Физический смысл сосуда и

Как известно, многие вещества в природе могут находиться в трех агрегатных состояниях: твердом, жидком и газообразном.
Учение о свойствах вещества в различных агрегатных состояниях основывается на представлениях об атомно-молекулярном строении материального мира. В основе молекулярно-кинетической теории строения вещества (МКТ) лежат три основных положения:
- все вещества состоят из мельчайших частиц (молекул, атомов, элементарных частиц), между которыми есть промежутки;
- частицы находятся в непрерывном тепловом движении;
- между частицами вещества существуют силы взаимодействия (притяжения и отталкивания); природа этих сил электромагнитная.
Значит, агрегатное состояние вещества зависит от взаимного расположения молекул, расстояния между ними, сил взаимодействия между ними и характера их движения.
Сильнее всего проявляется взаимодействие частиц вещества в твердом состоянии. Расстояние между молекулами примерно равно их собственным размерам. Это приводит к достаточно сильному взаимодействию, что практически лишает частицы возможности двигаться: они колеблются около некоторого положения равновесия. Они сохраняют форму и объем.
Свойства жидкостей также объясняются их строением. Частицы вещества в жидкостях взаимодействуют менее интенсивно, чем в твердых телах, и поэтому могут скачками менять свое местоположение – жидкости не сохраняют свою форму – они текучи. Жидкости сохраняют объем.
Газ представляет собой собрание молекул, беспорядочно движущихся по всем направлениям независимо друг от друга. Газы не имеют собственной формы, занимают весь предоставляемый им объем и легко сжимаются.
Существует еще одно состояние вещества – плазма. Плазма – частично или полностью ионизованный газ, в котором плотности положительных и отрицательных зарядов практически одинаковы. При достаточно сильном нагревании любое вещество испаряется, превращаясь в газ. Если увеличивать температуру и дальше, резко усилится процесс термической ионизации, т. е. молекулы газа начнут распадаться на составляющие их атомы, которые затем превращаются в ионы.
Модель идеального газа. Связь между давлением и средней кинетической энергией.
Для выяснения закономерностей, которым подчиняется поведение вещества в газообразном состоянии, рассматривается идеализированная модель реальных газов – идеальный газ. Это такой газ, молекулы которого рассматриваются как материальные точки, не взаимодействующие друг с другом на расстоянии, но взаимодействующие друг с другом и со стенками сосуда при столкновениях.
Идеальный газ – это газ, взаимодействие между молекулами которого пренебрежимо мало. (Ек>>Ер)
Идеальный газ – это модель, придуманная учеными для познания газов, которые мы наблюдаем в природе реально. Она может описывать не любой газ. Не применима, когда газ сильно сжат, когда газ переходит в жидкое состояние. Реальные газы ведут себя как идеальный, когда среднее расстояние между молекулами во много раз больше их размеров, т.е. при достаточно больших разрежениях.
Свойства идеального газа:
- расстояние между молекулами много больше размеров молекул;
- молекулы газа очень малы и представляют собой упругие шары;
- силы притяжения стремятся к нулю;
- взаимодействия между молекулами газа происходят только при соударениях, а соударения считаются абсолютно упругими;
- молекулы этого газа двигаются беспорядочно;
- движение молекул по законам Ньютона.
Состояние некоторой массы газообразного вещества характеризуют зависимыми друг от друга физическими величинами, называемыми параметрами состояния. К ним относятся объем V, давление p и температура T.
Объем газа обозначается V. Объем газа всегда совпадает с объемом того сосуда, который он занимает. Единица объема в СИ м3.
Давление – физическая величина, равная отношению силы F, действующей на элемент поверхности перпендикулярно к ней, к площади S этого элемента.
p = F/S Единица давления в СИ паскаль [Па]
До настоящего времени употребляются внесистемные единицы давления:
техническая атмосфера 1 ат = 9,81-104 Па;
физическая атмосфера 1 атм = 1,013-105 Па;
миллиметры ртутного столба 1 мм рт. ст.= 133 Па;
1 атм = = 760 мм рт. ст. = 1013 гПа.
Как возникает давление газа? Каждая молекула газа, ударяясь о стенку сосуда, в котором она находится, в течение малого промежутка времени действует на стенку с определенной силой. В результате беспорядочных ударов о стенку сила со стороны всех молекул на единицу площади стенки быстро меняется со временем относительно некоторой (средней) величины.
Давление газа возникает в результате беспорядочных ударов молекул о стенки сосуда, в котором находится газ.
Используя модель идеального газа, можно вычислить давление газа на стенку сосуда.
