Функциональная классификация сосудов крови
Оглавление темы “Функции систем кровообращения и лимфообращения. Система кровообращения. Системная гемодинамика. Сердечный выброс.”:
1. Функции систем кровообращения и лимфообращения. Система кровообращения. Центральное венозное давление.
2. Классификация системы кровообращения. Функциональные классификации системы кровообращения ( Фолкова, Ткаченко).
3. Характеристика движения крови по сосудам. Гидродинамические характеристики сосудистого русла. Линейная скорость кровотока. Что такое сердечный выброс?
4. Давление кровотока. Скорость кровотока. Схема сердечно-сосудистой системы ( ССС ).
5. Системная гемодинамика. Параметры гемодинамики. Системное артериальное давление. Систолическое, диастолическое давление. Среднее давление. Пульсовое давление.
6. Общее периферическое сопротивление сосудов ( ОПСС ). Уравнение Франка.
7. Сердечный выброс. Минутный объем кровообращения. Сердечный индекс. Систолический объем крови. Резервный объем крови.
8. Частота сердечных сокращений ( пульс ). Работа сердца.
9. Сократимость. Сократимость сердца. Сократимость миокарда. Автоматизм миокарда. Проводимость миокарда.
10. Мембранная природа автоматии сердца. Водитель ритма. Пейсмекер. Проводимость миокарда. Истинный водитель ритма. Латентный водитель ритма.
Классификация системы кровообращения. Функциональные классификации системы кровообращения ( Фолкова, Ткаченко).
Распространено и обосновано деление сердечно-сосудистой системы по уровню кровяного давления: область высокого и область низкого давления. К области высокого давления относят левый желудочек сердца, артерии крупного, среднего и малого калибра, артериолы; к области низкого давления — остальные отделы системы (от капилляров до левого предсердия).
В функциональной классификации шведского физиолога Б. Фолкова предусмотрено деление системы кровообращения на «последовательно соединенные звенья».
1. Сердце — насос, ритмически выбрасывающий кровь в сосуды.
2. Упруго-растяжимые сосуды, которые превращают периодичный выброс крови из сердца в равномерный кровоток (аорта с ее отделами, легочная артерия).
3. Резистивные сосуды (сосуды сопротивления) — прекапиллярный (в основном артериолы) и посткапиллярный отделы (венулы), которые вместе создают общее сопротивление кровотоку в сосудах органов.
4. Прекапиллярные сфинктеры — специализированный отдел мельчайших артериальных сосудов, сокращение гладкомышечных клеток этих сфинктеров может приводить к перекрытию просвета мелких сосудов. Эти сосуды регулируют объем кровотока в капиллярном русле.
5. Обменные сосуды, или истинные капилляры, где кровь контактирует с тканью благодаря огромным поверхностям капиллярного ложа. Здесь реализуется основная функция сердечно-сосудистой системы — обмен между кровью и тканями.
6. Шунтирующие сосуды (артериовенозные анастомозы), наличие которых доказано не для всех тканей.
7. Емкостные сосуды, в которых изменения просвета, даже столь небольшие, что не оказывают существенного влияния на общее сопротивление, вызывают выраженные изменения распределения крови и величины притока ее к сердцу (венозный отдел системы).
Однако разделение на «резистивные» и «емкостные» сосуды весьма условно, поскольку сопротивлением обладают как артериальные, так и венозные сосуды, хотя в количественном плане эта функция различна для указанных отделов. С другой стороны, емкостью обладают как венозные сосуды, так и артериальные. Весьма расплывчатым является и понятие «емкостные сосуды», поскольку одни авторы относят к ним все венозное ложе, другие — только венулы и мелкие вены. Неудачно выделены в классификации и «прекапиллярные» сфинктеры, поскольку в венозном русле также существуют сосуды с расположением гладкомышечных волокон типа сфинктеров или запирательных образований.
Функциональное назначение различных отделов сердечно-сосудистой системы отражает следующая классификация (Б. И. Ткаченко):
1. Генератор давления и расхода крови — сердце, подающее кровь в аорту и легочную артерию во время систолы.
2. Сосуды высокого давления — аорта и крупные артериальные сосуды, в которых поддерживается характерный для индивидуума уровень кровяного давления.
