Формула для давления 2 жидкостей на сосуд

Формула давления жидкости отличается от формулы, с помощью которой можно рассчитать давление твердого тела. Потому, что давление жидкости не зависит от площади поверхности, на которую жидкость давит.

Закон Паскаля

Французский физик, Блез Паскаль, в 1653 году сформулировал закон: «Давление, которое мы оказываем на жидкость (или газ), она без изменения передаст в любую точку и во всех направлениях».

Мы немного упростим формулировку:

Жидкость (или газ) передает давление, оказанное на нее, одинаково и без изменений во все стороны.

Это значит, что на одной и той же глубине жидкость будет одинаково давить и на дно, и на стенки сосуда.

Рис. 1. Чем глубже, тем больше давление жидкости, но в любой точке жидкость передает это давление одинаково во все стороны

На рисунке 1 изображен сосуд, наполненный жидкостью. Высоту столбика жидкости – то есть, глубину, отсчитываем от поверхности жидкости.

Видно, что на разных глубинах давление отличается.

[ large begin{cases} h_{1}  < h_{2} < h_{3} \ P_{1}  < P_{2} < P_{3} end{cases} ]

Чем глубже, тем больше давление жидкости. Но в любой точке оно одинаково передается во все стороны.

Формула давления жидкости

Формула, по которой можно посчитать давление жидкости:

[ large boxed{ P = rho_{text{ж}} cdot g cdot h }]

​( P left(text{Па}right) )​ – давление жидкости;

​( displaystyle rho_{text{ж}} left(frac{text{кг}}{text{м}^3} right) )​ – плотность жидкости;

​( displaystyle g left(frac{text{м}}{c^{2}} right) )​ – ускорение свободного падения;

Для большинства школьных задач можно принимать ​( displaystyle g approx 10 left(frac{text{м}}{c^{2}} right) )​;

​( h left(text{м}right) )​ – высота столбика жидкости.

В формулу для давления жидкости не входит площадь S поверхности, на которую эта жидкость давит.

Поэтому, давление жидкости не зависит от площади. А давление твердого тела рассчитывают по другой формуле.

В некоторых задачах указывают объем используемой жидкости. И иногда просят рассчитать силу давления. Чтобы получить правильный ответ для таких задач, нужно уметь переводить площади и объемы в единицы системы СИ.

Сообщающиеся сосуды

Сообщающиеся сосуды – это емкости, расположенные на плоской горизонтальной поверхности, у дна они соединяются трубками.

Если в один из сосудов начать наливать жидкость, то она будет распределяться по всем сосудам, так, что ее уровень будет одинаковым во всех сосудах (рис. 2).

Рис. 2. В сообщающихся сосудах уровень жидкости будет одинаковым

Неважно, какую форму имеет сосуд. Давление жидкости во всех сосудах будет одинаковым. Поэтому одинаковой будет высота h столбика жидкости во всех сосудах.

U-образное колено

U-образное колено – это два сообщающихся сосуда, диаметры сосудов одинаковые.

Жидкости, которые заливают в колено, не должны смешиваться (рис. 3). Например, можно залить в оду трубку воду, а в другую — масло.

Рис. 3. Два сообщающихся сосуда одинакового диаметра образуют U-образное колено

Запишем формулы для расчета давления в левом (P_{1}) и правом (P_{2}) частях колена.

[ large boxed{begin{cases} P_{1} = rho_{1} cdot g cdot h_{1} \ P_{2} = rho_{2} cdot g cdot h_{2} end{cases}} ]

Чем больше разница плотностей двух жидкостей, тем больше отличаются высоты их столбиков.

При решении задач общую нижнюю часть колена не учитываем. На рисунке 3 она отделена от верхней части горизонтальной линией.

Давление столбиков, оставшихся в верхней части, будет одинаковым.

( P_{1} ) – давление жидкости в левой части колена;

( P_{2} ) – давление жидкости в правой части колена.

[ large begin{cases} P_{1} = P_{2} \  rho_{1} cdot g cdot h_{1} = rho_{2} cdot g cdot h_{2} end{cases} ]

Обе части последнего уравнения разделим на ускорение свободно падения. Тогда получим соотношение для высот столбиков жидкости и их плотностей:

[ large boxed{ rho_{1} cdot h_{1} = rho_{2} cdot h_{2} }]

Высоты столбиков можно измерить линейкой. Зная плотность одной из жидкостей, можно найти плотность второй жидкости.

