Газ нагревают в закрытом сосуде плотность газа
5.4. Практическое применение уравнения состояния идеального газа
5.4.2. Уравнение состояния для газа в закрытом сосуде
При рассмотрении идеального газа, находящегося в закрытом сосуде (баллоне), необходимо учитывать, что изменение термодинамических параметров происходит при постоянной массе газа.
Для идеального газа, находящегося в закрытом сосуде, необходимо учитывать следующее:
- масса газа, находящегося в закрытом сосуде, вследствие изменения его термодинамических параметров не изменяется:
m = const;
- объем газа, заполняющего сосуд определенного объема, также фиксирован: V = const;
- постоянными также остаются следующие параметры газа:
ρ = const; ν = const; n = const;
где ρ – плотность газа; ν – количество вещества (газа); n – концентрация молекул (атомов) газа.
Для идеального газа, находящегося в закрытом сосуде и изменяющего свое состояние, уравнение Менделеева – Клапейрона записывается в виде системы (рис. 5.8):Рис. 5.8
p 1 V = ν R T 1 , p 2 V = ν R T 2 , }
где p 1, T 1 – давление и температура газа в начальном состоянии; p 2, T 2 – давление и температура газа в конечном состоянии; V – объем баллона; ν – количество газа; R – универсальная газовая постоянная, R = 8,31 Дж/(моль ⋅ К).
Термин избыточное давление, встречающийся в задачах об идеальном газе в закрытом сосуде (баллоне), означает абсолютную разность между давлением газа, находящегося в сосуде, и давлением на стенки сосуда снаружи:
p изб = |p − p 0|,
где p – давление газа, находящегося внутри сосуда; p 0 – давление (атмосферное либо гидростатическое) на стенки сосуда снаружи.
Пример 13. Баллон рассчитан на максимальное избыточное давление 150 МПа. В него накачали газ при температуре 300 К до давления 120 МПа. Постепенно нагревая газ, баллон погружают в воду плотностью 1000 кг/м3 на глубину 1000 м. До какой максимальной температуры можно нагреть газ в баллоне, чтобы он не взорвался?
Решение. Запишем уравнение Менделеева – Клапейрона для двух состояний газа, находящегося в баллоне:
- в начале нагревания
p 1V = νRT 1;
- в конце нагревания
p 2V = νRT 2;
где p 1 – первоначальное давление газа в баллоне; p 2 – давление газа в баллоне в конце нагревания; V – объем газа (баллона), V = const; ν – количество вещества (газа) в баллоне; R – универсальная газовая постоянная, R = 8,31 Дж/(моль ⋅ К); T 1 – температура газа в начале процесса; T 2 – температура газа в конце процесса.
Отношение уравнений
p 1 V p 2 V = ν R T 1 ν R T 2
позволяет определить давление газа в конце процесса:
p 2 = p 1 T 2 T 1 .
В условии задачи задано максимальное избыточное давление, определяемое формулой
p изб max = | p 2 − p 0 | ,
где p 0 – давление снаружи баллона; p 2 – давление газа внутри баллона.
При погружении баллона в воду с одновременным нагреванием указанные давления снаружи и внутри баллона определяются следующими формулами:
- снаружи (сумма атмосферного и гидростатического давлений) –
p 0 = p атм + p гидр = p атм + ρ0gh,
где p атм – атмосферное давление; p гидр – гидростатическое давление, p гидр = ρ0gh; ρ0 – плотность воды; g – модуль ускорения свободного падения; h – глубина погружения баллона;
- внутри (давление газа) –
p 2 = p 1 T 2 T 1 ,
где T 2 – максимальная температура газа (искомая величина).
Подстановка выражений для давлений внутри и снаружи баллона в формулу для избыточного давления дает
p изб max = | p 1 T 2 T 1 − ρ 0 g h − p атм | ≈ | p 1 T 2 T 1 − ρ 0 g h | ,
так как p атм << ρ0gh, p атм << p 2.
Данное уравнение содержит модуль разности, что приводит к двум независимым уравнениям:
p изб max = p 1 T 2 T 1 − ρ 0 g h , p изб max = ρ 0 g h − p 1 T 2 T 1 ,
из которых следуют две формулы для расчета искомой величины:
T 2 = T 1 ⋅ ρ 0 g h + p изб max p 1 , T 2 = T 1 ⋅ ρ 0 g h − p изб max p 1 .