3. Сосуды — стабилизаторы давления — мелкие артерии и артериолы, которые путем сопротивления кровотоку и во взаимоотношении с сердечным выбросом поддерживают оптимальный для системы уровень артериального давления.
4. Распределители капиллярного кровотока — терминальные сосуды, глад-комышечные образования которых при сокращении прекращают кровоток в капилляре или возобновляют его (при расслаблении), обеспечивая необходимое в данной ситуации число функционирующих и нефункционирующих капилляров.
5. Обменные сосуды — капилляры и частично посткапиллярные участки венул, функция которых состоит в обеспечении обмена между кровью и тканями.
6. Аккумулирующие сосуды — венулы и мелкие вены, активные или пассивные изменения просвета которых ведут к накоплению крови (с возможностью ее последующего использования) или к экстренному выбросу ее в циркуляцию. Функция этих сосудов в основном емкостная, но они обладают и резистивной функцией, хотя и намного меньшей, чем стабилизаторы давления.
7. Сосуды возврата крови — крупные венозные коллекторы и полые вены, через которые обеспечивается подача крови к сердцу.
8. Шунтирующие сосуды — различного типа анастомозы, соединяющие между собой артериолы и венулы и обеспечивающие ненутритивный кровоток.
9. Резорбтивные сосуды — лимфатический отдел системы кровообращения, в котором главная функция лимфатических капилляров состоит в резорбции из тканей белков и жидкости, а лимфатических сосудов — в транспортировке резорбированного материала обратно в кровь.
– Также рекомендуем “Характеристика движения крови по сосудам. Гидродинамические характеристики сосудистого русла. Линейная скорость кровотока. Что такое сердечный выброс?”
Источник
Физиология сосудов. Гемодинамика
Гемодинамика — раздел физиологии кровообращения, использующий законы гидродинамики (физические явления движения жидкости в замкнутых сосудах) для исследования причин, условий и механизмов движения крови в сердечно-сосудистой системе. Гемодинамика определяется двумя силами: давлением, которое оказывает влияние на жидкость, и сопротивлением, которое она испытывает при трении о стенки сосудов и вихревых движениях.
Силой, создающей давление в сосудистой системе, является сердце. У человека среднего возраста при каждом сокращении сердца в сосудистую систему выталкивается 60−70 мл крови (систолический объем) или 4−5 л/мин (минутный объем). Движущей силой крови служат разность давлений, возникающая в начале и конце трубки.
В аорте она составляет 40 см/с, в артериях — от 40 до 10, артериолах — 10 — 0,1, капиллярах — меньше 0,1, венулах — меньше 0,3, венах — 0,3 — 5,0, полой вене — 5 — 20 см/с.
Функциональная классификация сосудов
· Амортизирующие сосуды
Это аорта, лёгочная артерия и их крупные ветви, то есть сосуды эластического типа.
Специфическая функция этих сосудов — поддержание движущей силы кровотока в диастолу желудочков сердца. Здесь сглаживается перепад давления между систолой, диастолой и покоем желудочков за счёт эластических свойств стенки сосудов. В результате в период покоя давление в аорте поддерживается на уровне 80 мм рт.ст., что стабилизирует движущую силу, при этом эластические волокна стенок сосудов отдают накопленную во время систолы потенциальную энергию сердца и обеспечивают непрерывность тока крови и давление по ходу сосудистого русла.
· Сосуды распределения
Это средние и мелкие артерии мышечного типа регионов и органов; их функция — распределение потока крови по всем органам и тканям организма. Вклад этих сосудов в общее сосудистое сопротивление небольшой и составляет 10-20 %.
· Сосуды сопротивления
К ним относят артерии диаметром меньше 100 мкм, артериолы, прекапиллярные сфинктеры, сфинктеры магистральных капилляров. На долю этих сосудов приходится около 50-60 % общего сопротивления кровотоку, с чем и связано их название. Сосуды сопротивления определяют кровоток системного, регионального и микроциркуляторного уровня.
· Обменные сосуды (капилляры)
Частично транспорт веществ происходит также в артериолах и венулах. Через стенку артериол легко диффундирует кислород (в частности, этот путь играет важную роль в снабжении кислородом нейронов мозга), а через люки венул (межклеточные поры диаметром 10-20 нм) осуществляется диффузия из крови белковых молекул, которые в дальнейшем попадают в лимфу.