Примечание: Давление жидкостей часто измеряют в миллиметрах ртутного столба или метрах водяного столба. Переходите по ссылке, чтобы узнать, как связаны эти единицы измерения и как давление переводить в систему СИ.

Гидравлический пресс

Молекулы жидкости плотно упакованы, они прилегают друг к другу. Поэтому жидкости не сжимаемы! Это свойство жидкостей используют в гидравлическом прессе.

Гидравлический пресс – это два сообщающихся сосуда. Их называют цилиндрами. Диаметры цилиндров отличаются. Внутри каждого цилиндра вверх и вниз может свободно перемещаться поршень (рис. 4). Поршень плотно прилегает к стенкам цилиндра, чтобы жидкость из цилиндра не просачивалась наружу.

Рис. 4. Гидравлический пресс – это два сообщающихся сосуда различных диаметров, по сосудам могут без трения перемещаться поршни

Перемещаясь, поршень из цилиндра вытесняет жидкость в соседний цилиндр. Объем жидкости, вытесненной из одного цилиндра, совпадает с объемом, перешедшим в другой цилиндр, так как жидкость не проливается наружу.

[ large Delta V_{1} = Delta V_{2} ]

( Delta V_{1} left(text{м}^{3}right) )  – объем жидкости, вытесненной из первого цилиндра;

( Delta V_{2} left(text{м}^{3}right) )  – объем жидкости, перешедшей во второй цилиндр.

Из геометрии известно, объем цилиндрической фигуры можно найти по формуле:

[ large boxed{ Delta V = Delta h cdot S }]

( Delta h left(text{м}right) )  – высота столбика вытесненной жидкости;

( S left(text{м}^{2}right) )  – площадь поршня (или основания цилиндра);

Так как объемы вытесненной и перешедшей в другой цилиндр жидкостей равны, можем записать

[ large Delta h_{1} cdot S_{1} = Delta h_{2} cdot S_{2} ]

То есть, высоты столбиков отличаются во столько же раз, во сколько отличаются площади поршней.

Площадь поверхности поршня и его диаметр связаны соотношением:

[ large boxed{ S_{text{круга}} = pi cdot frac{d^{2}}{4} }]

( S left(text{м}^{2}right) )  – площадь поршня;

( d left(text{м}right) )  – диаметр поршня;

Давления в цилиндрах будут равны.

[ large P_{text{общ.лев}} = P_{text{общ.прав}} ]

Поршни в цилиндрах не двигаются – т. е. находятся в равновесии. Запишем условия равновесия для поршней:

[ large boxed{ frac{F_{1}}{S_{1}} + rho_{1} cdot g cdot h_{1} = frac{F_{2}}{S_{2}} + rho_{2} cdot g cdot h_{2} } ]

Здесь дробью вида (displaystylelarge frac{F}{S}) обозначено давление твердого тела (ссылка) — поршня.

Назовем цилиндр большого диаметра большим цилиндром, а цилиндр малого диаметра – малым. Сформулируем принцип действия гидравлического пресса:

С помощью малой силы в малом цилиндре мы можем создавать большую силу в большом цилиндре.

Источник

Среднее артериальное давление (СрАД) – это давление в кровяном русле во время всего сердечного цикла, вне зависимости от систолы и диастолы. Этот показатель отображает кровоснабжение в жизненнноважных органах. Для того чтобы узнать, какое у вас СрАД, необходимо вооружиться тонометром, бумагой и ручкой. Ниже мы приводим формулы, по которым рассчитывается данный показатель.

Методы измерения артериального давления

Кровяное давлениеКровяное давление — это один из главных параметров работы системы. Оно, в отличие от атмосферного, измеряется в миллиметрах ртутного стола, а не в паскалях.

