет шлюз.

Давление столба жидкости

Выведем формулу давления столба жидкости через основную формулу давления.

Давление

p = F/S

p – давление [Па]

F – сила [Н]

S – площадь [м^2]

В случае давления жидкости на дно сосуда мы можем заменить силу в формуле на силу тяжести.

p = mg/S

Также мы можем представить массу жидкости, как произведение плотности на объем:

p = ρ*V*g/S

Из геометрии мы знаем, что объем тела вращения (например, цилиндра) – это произведение площади основания на высоту: V = Sh.

Следовательно, высота будет равна h = V/S. Подставляем в формулу высоту вместо отношения объема к площади.

p = ρ*g*V/S

p = ρgh

В сообщающихся сосудах давление жидкости на одном уровне (на одной и той же высоте) будет одинаковым.

А можно сделать так, чтобы давление было разным?

С помощью перегородки можно сделать так, чтобы уровень жидкости, а следовательно, и давления в сообщающихся сосудах отличались.

Перегородка, установленная между сосудами перекроет сообщение. Далее доливая жидкость в один из сосудов мы создаем дополнительное давление. Если затем убрать перегородку, то жидкость начнет перетекать в тот сосуд, где её уровень ниже – до тех пор, пока высота жидкости в обоих сосудах не станет одинаковой.

Этот принцип используют в водонапорной башне. Чтобы создать высокое давление, башню наполняют водой. Затем открывают трубы на нижнем этаже, и вода устремляется в дома в наши краны и батареи.

Задачка

Какой площади необходимо сделать малый поршень в гидравлическом прессе, для того, чтобы выигрыш в силе получился равным 2? Площадь большого поршня равна 10 см^2.

Решение:

Гидравлический пресс – это два цилиндрических сообщающихся сосуда. Площадь большого поршня, с приложенной силой F1, равна 10 см^2.

Читайте также:  Тонус резистивных сосудов значительно повышен что это

Площадь малого поршня обозначим Sмал, к нему приложена сила F2.

Давления в сообщающихся сосудах на одинаковой высоте равны: p1 = p2

Подставим формулу давления:

F1/Sбол=F2/Sмал.

Выразим Sмал, получим:

Sмал = (F2/F1) * Sбол

Так как по условию выигрыш в силе F2/F1 равен 2, то:

Sмал=2*Sбол= 2*10 = 20 см^2

Ответ: малый поршень необходимо сделать с площадью равной 20 см^2

Понимать и любить этот мир гораздо проще, когда разбираешься в физике. В этом помогут небезразличные и компетентные преподаватели онлайн-школы Skysmart.

Чтобы формулы и задачки ожили и стали более дружелюбными, на уроках мы разбираем примеры из обычной жизни современных подростков. Приходите на бесплатный вводный урок по физике и начните учиться в удовольствие уже завтра!

Источник

Изменяя свою форму, вещество в жидком состоянии меняет свой объем?

Прост­оНяша [69.5K]

6 лет назад

Жидкое вещество не изменяет свой объем. Молекулы жидкости довольно близко друг к другу расположены. А вот уже в газообразном состоянии молекулы газа способны занять весь предоставленный объем.

Ответ – НЕТ.

автор вопроса выбрал этот ответ лучшим

Борис­ов Игорь [168K]

6 лет назад

Одно из основных свойств любой жидкости – это ее практическая незжимаемость и нерасширяемость. Газообразные и твердые вещества таким свойсвом не обладают. Можно газообразное или ьвердое тело переместить в какой сибо сосуд иной формы и, приложив силу заставить их уменьшить свой объем. Объем же жидкости от перемещения из сосуда в сосуд (измененеие формы) не меняет ее лбъема. Ответ на Ваш вопрос – НЕТ.

Leath­er-Radis­h [64.8K]

6 лет назад

Правильным вариантом ответа в игре “Аватария”, на вопрос о веществе, в жидком состоянии, которое меняет свою форму, меняет ли оно свой объем, следует считать вариант “нет”. Представьте, если бы вы, как послушное физическое тело, меняли свое положение в пространстве, например, садили на стул, и при этом вас становилось бы больше! Кошмар! Ваш вес, например, становился бы не 70 кг, а 180, из-за изменения объема!. Конечно же это нереально.

Лолоч­ка611 [15.4K]

6 лет назад

По законам физики жидкое вещество при любых манипуляциях не изменяет свой объем. Это объясняется тем, что молекулы жидкости очень тесно взаимосвязаны. Только лишь в газообразном состоянии молекулы газа изменяют свой объем. Правильный ответ в ” Школе Аватария ” в разделе физика НЕТ.