В процессе взаимодействия молекулы со стенкой сосуда между ними возникают силы, подчиняющиеся третьему закону Ньютона. В результате проекция υx скорости молекулы, перпендикулярная стенке, изменяет свой знак на противоположный, а проекция υy скорости, параллельная стенке, остается неизменной.
Приборы, измеряющие давление, называют манометрами. Манометры фиксируют среднюю по времени силу давления, приходящуюся на единицу площади его чувствительного элемента (мембраны) или другого приемника давления.
Жидкостные манометры:
- открытый – для измерения небольших давлений выше атмосферного
- закрытый – для измерения небольших давлений ниже атмосферного, т.е. небольшого вакуума
Металлический манометр – для измерения больших давлений.
Основной его частью является изогнутая трубка А, открытый конец которой припаян к трубке В, через которую поступает газ, а закрытый – соединен со стрелкой. Газ поступает через кран и трубку В в трубку А и разгибает её. Свободный конец трубки, перемещаясь, приводит в движение передающий механизм и стрелку. Шкала градуирована в единицах давления.
Основное уравнение молекулярно-кинетической теории идеального газа.
Основное уравнение МКТ: давление идеального газа пропорционально произведению массы молекулы, концентрации молекул и среднему квадрату скорости движения молекул
p = 1/3·m0·n·v2
m0 – масса одной молекулы газа;
n = N/V – число молекул в единице объема, или концентрация молекул;
v2 – средняя квадратичная скорость движения молекул.
Так как средняя кинетическая энергия поступательного движения молекул E = m0*v2/2, то домножив основное уравнение МКТ на 2, получим p = 2/3· n·(m0· v2)/2 = 2/3·E·n
p = 2/3·E·n
Давление газа равно 2/3 от средней кинетической энергии поступательного движения молекул, которые содержатся в единичном объеме газа.
Так как m0·n = m0·N/V = m/V = ρ, где ρ – плотность газа, то имеем p = 1/3· ρ· v2
Объединенный газовый закон.
Макроскопические величины, однозначно характеризующие состояние газа, называют термодинамическими параметрами газа.
Важнейшими термодинамическими параметрами газа являются его объем V, давление р и температура Т.
Всякое изменение состояния газа называется термодинамическим процессом.
В любом термодинамическом процессе изменяются параметры газа, определяющие его состояние.
Соотношение между значениями тех или иных параметров в начале и конце процесса называется газовым законом.
Газовый закон, выражающий связь между всеми тремя параметрами газа называется объединенным газовым законом.
p = nkT
Соотношение p = nkT связывающее давление газа с его температурой и концентрацией молекул, получено для модели идеального газа, молекулы которого взаимодействуют между собой и со стенками сосуда только во время упругих столкновений. Это соотношение может быть записано в другой форме, устанавливающей связь между макроскопическими параметрами газа – объемом V, давлением p, температурой T и количеством вещества ν. Для этого нужно использовать равенства
где n – концентрация молекул, N – общее число молекул, V – объем газа
Тогда получим или
Так как при постоянной массе газа N остается неизменным, то Nk – постоянное число, значит
При постоянной массе газа произведение объема на давление, деленное на абсолютную температуру газа, есть величина одинаковая для всех состояний этой массы газа.
Уравнение, устанавливающее связь между давлением, объемом и температурой газа было получено в середине XIX века французским физиком Б. Клапейроном и часто его называют уравнением Клайперона.
Уравнение Клайперона можно записать в другой форме.
p = nkT,
учитывая, что
Здесь N – число молекул в сосуде, ν – количество вещества, NА – постоянная Авогадро, m – масса газа в сосуде, M – молярная масса газа. В итоге получим:
Произведение постоянной Авогадро NА на постоянную Больцмана k называется универсальной (молярной) газовой постоянной и обозначается буквой R.
Ее численное значение в СИ R = 8,31 Дж/моль·К
Соотношение
называется уравнением состояния идеального газа.
В полученной нами форме оно было впервые записано Д. И. Менделеевым. Поэтому уравнение состояния газа называется уравнением Клапейрона–Менделеева.`
Для одного моля любого газа это соотношение принимает вид: pV=RT
Установим физический смысл молярной газовой постоянной. Предположим, что в некотором цилиндре под поршнем при температуре Е находится 1 моль газа, объем которого V. Если нагреть газ изобарно (при постоянном давлении) на 1 К, то поршень поднимется на высоту Δh, а обьем газа увеличится на ΔV.