Читайте также:  Сосуд для молока в деревне

Существуют два показателя АД:

  1. Систолическое АД (САД) – уровень давления крови в момент максимального сокращения сердца. Его создает ударный объем левого желудочка, скорость выброса, эластичность и диаметр аорты. Нормальные показатели – 100-139 мм.рт.ст.
  2. Диастолическое АД (ДАД) – отображает давление в момент наибольшего расслабления. ДАД зависит от продолжительности диастолы и ОПСС – общего периферического сопротивления сосудов. Величина ДАД составляет 60-89 мм.рт.ст.

Инвазивный (прямой) способ измерения АД применим исключительно в условиях стационара, например при операциях и в отделении интенсивной терапии. Для непрерывного наблюдения в лучевую артерию (на запястье) вводится катетер с датчиком, данные выводятся на монитор. Несмотря на неоспоримую помощь в условиях, когда человек находится в тяжелом состоянии, могут возникать тромбозы, кровотечения и инфицирования места прокола.

Среди врачей и обычных пользователей распространены неинвазивные аппараты и методы, позволяющие быстро, не доставляя дискомфорта и бескровно определить степень артериального давления пациента.

Пальпаторный методЗаключается в постепенном пережатии и расслаблении конечности манжетой в области артерии, и ее прощупывание ниже места сдавления. САД определяется по давлению на манометре, при котором начинается пульсация, диастолическое – в момент, когда она исчезает.
Аускультативный методИзобретен в 1905 году Н.С. Коротковым, и с тех пор не изменялся. Для проведения измерения необходим сфигмоманометр и фонендоскоп. Принцип метода идентичен пальпаторному, только появление или исчезновение пульса выслушивается.
Осцилометрический методНа этой методике основано устройство электронных тонометров. С его помощью можно измерить давление на любой точке артерии, в том числе на запястье, и без участия второго лица, что делает портативные мини аппараты популярными. При плавном снижении давления в манжете, в ней возникают колебания (осциляции), которые соответствуют пульсации сосуда под нею. Они появляются, когда напряжение воздуха снижается до уровня САД, и исчезают, когда оно сравнивается с ДАД.

В повседневной практике наиболее точным и удобным считается аускультативный способ по методике Короткова. Механические фонендоскопы не дорогие и есть почти в каждой семье, что позволяет контролировать давление себе и своим близким.

Достоинствами методики выступают стойкость к нарушениям ритма и движениям рукой во время исследования. Тем не менее такая техника чувствительна к окружающим шумам и необходимости точного расположения мембраны фонендоскопа над артерией. Поскольку метод требует участия человека, ошибка измерения может составлять от 7 до 15 мм.рт.ст.

Современные манжетки выпускаются в разных размерах, позволяющих измерить давление и новорожденному, и очень полному человеку.

Формулы расчета

Современные методы вычисления среднего АД:

  1. СрАД = ДАД + (САД — ДАД)/3
  2. СРАД = 2/3 (ДАД)+ САД/3
  3. СрАД = [(2хДАД) + САД]/3

Давлениегде СрАД — среднее артериальное давление

ДАД – диастолическое АД

САД – систолическое АД

Существует четвертая формула, которая использует пульсовое АД (ПАД), получаемое при вычитании ДАД от САД. Оно отображает силу, которую генерирует сердце при каждом сокращении.

  1. СрАД = ДАД + ПАД/3

Определить идеальное АД для разных возрастных категорий можно с помощью такой методики:

Формула расчета артериального давления по возрасту:

  • САД = 109 + (0,5 × возраст) + (0,1 × вес);
  • ДАД = 63 + (0,1 × возраст) + (0,15 × вес).

На данный момент эти вычисления не актуальны, поскольку Всемирной организацией здравоохранения и Американской ассоциацией кардиологов утверждены нормы артериального давления для людей в возрасте от 12 лет.

Для малышей разработаны удобные таблицы, которые учитывают возраст, пол и величины САД и ДАД.

Для чего используют расчеты и какая у них диагностическая ценность?

Такое количество выведенных учеными формул говорит о том, что среднее АД имеет большое значение в клинической практике. Несмотря на то, что на данный момент разработано множество онлайн калькуляторов и мобильных приложений, вычисляющих его величину, ручной подсчет еще пользуется популярностью и приносит свою неоспоримую пользу. Рассчитать артериальное давление умеет каждый врач.

Нормальные показатели среднего артериального давления от 70 до 110 мм.рт.ст.