88Sky­Walke­r88 [309K]

6 лет назад

На данный вопрос из области физике следует отвечать НЕТ. У жидкого вещества нет такой способности изменять свой объем при изменении формы. Изменить форму жидкости мы может перелив ее из сосуда одной формы. в сосуд другой формы, но при этом как был один литр, так он там и остался.

Вкусн­яша Вкусн­ая [16K]

6 лет назад

Нет – это будет правильный ответ в школе Аватарии. Потому что жидкие вещества свой объем не изменяют, а изменяют лишь форму. Например вода в стакане или в бутылке меняет форму переливая ее из стакана, она принимает форму бутылки. Объем остается прежним, например 200 гр.

МИРАБ­ЭЙ [54.6K]

6 лет назад

Изменяя свою форму, вещество в жидком состоянии не меняет свой объем, потому что молекулы воды в жидком состоянии находятся близко друг к другу, а в газообразном состоянии она находятся дальше друг от друга и равномерно заполняют весь объем в котором находятся.

timur­ovec [220K]

6 лет назад

Однозначный логический ответ – НЕТ. Даже не знаю , к какой теме можно отнести подобный вопрос школы аватарии. С натяжкой будем считать что это вопрос по теме физике. Это свойство управляет механизмами , называемыми гидравлические.

storu­s [72.6K]

6 лет назад

Вещество в жидком состоянии имеет способность принимать форму того сосуда, в который его поместили. Но при переливании жидкости из одного сосуда в другой, имеющий иную форму, её объём останется тем же. Поэтому ответ НЕТ.

Пашен­ька [162K]

6 лет назад

Данный вопрос требует короткого и четкого ответа, этот ответ – НЕТ.

Объём не меняется, можно сколько угодно переливать жидкости из одного сосуда в другой, отличный по форме, но от этого её больше-меньше не станет.

Знаете ответ?

Источник

Задание 1. В цилиндрическом сосуде уровень жидкости достигает 48 см. На какой высоте

будет находиться уровень жидкости, если её перелить во второй цилиндрический сосуд, диаметр которого в 2 раза больше диаметра первого? Ответ выразите в см.

Решение. Заметим, что при переливании жидкости из одного сосуда в другой объём жидкости не изменился. Объём цилиндра равен произведению площади основания на высоту этого цилиндра. То есть V=Sh=pR2h. Поскольку в новом сосуде диаметр, а значит и радиус, в 2 раза больше, то площадь основания будет больше в 4 раза, значит высота, соответственно, уменьшится в 4 раза, то есть станет равна 48:4=12 см.

Читайте также:  Если в глазах видно сосуды

Ответ 12.

Задание 2. В цилиндрический сосуд, в котором находится 6 дм3 воды, опустили деталь. При этом уровень жидкости в сосуде поднялся в 1,5 раза. Чему равен объём детали? Ответ выразите в дм3.

Решение. Заметим, что при опускании детали в сосуд изменение общего объёма равно объёму детали. Объём цилиндра равен произведению площади основания на высоту этого цилиндра. То есть V=Sh=pR2h. Так как уровень жидкости поднялся в 1,5 раза, значит объём увеличился тоже в 1,5 раза и стал равен 6*1,5 = 9. Объём детали равен 9 – 6=3.

Ответ 3.

Задания для самостоятельного решения. Все задания взяты из открытого банка заданий ФИПИ.

1. В цилиндрическом сосуде уровень жидкости достигает 98 см. На какой высоте будет находиться уровень жидкости, если её перелить во второй цилиндрический сосуд, диаметр которого в 7 раз больше диаметра первого? Ответ выразите в сантиметрах.

2. В цилиндрическом сосуде уровень жидкости достигает 27 см. На какой высоте будет находиться уровень жидкости, если её перелить во второй цилиндрический сосуд, диаметр которого в 3 раза больше диаметра первого? Ответ выразите в сантиметрах.

3. В цилиндрическом сосуде уровень жидкости достигает 256 см. На какой высоте будет находиться уровень жидкости, если её перелить во второй цилиндрический сосуд, диаметр которого в 8 раз больше диаметра первого? Ответ выразите в сантиметрах.

4. В цилиндрическом сосуде уровень жидкости достигает 64 см. На какой высоте будет находиться уровень жидкости, если её перелить во второй цилиндрический сосуд, диаметр которого в 4 раза больше диаметра первого? Ответ выразите в сантиметрах.