· Шунтирующие сосуды
К ним относят артериоловенулярные анастомозы. Их функции — шунтирование кровотока. Истинные анатомические шунты (артериоловенулярные анастомозы) есть не во всех органах. Наиболее типичны эти шунты для кожи: при необходимости уменьшить теплоотдачу кровоток по системе капилляров прекращается и кровь (тепло) сбрасывается по шунтам из артериальной системы в венозную.
· Емкостные (аккумулирующие) сосуды
Это посткапиллярные венулы, венулы, мелкие вены, венозные сплетения и специализированные образования — синусоиды селезенки. Их общая ёмкость составляет около 50 % всего объема крови, содержащейся в сердечно-сосудистой системе. Функции этих сосудов связаны со способностью изменять свою ёмкость, что обусловлено рядом морфологических и функциональных особенностей емкостных сосудов.
· Сосуды возврата крови в сердце
Это средние, крупные и полые вены, выполняющие роль коллекторов, через которые обеспечивается региональный отток крови, возврат её к сердцу. Ёмкость этого отдела венозного русла составляет около 18% и в физиологических условиях изменяется мало (на величину менее 1/5 от исходной ёмкости).
Объёмная скорость кровотока в сердечно-сосудистой системе составляет 4—6 л/мин, она распределяется по регионам и органам в зависимости от интенсивности их метаболизма в состоянии функционального покоя и при деятельности (при активном состоянии тканей кровоток в них может возрастать в 2—20 раз). На 100 г ткани объем кровотока в покое равен в мозге 55, в сердце — 80, в печени — 85, в почках — 400, в скелетных мышцах — 3 мл/мин.
Скорость кровотока в отдельных капиллярах определяют с помощью биомикроскопии, дополненной кинотелевизионным и другими методами. Среднее время прохождения эритроцита через капилляр большого круга кровообращения составляет у человека 2,5 с, в малом круге — 0,3—1 с.
Коронарные артерии берут начало в устье аорты, левая кровоснабжает левый желудочек и левое предсердие, частично — межжелудочковую перегородку, правая — правое предсердие и правый желудочек, часть межжелудочковой перегородки и заднюю стенку левого желудочка. У верхушки сердца веточки разных артерий проникают внутрь и снабжают кровью внутренние слои миокарда и сосочковые мышцы; коллатерали между ветвями правой и левой коронарных артерий развиты слабо. Венозная кровь из бассейна левой коронарной артерии оттекает в венозный синус (80—85 % крови), а затем в правое предсердие; 10—15 % венозной крови поступает через вены Тебезия в правый желудочек. Кровь из бассейна правой коронарной артерии оттекает через передние сердечные вены в правое предсердие. В покое через коронарные артерии человека протекает 200—250 мл крови в минуту, что составляет около 4-6 % минутного выброса сердца.
Источник
Все сосуды малого и большого круга, в зависимости от строения и функциональной роли делят на следующие группы:
1. Сосуды эластического типа: аорта, легочная артерия и другие крупные артерии. В их стенке содержится много эластических волокон, поэтому она обладает большой упругостью и растяжимостью.
2. Сосуды мышечного типа: артерии среднего и малого калибра. В их стенке больше гладкомышечных волокон. Однако мышечный слой мало влияет на просвет этих сосудов, а следовательно на гемодинамику.
3. Сосуды резистивного типа: концевые артерии и артериолы. Эти прекапиллярные сосуды имеют небольшой диаметр и толстую гладкомышечную стенку. Поэтому они оказывают наибольшее сопротивление току крови и влияние на системную гемодинамику. Сокращения их гладких мышц обеспечивают регуляцию кровотока в органах и тканях, а, следовательно, перераспределение крови.
4. Сосуды обменного типа: капилляры. В них происходит диффузия и фильтрация воды, газов, минеральных и питательных веществ.
5. Сосуды емкостного типа.