Запишем уравнение pV=RT для нагретого газа: p ( V + ΔV ) = R (T + 1)
и вычтем из этого равенства уравнение pV=RT , соответствующее состоянию газа до нагревания. Получим pΔV = R
ΔV = SΔh, где S – площадь основания цилиндра. Подставим в полученное уравнение:
pSΔh = R
pS = F – сила давления.
Получим FΔh = R, а произведение силы на перемещение поршня FΔh = А – работа по перемещению поршня, совершаемая этой силой против внешних сил при расширении газа.
Таким образом, R = A.
Универсальная (молярная) газовая постоянная численно равна работе, которую совершает 1 моль газа при изобарном нагревании его на 1 К.
Источник
Справочное пособие.Механика жидкостей и газов.
Глава 7. Механика жидкостей и газов.
§1. Понятие давления.
В отличие от твердых тел жидкости и газы обладают свойством текучести , вследствие чего они не имеют постоянной формы , но принимают форму того сосуда, в котором находятся. Жидкости, однако, имеют определенный объем . Газы же не имеют и определенного объема , но заполняют все предоставленное им пространство.
При сжатии жидкости или газа в них возникают силы упругости, препятствующие дальнейшему сжатию. Эти силы получили название сил давления F давл .
Силы давления действуют со стороны жидкости (газа) на поверхность соприкасающихся с ними тел и направлены всегда перпендикулярно к поверхности.
Модуль силы давления F давл определяется не только свойствами самой жидкости (газа), но и зависит от площади S поверхности , на которую действует сила, – чем больше площадь поверхности, тем больше и сила давления жидкости (газа) на эту поверхность.
Для того чтобы характеризовать способность самой жидкости (газа) действовать с определенной силой на соприкасающуюся с ней поверхность, используют специальную физическую величину – давление .
Давление – это физическая величина, равная отношению модуля силы давления F давл к площади S поверхности, на которую действует эта сила .
Обозначение – p .
Единица измерения в системе СИ – Па ( паскаль ),
1 Па = 1 Н / 1м 2
В виде математической формулы это определение можно записать следующим образом:
P=F(давления)/S (31)
Давление является скалярной величиной, т. е. характеризуется только своим числовым значением .
Значение давления совпадает численно со значением силы давления F давл , действующей на единицу площади поверхности.
Физический смысл давления.
Давление характеризует способность сжатой жидкости ( газа ) действовать с определенной силой на поверхности окружающих тел.
Давление не зависит от площади поверхности окружающих тел, но является характеристикой жидкости (газа) и определяется только степенью сжатия и свойствами самой жидкости ( газа ).
Если нам известно давление p жидкости, то мы легко определим силу F давл , с которой эта жидкость (газ) действует на поверхность площадью S по следующей формуле:
F(даления)=P*S (32)
Покоящаяся жидкость (газ) может быть сжата либо внешними силами , действующими на ее поверхность ( поверхностными силами ), либо силой тяжести , когда верхние слои жидкости (газа) своим весом давят на нижние слои. Таким образом, давление p будет складываться из двух составляющих: p п – давления, созданного поверхностными силами , и p в – давления, обусловленного весом самой жидкости (газа).
p = p п + p в
Для покоящейся жидкости справедлив закон Паскаля .
Давление p п , созданное поверхностными силами, передается без изменения в каждую точку покоящейся жидкости.
Для давления p в , возникающего под весом самой жидкости, справедлива следующая формула:
p в = r g h , ( 33 )
где r – плотность жидкости (газа),
g = 9,8 м/с 2 –ускорение свободного падения,
h – глубина.
§2. Движение жидкостей и газов.
В движущейся жидкости (газе) возникают силы вязкого трения , действие которых проявляется при движении жидкости (газа) на значительное расстояние или при протекании жидкости (газа) сквозь узкие отверстия и приводит к уменьшению давления жидкости (газа).
Если труба достаточно широкая и не очень длинная , силами вязкого трения можно пренебречь. В этом случае давление жидкости (газа) в трубе постоянного сечения будет везде одинаковым .
Если же труба имеет непостоянное сечение, то давление в разных участках трубы все равно будет отличаться. Дело в том, что количество жидкости (газа), протекающей через любое поперечное сечение трубы должно быть одинаковым. Чтобы узкая часть трубы смогла пропускать то же самое количество жидкости (газа), что и широкая, скорость жидкости (газа) в ней должна быть выше. Поэтому при втекании жидкости (газа) в узкую часть трубы ее скорость увеличивается. Увеличение скорости приводит к уменьшению степени сжатия жидкости (газа) и, следовательно, к уменьшению ее давления. Если же жидкость (газ) попадет после этого в широкую часть трубы, ее скорость опять уменьшится, а давление увеличится. Этот закон был сформулирован Даниилом Бернулли и носит его имя.