Низкое артериальное давлениеБолее высокие цифры — это показатель того, что сердце работает интенсивнее, чем должно. Большое СрАД наблюдается при сердечной недостаточности, инфаркте миокарда.

Низкое СрАД может оказаться фатальным, если никак его не откорректировать. При цифрах ниже 60 мм.рт.ст. органы недополучают необходимый объем крови, развивается шоковое состояние. СрАД падает при сепсисе, кровопотере, инсульте и политравме.

Выводы

Среднее артериальное давление является важным показателем состояния гемодинамики. Его вычисление чаще всего производится лечащим врачом на осмотре для того, чтобы определить, насколько хорошо кровоснабжаются внутренние органы.

Если вы, решив рассчитать давление по указанным формулам, обнаружили отклонения от нормы, не медлите с обращением к доктору общей практики или кардиологу за консультацией. Таким же образом стоит поступить, если вами выявлена гипертония.

Источник

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 21 июня 2020; проверки требуют 3 правки.

Гидростатическое давление — давление столба жидкости над условным уровнем.

Благодаря полной удобоподвижности своих частиц капельные и газообразные жидкости, находясь в покое, передают давление одинаково во все стороны; давление это действует на всякую часть плоскости, ограничивающей жидкость, с силой Р, пропорциональной величине w этой поверхности, и направленной по нормали к ней. Отношение P/w, то есть давление р на поверхность, равную единице, называется гидростатическим давлением[1].

Простое уравнение P = pw может действительно служить для точного вычисления давления на данную поверхность сосуда, газов и капельных жидкостей, находящихся при таких условиях, что часть давления, зависящая от собственного веса жидкостей, ничтожно мала по сравнению с давлением, передаваемым им извне. Сюда относятся почти все случаи давлений газов и расчеты давлений воды в гидравлических прессах и аккумуляторах[1].

Вычисление[править | править код]

В каждой жидкости существует давление, обусловленное её собственным весом ; так как , то ; учтём, что и получим формулу .

Плотность жидкости зависит от температуры. Для очень точных вычислений плотность следует рассчитывать по специальной формуле. Давление на данной глубине одинаково во всех направлениях. Суммарное давление, обусловленное весом столба жидкости и давлением поршня, называют гидростатическим давлением[2].

Для бытовых расчетов можно принять, что с ростом глубины на каждые 10 метров пресной воды, давление увеличивается на 0,1 МПа (1 атмосфера).

История открытия[править | править код]

Это основное свойство жидкостей было открыто и проверено на опыте Блезом Паскалем в 1653 г., хотя несколько ранее оно было уже известно Стевину[источник не указан 1157 дней].

Единица измерения[править | править код]

Единицей измерения давления в международной системе единиц является Паскаль. На практике гидростатическое давление часто измеряют в атмосферах, принимая за 1 атмосферу давление в 76 см ртутного столба, при температуре 0 °C при нормальном ускорении свободного падения 9,80665 м/с².

Читайте также:  Можно ли проверить сосуды на тромбы

На основании гидростатического парадокса можно гидростатическое давление измерять также высотой столба ртути или воды, способного производить то же давление на единицу поверхности.

Свойства[править | править код]

Гидростатический парадокс[править | править код]

Гидростатическое давление на тело не зависит от направления.

Вычисление немного усложняется, когда надо узнать давление, производимое на не горизонтальную часть стенки сосуда вследствие тяжести налитой на него жидкости. Здесь причиной давления становится вес столбов жидкости, имеющих основанием каждую бесконечно малую частицу рассматриваемой поверхности, а высотой вертикальное расстояние от каждой такой частицы до свободной поверхности жидкости. Расстояния эти будут постоянны только для горизонтальных частей стенок и для бесконечно узких горизонтальных полосок, взятых на боковых стенках; к ним одним можно прилагать непосредственно формулу гидростатического давления. Для боковых же стенок надо суммировать, по правилам интегрального исчисления, давления на все горизонтальные элементы их поверхности; в результате получается общее правило: давление тяжелой жидкости на всякую плоскую стенку равняется весу столба этой жидкости, имеющему основанием площадь этой стенки, а высотой вертикальное расстояние её центра тяжести от свободной поверхности жидкости. Поэтому давление на дно сосуда будет зависеть только от величины поверхности этого дна, от высоты уровня жидкости в него налитой и от её плотности, от формы же сосуда оно зависеть не будет. Это положение известно под именем «гидростатического парадокса» и было разъяснено ещё Паскалем.