К емкостным сосудам относятся вены. Их стенка легко растягивается. Поэтому они способны накапливать большое количество крови, без изменения венозного кровотока. В связи с этим вены некоторых органов могут выполнять роль депо крови. Это вены печени, подкожных сосудистых сплетений, чревные вены. В венах может депонироваться до 70% всей крови. Истинных депо, как селезенка собаки, у человека нет. Кроме этих типов имеются шунтирующие сосуды. Ими являются артериовенозные анастомозы. При некоторых условиях они обеспечивают переход крови в вены минуя капилляры.
Движение крови по артериям обусловлено следующими факторами:
1. Работой сердца, обеспечивающего восполнение энергозатрат системы кровообращения.
2. Упругостью стенок эластических сосудов. В период систолы энергия систолической порции крови переходит в энергию деформации сосудистой стенки. Во время диастолы стенка сокращается и ее потенциальная энергия переходит в кинетическую. Это способствует поддержанию снижающегося артериального давления и сглаживанию пульсаций артериального кровотока.
3. Разность давлений в начале и конце сосудистого русла. Она возникает в результате затраты энергии на преодоление сопротивления току крови. Сопротивление кровотоку в сосудах зависит от вязкости крови, длины и, в основном, от диаметра сосудов. Чем он меньше, тем больше сопротивление, а следовательно разность давления в начале и конце сосуда. В сосудистой системе сопротивление изменяется неравномерно. Поэтому неравномерно снижается и кровяное давление. В артериях оно уменьшается на 10% , артериолах и капиллярах на 85%, венах на 5 %. Таким образом, наибольший вклад в общее периферическое сопротивление (ОПС) вносят сосуды резистивного и обменного типа. Стенки вен более тонкие и растяжимые, чем у артерий. Энергия сердечных сокращений в основном уже затрачена на преодоление сопротивления артериального русла. Поэтому давление в венах невысокое и требуются дополнительные механизмы, способствующих венозному возврату к сердцу. Венозный кровоток обеспечивают следующие факторы:
1. разность давлений в начале и конце венозного русла;
2. сокращения скелетных мышц при движении, в результате которых кровь выталкивается из периферических вен к правому предсердию;
3. присасывающее действие грудной клетки. На вдохе давление в ней становится отрицательным, что способствует венозному кровотоку;
4. присасывающее действие правого предсердия в период его диастолы. Расширение его полости приводит к появлению отрицательного давления в нем;
5. сокращения гладких мышц вен.
Движение крови по венам к сердцу связано и с тем, что в них имеются выпячивания стенок, которые выполняют роль клапанов.
Скорость кровотока
Различают линейную и объемную скорость кровотока.
Линейная скорость кровотока (VЛИН.) – это расстояние, которое проходит частица крови в единицу времени. Она зависит от суммарной площади поперечного сечения всех сосудов, образующих участок сосудистого русла. В кровеносной системе наиболее узким участком является аорта. Здесь наибольшая линейная скорость кровотока, составляющая 0,5-0,6 м/сек. В артериях среднего и мелкого калибра она снижается до 0,2-0,4 м/сек. Суммарный просвет капиллярного русла в 500-600 раз больше, чем аорты. Поэтому скорость кровотока в капиллярах уменьшается до 0,5 мм/сек. Замедление тока крови в капиллярах имеет большое физиологическое значение, так как в них происходит транскапиллярный обмен. В крупных венах линейная скорость кровотока вновь возрастает до 0,1-0,2 м/сек. Линейная скорость кровотока в артериях измеряется ультразвуковым методом. Он основан на эффекте Доплера. На сосуд помещают датчик с источником и приемником ультразвука. В движущейся среде – крови – частота ультразвуковых колебаний изменяется. Чем больше скорость течения крови по сосуду, тем ниже частота отраженных ультразвуковых волн. Скорость кровотока в капиллярах измеряется под микроскопом с делениями в окуляре, путем наблюдения за движением определенного эритроцита.