Закон Бернулли.
Чем больше скорость жидкости (газа), текущей в трубе, тем меньше ее давление .
Для регулирования давления жидкости (газа), протекающей по трубе используют дроссели (от немецкого слова drosseln – душить, сокращать).
Дроссель – это узкое отверстие, при протекании через которое давление жидкости (газа) уменьшается .
Уменьшение давления происходит из?за действия сил вязкого трения и будет тем больше, чем меньше размер отверстия и чем выше скорость жидкости (газа).
Силы вязкого трения препятствуют жидкости (газу) беспрепятственно проходить через дроссель, что приводит к снижению скорости и, как следствие этого, – к увеличению давления жидкости (газа) перед входом в дроссель.
Поскольку дроссель влияет на скорость протекания жидкости (газа), его можно использовать для регулирования расхода жидкости (газа).
Расход – это количество жидкости (газа), протекающей по трубе за единицу времени . (Единица измерения в системе СИ – м 3 /с)
Вверх–На главную–Ввернуться к списку
||Учебный комбинат||О лаборатории||Выбор профессии||Высшее образование||Среднее специальное||Справочное пособие||Новости||Карта сайта||Контакты||Web-мастеру||
Источник
Немного истории
Связывающие сосуды, если налить в них воду, представляют собой систему ёмкостей, заполненных однородной жидкостью, соединённых у основания и подвергаемых одинаковому атмосферному давлению.
Правило равновесия:
- Когда жидкость (газ, ртуть) оседает, она доходит до одинакового уровня во всех контейнерах, независимо от их формы и объёма.
- Если в один контейнер добавляется дополнительная жидкость, во всех подключённых сосудах будет установлен новый равный уровень.
Этот процесс является частью закона Паскаля и происходит потому, что сила тяжести и давление постоянны в каждом сосуде (гидростатическое давление). Паскаль доказал в семнадцатом веке, что давление, оказываемое на молекулу жидкости, передаётся полностью и с одинаковой интенсивностью во всех направлениях.
Со времён Древнего Рима концепция влияния сосудов использовалась для сантехники внутри помещений через водоносные горизонты и свинцовые трубы. Вода достигнет одинакового уровня во всех частях системы, которая действует как сосуды, независимо от того, что является самой низкой точкой труб. Но на практике самая низкая часть сечения системы зависит от способности водопровода противостоять давлению жидкости. В городах часто используются водонапорные башни, так что сеть будет функционировать как ёмкости, распределяющие воду на верхние этажи зданий с достаточным давлением.
Гидравлические прессы, применяющие системы класса взаимодействующих ёмкостей, широко используются в различных промышленных процессах.
Параметры гидравлических прессов, которые в совокупности определяют их технологические возможности и конструктивные особенности:
- номинальная сила;
- рабочий ход;
- скорость движения прижимной балки;
- размеры контейнера.
Тема влияния сосудов часто используется в качестве общего примера в преподавании физики. Статическое свойство этой системы также применяется в других предметных областях, например, в социологии и экономике. Широко распространено мнение о том, что жидкость в соседних контейнерах достигает одинаковой высоты, измеряемой относительно общей контрольной точки, независимо от формы взаимодействующих ёмкостей.
Технологические решения
Если ёмкости находятся на разных высотах, давление будет работать на выходе из трубки, соединяющей эти сосуды. Когда контейнеры расположены на разных высотах, вода из верхнего сосуда будет течь в нижний резервуар.
Если посмотреть на ситуацию с технологиями, то существует большое количество случаев, когда использовались сообщающиеся сосуды. Физика, следящая за этим явлением, иногда может творить чудеса. Как великолепны, например, фонтаны! Но они строятся без использования сложных технологий, электродвигателей и другого оборудования. И здесь в чистом виде используются взаимодействующие ёмкости. Резервуары с водой выше значений фонтанов, что фактически гарантирует приток воды к ним без каких-либо устройств под атмосферным давлением.
Или другой образец, где всё понятно — водяная башня. Вода закачивается в нее и находится на огромном холме, в дом поступает жидкость, причём не только на первых этажах. Здесь снова работают сообщающиеся сосуды. Давление, величина которого оправдана разницей высот между водонапорной башней и краном, будет обеспечивать подачу воды до верхних этажей.