Максимальному значению искомой температуры соответствует значение, рассчитанное по первой формуле:
T 2 = 300 ⋅ 1000 ⋅ 10 ⋅ 1000 + 150 ⋅ 10 6 120 ⋅ 10 6 = 400 К.
Чтобы баллон не взорвался, его можно погрузить на заданную глубину, одновременно нагревая до температуры 400 К.
Пример 14. Бутылка емкостью 0,75 л выдерживает максимальное избыточное давление 150 кПа. Из бутылки откачивают воздух и запечатывают некоторое количество твердого углекислого газа с молярной массой 44,0 г/моль. Атмосферное давление равно 100 кПа. Считая, что объем твердого углекислого газа пренебрежимо мал по сравнению с объемом бутылки, найти его максимальную массу, которая не вызовет взрыва бутылки при температуре 300 К?
Решение. Запишем уравнение Менделеева – Клапейрона для углекислого газа, находящегося в бутылке, после его превращения в газообразное состояние:
p V = m M R T ,
где p – давление углекислого газа в бутылке; V – объем газа (бутылки); m – масса углекислого газа в бутылке; M – молярная масса углекислого газа; R – универсальная газовая постоянная, R = 8,31 Дж/(моль ⋅ К); T – температура газа.
Записанное уравнение позволяет получить выражение для расчета давления газа внутри бутылки:
p = m R T V M .
В условии задачи задано максимальное избыточное давление, определяемое формулой
p изб max = | p − p 0 | ,
где p 0 – давление снаружи бутылки.
Указанные давления снаружи и внутри бутылки определяются следующим образом:
- снаружи (атмосферное давление) – p 0;
- внутри (давление углекислого газа) –
p = m R T V M ,
где m соответствует искомой величине – максимальной массе углекислого газа.
Подстановка выражений для давлений внутри и снаружи баллона в формулу для избыточного давления дает
p изб max = | m R T V M − p 0 | .
Данное уравнение содержит модуль разности, что приводит к двум независимым уравнениям:
p изб max = m R T V M − p 0 , p изб max = p 0 − m R T V M ,
из которых следуют две формулы для расчета искомой величины:
m = V M ( p 0 + p изб max ) R T , m = V M ( p 0 − p изб max ) R T .
Максимальному значению искомой массы соответствует значение, рассчитанное по первой формуле:
m = 0,75 ⋅ 10 − 3 ⋅ 44,0 ⋅ 10 − 3 ( 100 + 150 ) ⋅ 10 3 8,31 ⋅ 300 = 3,3 ⋅ 10 − 3 кг = 3,3 г .
Чтобы бутылка не взорвалась, в нее можно запечатать не более 3,3 г твердого углекислого газа.
Пример 15. В наличии имеется неограниченное количество баллонов объемом по 4,0 л, заполненных некоторым идеальным газом до давления 500 кПа. Баллоны предназначены для наполнения газом оболочки аэрозонда и их можно соединять между собой. Сколько баллонов с газом необходимо одновременно подсоединить к пустой оболочке аэрозонда объемом 800 дм3, чтобы наполнить ее до давления 100 кПа, равного атмосферному? Температура газа при заполнении оболочки не изменяется.
Решение. Для осуществления процесса, описанного в условии задачи, требуется определенное количество газа ν.
Необходимое количество газа заполняет следующий объем:
- в начале процесса (до заполнения оболочки)
V 1 = NV бал,
где N – количество баллонов; V бал – объем одного баллона, V бал = 4,0 л;
- в конце процесса (после заполнения оболочки)
V 2 = NV бал + V обол,
где V обол – объем оболочки, V обол = 800 дм3.
Указанное количество газа находится при давлении:
- в начале процесса (до заполнения оболочки) –
p 1 = 500 кПа
и совпадает с давлением газа в каждом из баллонов;
- в конце процесса (после заполнения оболочки) –
p 2 = 100 кПа
и совпадает с давлением в оболочке.
Считая процесс заполнения газом оболочки аэрозонда изотермическим, запишем уравнение Менделеева – Клапейрона следующим образом:
- в начале процесса (до заполнения оболочки) –
p 1V 1 = νRT,
где ν – количество вещества (газа) в оболочке; R – универсальная газовая постоянная, R = 8,31 Дж/(моль ⋅ К); T – температура газа (не изменяется в ходе процесса);
- в конце процесса (после заполнения оболочки) –
p 2V 2 = νRT.
Равенство
p 1V 1 = p 2V 2,
записанное в явном виде
p 1NV бал = p 2(NV бал + V обол),
позволяет получить формулу для вычисления искомого числа баллонов:
N = V обол V бал ⋅ p 2 p 1 − p 2 .