Действительно, оно кажется на первый взгляд неверным, потому что в сосудах с равными доньями, наполненными до равной высоты одной и той же жидкостью, вес её будет очень различный, если формы различны. Но вычисление и опыт (сделанный в первый раз Паскалем) показывают, что в сосуде, расширяющемся кверху, вес излишка жидкости поддерживается боковыми стенками и передается весам через их посредство, не действуя на дно, а в сосуде, суживающемся кверху, гидростатическое давление на боковые стенки действует снизу вверх и облегчает весы ровно на столько, сколько весило бы недостающее количество жидкости.

Закон Паскаля[править | править код]

Чем глубже, тем выше давление. (левая часть графика)

Гидростатическое давление жидкости с постоянной плотностью в однородном поле тяжести ( = несжимаемая жидкость) подчиняется закону Паскаля:

где:

 — плотность [для пресной воды: ρ ≈ 1000 кг/м³]
 — ускорение свободного падения [для Европы: g ≈ 9,81 м/с²]
 — высота (здесь: жидкости) [м]
 — [Па]

⇒ = гидростатическое давление (p) зависит от высоты (h) жидкости.[4]

Примечания[править | править код]

Литература[править | править код]

  • В. В. Лермантов. Гидростатическое давление // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1893. — Т. VIIIa. — С. 655—656.

Источник

Давление жидкости на дно и стенки сосуда. Формула гидростатического давления

Поскольку на жидкость действует сила тяжести, жидкое вещество обладает весом. Вес — это сила, с которой оно давит на опору, т. е. на дно сосуда, в который налито. Закон Паскаля говорит: давление на жидкость передается в любую ее точку, не меняя своей силы. Как же рассчитать давление жидкости на дно и стенки сосуда? Будем разбираться в статье, используя наглядные примеры.

Представим, что у нас есть цилиндрический сосуд, в который налита жидкость. Обозначим высоту слоя жидкости h, площадь дна сосуда — S, а плотность жидкости — ρ. Искомое давление — это P. Его вычисляют путем деления силы, действующей под углом 90° к поверхности, на площадь этой поверхности. В нашем случае поверхность — это дно емкости. P = F/S.

Сила давления жидкости на дно сосуда — это вес. Он равен силе давления. Наша жидкость неподвижна, поэтому вес равен силе тяжести (Fтяж ), действующей на жидкость, а значит, и силе давления (F=Fтяж). Fтяж находят так: умножают массу жидкости (m) на ускорение свободного падения (g). Масса может быть найдена, если известно, какова плотность жидкости и каков ее объем в сосуде. m = ρ×V. Сосуд имеет цилиндрическую форму, поэтому его объем мы будем находить, умножив площадь основания цилиндра на высоту слоя жидкости (V = S×h).

Расчет давления жидкости на дно сосуда

Вот величины, которые мы можем вычислить: V = S×h; m = ρ×V; F = m×g. Подставим их в первую формулу и получим такое выражение: P = ρ×S×h×g/S. Сократим площадь S, стоящую в числителе и знаменателе. Она исчезнет из формулы, а это значит, что давление на дно не зависит от площади сосуда. Кроме того, оно не зависит и от формы емкости.

Давление, которое жидкость создает на дно сосуда, называется гидростатическим. «Гидро» — это «вода», а статическое — это потому, что жидкость неподвижна. По формуле, полученной после всех преобразований (P = ρ×h×g), определите давление жидкости на дно сосуда. Из выражения видно, что чем более плотная жидкость, тем больше ее давление на дно сосуда. Разберем подробнее, что собой представляет величина h.

Давление в толще жидкости

Допустим, мы нарастили сосуд снизу еще на некоторую величину, добавили дополнительное пространство для жидкости. Если мы поместим в емкость рыбку, давление на нее будет одинаковым в сосуде из предыдущего опыта и во втором, увеличенном? Изменится ли давление от того, что под рыбкой еще есть вода? Нет, потому что сверху находится определенный слой жидкости, на нее действует сила тяжести, значит, вода обладает весом. А то, что снизу, не имеет никакого значения. Следовательно, мы можем найти давление в самой толще жидкости, и h — это будет глубина. Она необязательно является расстоянием до дна, дно может быть и ниже.