Римляне ничего не знали о сообщающихся ёмкостях, и когда они возводили акведуки, чтобы обеспечить поселения водой, они делали их каждый раз с постоянным сокращением от источника, но во многих местах у них была возможность скопировать рельеф земли и установить трубы на небольшие склоны. Но каждый раз они возводили акведуки на возвышенности и с постоянным отклонением от источника.
Но китайцы знали о взаимодействующих ёмкостях и, применяя их качества, начали строить замки. Принцип работы довольно прост. Рядом находятся 2 камеры с замком, объединённые специальным каналом. Ворота шлюза закрываются, затем открывается канал, соединяющий две камеры, и вода течёт в меньшей степени в соответствии с законом о сообщающихся судах. Используя систему площади этих шлюзов, удалось реализовать движение судов в районах со значительной разницей в высоте.
Естественно, вышеизложенное не охватывает все случаи практического использования взаимодействующих ёмкостей, но позволяет получить представление о том, что это превосходный материальный закон, и о том, как он применяется в повседневной жизни.
Закон и концепция
Сообщающиеся цилиндрические ёмкости — это те контейнеры, которые взаимосвязаны ниже значения воды на каждом из сосудов. Таким образом, жидкость имеет способность перемещаться из одного сосуда в другой, например, как в капельнице.
До сих пор следует понимать принцип разности и влияния сосудов и возможности их использования для решения основного гидростатического уравнения.
Поперечные открытые объединённые сосуды имеют одно сплошное дно, а закон о них гласит:
- Независимо от формы этих водомерных ёмкостей из стекла, одно и то же давление действует на плоскость однородной жидкости в покое на одном и том же уровне.
- При влиянии сосудов с одинаковым давлением на свободную поверхность воды действует высота подачи, измеренная от поверхности, пропорциональная плотности жидкости.
Водонапорная башня
По опыту, если степень в сосудах одинакова, жидкость будет давить на стенки обоих контейнеров. Разделение между контейнерами такое же. Время от времени добавление жидкости из сосудов, например, приводит к напору водного столба. Если придумать, что перегородка есть, жидкость начнёт попадать в сосуд, где её уровень будет ниже, а высота воды в обоих сосудах будет одинаковой.
В повседневной жизни этот принцип можно использовать в водонапорной башне. Наполнение самой высокой башни жидкостью любой температуры заставляет её работать. После этого открывают клапаны, расположенные на первом этаже, и вода потечёт по трубопроводам в любое жилое пространство, подключённое к источнику воды.
Это устройство выделяет два соединительных контейнера — две вертикальные стеклянные трубки А и В, соединённые согнутым коленом С. Затем определяют высоту воды в трубах выше значений Н1 и Н2. В то время как эти высоты фактически пропорциональны плотности воды для тестирования. В случае, когда оба сосуда заполнены одной и той же жидкостью, высота подъёма жидкости в комбинированных сосудах будет одинаковой. Парадокс соединения ёмкостей лежит в основе многих других приборов, предназначенных для измерения давления.
Введение прибора учёта давления
Пьезометр — общий прибор, который измеряет давление воды. Например, высота жидкости в пьезометрической трубе называется пьезоэлектровысотой, она характеризуется избыточным давлением в сосуде и может служить мерой для определения её величины.
Пьезометр — довольно понятный инструмент, но он удобен только для измерения малых давлений. При высоких давлениях задача пьезометрической трубки более сложна. Трубка довольно длинная, что на самом деле буквально усложняет измерение. При этом жидкие манометры, в которых давление не уравновешивается жидкостью, практически берут воду в комбинированных ёмкостях, но нужна жидкость с более высокой плотностью.
Закон Паскаля
В этом случае дело касается значения давления воды, которое считается результатом действия внешней силы. Фактически он говорит, что давление воды, вызванное воздействием внешних сил, равномерно распространяется. Таким образом, увеличение давления идентично как в водном компоненте, так и в каждой точке плоскости, которую ограничивает жидкость.
Закон Паскаля применяется на практике при проектировании различных типов домкратов, прессов и гидравлических тормозов. Все эти устройства считаются обычными машинами, потому что они дают возможность работать с наименьшим усердием на длинных дорогах, а не с большей мощностью на меньших участках пути.
Использованный принцип сообщающихся сосудов виден хорошо при строительстве фонтанов, водопроводов, шлюзов. Используя сообщающиеся сосуды, формулы, можно переместить корабль через гору. Если вода перекрыта плотиной, то уровень воды в водохранилище выше, чем в реке ниже по течению. Корабль должен подойти к воротам. Когда шлюз полностью заполняется водой, судно покидает его и продолжает свой путь.
Источник