5. В цилиндрическом сосуде уровень жидкости достигает 96 см. На какой высоте будет находиться уровень жидкости, если её перелить во второй цилиндрический сосуд, диаметр которого в 4 раза больше диаметра первого? Ответ выразите в сантиметрах.

6. В цилиндрическом сосуде уровень жидкости достигает 20 см. На какой высоте будет находиться уровень жидкости, если её перелить во второй цилиндрический сосуд, диаметр которого в 2 раза больше диаметра первого? Ответ выразите в сантиметрах.

7. В цилиндрическом сосуде уровень жидкости достигает 25 см. На какой высоте будет находиться уровень жидкости, если её перелить во второй цилиндрический сосуд, диаметр которого в 5 раз больше диаметра первого? Ответ выразите в сантиметрах.

8. В цилиндрическом сосуде уровень жидкости достигает 80 см. На какой высоте будет находиться уровень жидкости, если её перелить во второй цилиндрический сосуд, диаметр которого в 4 раза больше диаметра первого? Ответ выразите в сантиметрах.

9. В цилиндрическом сосуде уровень жидкости достигает 405 см. На какой высоте будет находиться уровень жидкости, если её перелить во второй цилиндрический сосуд, диаметр которого в 9 раз больше диаметра первого? Ответ выразите в сантиметрах.

10. В цилиндрическом сосуде уровень жидкости достигает 2 см. На какой высоте будет находиться уровень жидкости, если её перелить во второй цилиндрический сосуд, диаметр которого в 5 раз меньше диаметра первого? Ответ выразите в сантиметрах.

11. В цилиндрическом сосуде уровень жидкости достигает 45 см. На какой высоте будет находиться уровень жидкости, если её перелить во второй цилиндрический сосуд, диаметр которого в 3 раза больше диаметра первого? Ответ выразите в сантиметрах.

12. В цилиндрическом сосуде уровень жидкости достигает 18 см. На какой высоте будет находиться уровень жидкости, если её перелить во второй цилиндрический сосуд, диаметр которого в 3 раза больше диаметра первого? Ответ выразите в сантиметрах.

13. В цилиндрическом сосуде уровень жидкости достигает 294 см. На какой высоте будет находиться уровень жидкости, если её перелить во второй цилиндрический сосуд, диаметр которого в 7 раз больше диаметра первого? Ответ выразите в сантиметрах.

14. В цилиндрическом сосуде уровень жидкости достигает 192 см. На какой высоте будет находиться уровень жидкости, если её перелить во второй цилиндрический сосуд, диаметр которого в 8 раз больше диаметра первого? Ответ выразите в сантиметрах.

15. В цилиндрическом сосуде уровень жидкости достигает 147 см. На какой высоте будет находиться уровень жидкости, если её перелить во второй цилиндрический сосуд, диаметр которого в 7 раз больше диаметра первого? Ответ выразите в сантиметрах.

16. В цилиндрическом сосуде уровень жидкости достигает 50 см. На какой высоте будет находиться уровень жидкости, если её перелить во второй цилиндрический сосуд, диаметр которого в 5 раз больше диаметра первого? Ответ выразите в сантиметрах.

17. В цилиндрическом сосуде уровень жидкости достигает 320 см. На какой высоте будет находиться уровень жидкости, если её перелить во второй цилиндрический сосуд, диаметр которого в 8 раз больше диаметра первого? Ответ выразите в сантиметрах.

18. В цилиндрическом сосуде уровень жидкости достигает 125 см. На какой высоте будет находиться уровень жидкости, если её перелить во второй цилиндрический сосуд, диаметр которого в 5 раз больше диаметра первого? Ответ выразите в сантиметрах.

Читайте также:  Число молекул в сосуде

19. В цилиндрическом сосуде уровень жидкости достигает 2 см. На какой высоте будет находиться уровень жидкости, если её перелить во второй цилиндрический сосуд, диаметр которого в 6 раз меньше диаметра первого? Ответ выразите в сантиметрах.

20. В цилиндрическом сосуде уровень жидкости достигает 5 см. На какой высоте будет находиться уровень жидкости, если её перелить во второй цилиндрический сосуд, диаметр которого в 3 раза меньше диаметра первого? Ответ выразите в сантиметрах.

21. В цилиндрическом сосуде уровень жидкости достигает 6 см. На какой высоте будет находиться уровень жидкости, если её перелить во второй цилиндрический сосуд, диаметр которого в 7 раз меньше диаметра первого? Ответ выразите в сантиметрах.