Объемная скорость кровотока (VОБ.) – это количество крови, проходящей через поперечное сечение сосуда в единицу времени. Она зависит от разности давлений в начале и конце сосуда и сопротивления току крови. Раньше в эксперименте объемную скорость кровотока измеряли с помощью кровяных часов Людвига. В клинике объемный кровоток оценивают с помощью реовазографии. Этот метод основан на регистрации колебаний электрического сопротивления органов для тока высокой частоты, при изменении их кровенаполнения в систолу и диастолу. При увеличении кровенаполнения сопротивление понижается, а уменьшении возрастает. С целью диагностики сосудистых заболеваний производят реовазографию конечностей, печени, почек, грудной клетки. Иногда используют плетизмографию – это регистрация колебаний объема органа, возникающих при изменении их кровенаполнения. Колебания объема регистрируют с помощью водных, воздушных и электрических плетизмографов. Скорость кругооборота крови – это время, за которое частица крови проходит оба круга кровобращения. Ее измеряют путем введения красителя флюоресцина в вену одной руки и определения времени его появления в вене другой. В среднем скорость кругооборота крови составляет 20-25 сек.
Источник
Функциональная классификация сосудов (по Б. И. Ткаченко в модификации В. Г. Афанасьева) состоит из:
1. Амортизирующие сосуды — аорта, легочная артерия и их крупные ветви, т.е. сосуды эластического типа.
Специфическая функция этих сосудов – поддержание движущей силы кровотока в диастолу желудочков сердца. Здесь сгла-
живается перепад давления между систолой, диастолой и покоем желудочков за счет эластических свойств стенки сосудов. В результате в период покоя давление в аорте поддерживается на уровне 80 мм рт. ст., что стабилизирует движущую силу, при этом эластические волокна стенок сосудов отдают накопленную во время систолы потенциальную энергию сердца и обеспечивают непрерывность тока крови и давление по ходу сосудистого русла. Эластичность аорты и легочной артерии смягчает также гидравлический удар крови во время систолы желудочков. Изгиб аорты повышает эффективность перемешивания крови (основное перемешивание, создание однородности транспортной среды происходит в сердце).
2. Сосуды распределения – средние и мелкие артерии мышечного типа регионов и органов; их функция – распределение потока крови по всем органам и тканям организма. Вклад этих сосудов в общее сосудистое сопротивление небольшой и составляет 10-20%.
3. Сосуды сопротивления. К ним относят: артерии диаметром менее 100 мкм, артериолы, прекапиллярные сфинктеры, сфинктеры магистральных капилляров. На долю этих сосудов приходится около 50-60% общего сопротивления кровотоку, с чем и связано их название. Разнонаправленные изменения тонуса сосудов сопротивления разных регионов обеспечивают перераспределение объемного кровотока между регионами. В регионе или органе они перераспределяют кровоток между работающими и неработающими микрорегионами, т.е. управляют микроциркуляцией. Наконец, сосуды сопротивления микрорегиона распределяют кровоток между обменной и шунтовой цепями, определяют количество функционирующих капилляров. Так, включение в работу одной артериолы обеспечивает кровоток в 100 капиллярах.
4. Обменные сосуды – это капилляры. Частично транспорт веществ происходит также в артериолах и венулах. Через стенку артериол легко диффундирует кислород (в частности, этот путь играет важную роль в снабжении кислородом нейронов мозга), а через люки венул (межклеточные поры диаметром 10-20 нм) осуществляется диффузия из крови белковых молекул, которые в дальнейшем попадают в лимфу.
5. Шунтирующие сосуды. К ним относят артериоло-венуляр-ные анастомозы. Их функция – шунтирование кровотока. Истинные анатомические шунты (артериоло-венулярные анастомозы) есть не во всех органах. Наиболее типичны эти шунты для кожи: при необходимости уменьшить теплоотдачу кровоток по системе капилляров прекращается и кровь (тепло) сбрасывается по шунтам из артериальной системы в венозную.
6. Емкостные (аккумулирующие) сосуды — это посткапиллярные венулы, венулы, мелкие вены, венозные сплетения и специализированные образования – синусоиды селезенки. Их общая емкость составляет около 50% всего объема крови, содержащейся в сердечно-сосудистой системе. Функции этих сосудов связаны со способностью изменять свою емкость. В состоянии покоя до 50% объема крови функционально выключено из кровообращения.
7. Сосуды возврата крови в сердце – это средние, крупные и полые вены, выполняющие роль коллекторов, через которые обес-
, печиваются региональный отток крови, возврат ее к сердцу. Емкость этого отдела венозного русла составляет около 18% и в физиологических условиях изменяется мало (на величину менее 1/5 от исходной емкости).
Источник