Представим, что мы развернули рыбку на 90°, оставив ее на той же глубине. Изменится ли от этого давление на нее? Нет, потому что на глубине оно одинаково во всех направлениях. Если мы приблизим рыбку прямо к стенке сосуда, изменится ли давление на нее, если она будет оставаться на той же глубине? Нет. Во всех случаях давление на глубине h будет вычисляться по той же формуле. Значит, эта формула позволяет найти давление жидкости на дно и стенки сосуда на глубине h, т. е. в толще жидкости. Чем глубже, тем оно больше.

Давление в наклонном сосуде

Представим, что у нас есть трубка длиной около 1 м. Мы налили в нее жидкость так, что она заполнена целиком. Возьмем точно такую же трубку, наполненную до краев, и разместим ее под наклоном. Сосуды одинаковы и заполнены одной и той же жидкостью. Следовательно, масса и вес жидкости и в первой, и во второй трубке равны. Будет ли одинаковым давление в точках, расположенных на дне этих емкостей? На первый взгляд кажется, что давление P1 равно P2, поскольку масса жидкостей одинакова. Предположим, что это так, и проведем эксперимент, чтобы проверить.

Читайте также:  В сосуд с водой масса которой равна 800

Соединим нижние части этих трубок маленькой трубочкой. Если наше предположение о том, что P1 = P2, верное, то перетечет ли куда-то жидкость? Нет, потому что на ее частицы будут действовать силы противоположного направления, которые будут компенсировать друг друга.

Давайте приделаем к наклонный трубке сверху воронку. А на вертикальной трубке проделаем отверстие, в него вставим трубочку, которая загибается вниз. Давление на уровне отверстия больше, чем на самом верху. Значит, жидкость будет перетекать по тоненькой трубочке и наполнять воронку. Масса жидкости в наклонной трубке будет увеличиваться, жидкость потечет из левой трубки в правую, затем будет подниматься и циркулировать по кругу.

А теперь установим над воронкой турбину, которую соединим с электрическим генератором. Тогда эта система самостоятельно, без какого-либо вмешательства будет вырабатывать электроэнергию. Она будет работать без остановки. Казалось бы, это и есть «вечный двигатель». Однако еще в XIX веке Французская академия наук отказалась принимать любые подобные проекты. Закон сохранения энергии говорит о том, что создать «вечный двигатель» невозможно. Значит, наше предположение о том, что P1 = P2, неверное. На самом деле P1 28 марта, 2019

Источник

II. Молекулярная физика

Тестирование онлайн

Давление

Это физическая скалярная величина, которая определяется по формуле

Атмосферное давление

Атмосфера — это воздушная оболочка Земли, которая удерживается гравитационными силами. Атмосфера имеет вес и давит на все тела на Земле. Давление атмосферы составляет около 760 мм.рт.ст. или 1 атм., или 101325Па. Миллиметр ртутного столба, атмосфера — это различные внесистемные единицы измерения давления. Атмосферное давление уменьшается на 1 мм.рт.ст. при поднятии над Землей на каждые 11м.

Что такое давление в 1 атм? Рукопожатие крепкого мужчины составляет 0,1 атм, удар боксера составляет несколько атмосферных единиц. Давление каблука-шпильки составляет 100 атмосфер. Если на ладонь положить гирю в 100 кг, то получим неравномерное давление в одну атмосферу, при погружении на 10 м под воду получим равномерное давление в 1 атмосферу. Равномерное давление легко переносится человеческим организмом. Нормальное атмосферное давление, которое действует на каждого человека, компенсируется внутренним давлением, поэтому его мы совершенно не замечаем, несмотря на то, что оно является достаточно существенным.

Закон Паскаля

Давление на жидкость или газ передается во всех направлениях одинаково.

Давление внутри жидкости (газа) на одной и той же глубине одинаково во всех направлениях (влево вправо, вниз и вверх!)

Гидростатическое давление

Это давления столбика жидкости на дно сосуда. Какая сила создает давление? Жидкость обладает весом, который давит на дно.