22. В цилиндрическом сосуде уровень жидкости достигает 16 см. На какой высоте будет находиться уровень жидкости, если её перелить во второй цилиндрический сосуд, диаметр которого в 2 раза больше диаметра первого? Ответ выразите в сантиметрах.

23. В цилиндрическом сосуде уровень жидкости достигает 112 см. На какой высоте будет находиться уровень жидкости, если её перелить во второй цилиндрический сосуд, диаметр которого в 4 раза больше диаметра первого? Ответ выразите в сантиметрах.

24. В цилиндрическом сосуде уровень жидкости достигает 32 см. На какой высоте будет находиться уровень жидкости, если её перелить во второй цилиндрический сосуд, диаметр которого в 4 раза больше диаметра первого? Ответ выразите в сантиметрах.

25. В цилиндрическом сосуде уровень жидкости достигает 63 см. На какой высоте будет находиться уровень жидкости, если её перелить во второй цилиндрический сосуд, диаметр которого в 3 раза больше диаметра первого? Ответ выразите в сантиметрах.

26. В цилиндрическом сосуде уровень жидкости достигает 384 см. На какой высоте будет находиться уровень жидкости, если её перелить во второй цилиндрический сосуд, диаметр которого в 8 раз больше диаметра первого? Ответ выразите в сантиметрах.

27. В цилиндрическом сосуде уровень жидкости достигает 12 см. На какой высоте будет находиться уровень жидкости, если её перелить во второй цилиндрический сосуд, диаметр которого в 2 раза больше диаметра первого? Ответ выразите в сантиметрах.

28. В цилиндрическом сосуде уровень жидкости достигает 28 см. На какой высоте будет находиться уровень жидкости, если её перелить во второй цилиндрический сосуд, диаметр которого в 2 раза больше диаметра первого? Ответ выразите в сантиметрах.

29. В цилиндрическом сосуде уровень жидкости достигает 72 см. На какой высоте будет находиться уровень жидкости, если её перелить во второй цилиндрический сосуд, диаметр которого в 6 раз больше диаметра первого? Ответ выразите в сантиметрах.

30. В цилиндрическом сосуде уровень жидкости достигает 216 см. На какой высоте будет находиться уровень жидкости, если её перелить во второй цилиндрический сосуд, диаметр которого в 6 раз больше диаметра первого? Ответ выразите в сантиметрах.

31. В цилиндрическом сосуде уровень жидкости достигает 2 см. На какой высоте будет находиться уровень жидкости, если её перелить во второй цилиндрический сосуд, диаметр которого в 3 раза меньше диаметра первого? Ответ выразите в сантиметрах.

32. В цилиндрическом сосуде уровень жидкости достигает 567 см. На какой высоте будет находиться уровень жидкости, если её перелить во второй цилиндрический сосуд, диаметр которого в 9 раз больше диаметра первого? Ответ выразите в сантиметрах.

33. В цилиндрическом сосуде уровень жидкости достигает 144 см. На какой высоте будет находиться уровень жидкости, если её перелить во второй цилиндрический сосуд, диаметр которого в 6 раз больше диаметра первого? Ответ выразите в сантиметрах.

34. В цилиндрическом сосуде уровень жидкости достигает 324 см. На какой высоте будет находиться уровень жидкости, если её перелить во второй цилиндрический сосуд, диаметр которого в 9 раз больше диаметра первого? Ответ выразите в сантиметрах.

35. В цилиндрическом сосуде уровень жидкости достигает 243 см. На какой высоте будет находиться уровень жидкости, если её перелить во второй цилиндрический сосуд, диаметр которого в 9 раз больше диаметра первого? Ответ выразите в сантиметрах.

36. В цилиндрический сосуд, в котором находится 10 дм3 воды, опустили деталь. При этом уровень жидкости в сосуде поднялся в 1,6 раза. Чему равен объём детали? Ответ выразите в дм3.

37. В цилиндрический сосуд, в котором находится 4 дм3 воды, опустили деталь. При этом уровень жидкости в сосуде поднялся в 2,5 раза. Чему равен объём детали? Ответ выразите в дм3.

38. В цилиндрический сосуд, в котором находится 8 дм3 воды, опустили деталь. При этом уровень жидкости в сосуде поднялся в 1,5 раза. Чему равен объём детали? Ответ выразите в дм3.

39. В цилиндрический сосуд налили 500 куб. см воды. В воду полностью погрузили деталь. При этом уровень жидкости в сосуде увеличился в 1,2 раза. Найдите объём детали. Ответ выразите в куб. см.

Источник