Давление жидкости на дно

Давление на дно сосуда не зависит от формы сосуда, но зависит от площади его дна. При этом сила давления на дно может быть и больше и меньше силы тяжести жидкости в сосуде. В этом заключается «гидростатический парадокс».

На стенку сосуда гидростатическое давление распределено неравномерно: у поверхности жидкости оно равно нулю (без учета атмосферного давления), внутри жидкости изменяется прямо пропорционально глубине и на уровне дна достигает значения

. Это переменное давление можно заменить средним давлением

Сообщающиеся сосуды

Это сосуды, которые имеют общий канал внизу.

Однородная жидкость устанавливается в сообщающихся сосудах на одном уровне независимо от формы сосудов, как видно на фотографии.

Разнородные жидкости устанавливаются в сообщающихся сосудах согласно формуле

Гидравлический пресс

Гидравлический пресс состоит из двух сообщающихся сосудов цилиндрической формы. В сосудах двигаются поршни с площадями S1 и S2. Цилиндры заполнены техническим маслом.

Объем жидкости, вытесненный малым поршнем поступает в большой цилиндр.

Гидравлический пресс дает выигрыш в силе во столько раз, во сколько площадь большего поршня больше площади меньшего. Выигрыша в работе гидравлический пресс не дает.

На практике вследствие наличия трения:

Давление не перпендикулярной к поверхности силы

Если сила направлена под углом к нормали (перпендикуляру), то давление определяется по формуле

Практическое применение

Газы и жидкости, находящиеся под давлением, нашли широкое применение в промышленной технике. Например, пневматический отбойный молоток. При помощи сжатого воздуха работают также двери в автобусах и метро, тормоза поездов и грузовых автомобилей.

Встречаются также механизмы, работающие при помощи сжатой жидкости. Они называются гидравлическими. Например, устройство гидравлического пресса.

Атмосферное давление открытие и измерение

Численное значение атмосферного давления было определено опытным путем в 1643 году итальянским ученым Э.Торричелли.

Стеклянную трубку длиной около метра, запаянную с одного конца, наполняют доверху ртутью. Затем, плотно закрыв отверстие пальцем, трубку переворачивают и опускают в чашу со ртутью, после чего палец убирают. Ртуть из трубки начинает выливаться, но не вся: остаётся «столб» » 76 см высотой, считая от уровня в чаше. Примечательно, что эта высота не зависит ни от длины трубки, ни от глубины её погружения.

Атмосферное давление уравновешивает гидростатическое давление столбика ртути. Согласно закону Паскаля давление атмосферы давит вверх на столбик ртути. А столбик ртути давит вниз своим весом. Ртуть перестает опускаться, когда эти давления одинаковые. Вычислив гидростатическое давление ртути известной высоты, определили давление атмосферы.

Трубка Торричелли с линейкой является простейшим барометром – прибором для измерения атмосферного давления

Для измерения атмосферного давления используют также барометр-анероид.

Поскольку атмосферное давление уменьшается по мере удаления от поверхности Земли, то шкалу анероида можно проградуировать в метрах. В этом случае он называется альтиметром.

Возникновение силы Архимеда

Пусть прямоугольный металлический брусок площадью основания S и высотой h лежит на дне сосуда, в который налита вода до высоты H, H>h. Как определить силу давления бруска на дно сосуда?

Возможны два случая! Пусть брусок неплотно прилегает ко дну сосуда, тогда снизу на брусок действует сила давления жидкости. Эта сила больше силы давления жидкости сверху, поэтому возникает сила Архимеда. Сила Архимеда — результат разницы силы гидростатического давления на нижнюю грань бруска и верхнюю грань, зависит от высоты бруска и площади основания.

Используем 2 закон Ньютона:

Рассмотрим второй возможный случай. Пусть брусок прилегает ко дну так плотно, что жидкость под него не подтекает. Снизу отсутствует давление жидкости, следовательно сила Архимеда равна нулю. Сверху же на брусок действует сила давления жидкости и атмосферы.

Используем 2 закон Ньютона для этого случая:

p — атмосферное давление,
p — гидростатическое давление столба жидкости высотой H-h.

Источник

Источник