Произведем расчет:
N = 800 ⋅ 10 − 3 4,0 ⋅ 10 − 3 ⋅ 100 ⋅ 10 3 ( 500 − 100 ) ⋅ 10 3 = 50 .
Следовательно, для заполнения оболочки до указанного давления необходимо 50 баллонов с газом.
Пример 16. Аэростат, оболочка которого заполнена азотом с молярной массой 28 г/моль, находится в воздухе. Молярная масса воздуха равна 29 г/моль. Массы гондолы и оболочки аэростата пренебрежимо малы. Во сколько раз возрастет подъемная сила аэростата, если азот в его оболочке заменить на водород с молярной массой 2,0 г/моль, не изменяя при этом объем аэростата?
Решение. Силы (сила тяжести m g → и сила Архимеда F → A ), действующие на аэростат, показаны на рисунке.
Подъемная сила – это векторная сумма силы тяжести и силы Архимеда:
F → под = F → A + m g → ,
где F → A – сила Архимеда, действующая на оболочку со стороны воздуха; m g → – сила тяжести; m – масса газа, заполняющего оболочку аэростата; g → – ускорение свободного падения.
В проекциях на вертикальную ось подъемная сила определяется следующими выражениями:
- при заполнении оболочки азотом –
F под1 = F A1 − m 1g,
где F A1 – модуль силы Архимеда, действующей на оболочку аэростата при заполнении оболочки азотом, F A1 = ρ0gV 1; ρ0 – плотность воздуха; V 1 – объем оболочки аэростата при заполнении ее азотом (объем воздуха, вытесненного оболочкой); m 1 – масса азота, заполняющего оболочку, m 1 = ρ1V 1; ρ1 – плотность азота;
- при заполнении оболочки водородом –
F под2 = F A2 − m 2g,
где F A2 – модуль силы Архимеда, действующей на оболочку аэростата при заполнении оболочки водородом, F A2 = ρ0gV 2; V 2 – объем оболочки аэростата при заполнении ее водородом (объем воздуха, вытесненного оболочкой); m 2 – масса водорода, заполняющего оболочку, m 2 = ρ2V 2; ρ2 – плотность водорода.
Искомой величиной является отношение
F под 2 F под 1 = F A 2 − m 2 g F A 1 − m 1 g .
С учетом записанных выражений для сил Архимеда, масс азота и водорода, а также равенства объемов оболочки при заполнении ее азотом и водородом (V 1 = V 2), указанное отношение принимает вид
F под 2 F под 1 = ρ 0 g V 2 − ρ 2 V 2 g ρ 0 g V 1 − ρ 1 V 1 g = ( ρ 0 − ρ 2 ) V 2 g ( ρ 0 − ρ 1 ) V 1 g = ρ 0 − ρ 2 ρ 0 − ρ 1 .
Плотности воздуха, азота и водорода определим как отношения:
- для воздуха
ρ 0 = M 0 V μ 0 ,
где M 0 – молярная масса воздуха; V µ0 – молярный объем воздуха;
- для азота
ρ 1 = M 1 V μ 1 ,
где M 1 – молярная масса азота; V µ1 – молярный объем азота;
- для водорода
ρ 2 = M 2 V μ 2 ,
где M 2 – молярная масса водорода; V µ2 – молярный объем водорода.
Молярные объемы (объемы одного моля) воздуха, азота и водорода равны между собой, так как газы находятся при одних и тех же условиях:
V µ0 = V µ1 = V µ2 = V µ.
Поэтому формула для расчета искомого отношения приобретает вид
F под 2 F под 1 = ρ 0 − ρ 2 ρ 0 − ρ 1 = M 0 − M 2 M 0 − M 1 .
Расчет дает значение:
F под 2 F под 1 = 29 ⋅ 10 − 3 − 2,0 ⋅ 10 − 3 29 ⋅ 10 − 3 − 28 ⋅ 10 − 3 = 27 .
При замене азота на водород в оболочке аэростата его подъемная сила возрастет в 27 раз.
Пример 17. Воздушный шар с температурой 300 К находится в воздухе при атмосферном давлении 100 кПа. Молярная масса воздуха составляет 29,0 г/моль. Объем воздушного шара равен 830 дм3, а масса его оболочки равна 333 г. На сколько градусов необходимо нагреть газ в оболочке, чтобы шар взлетел? Воздух в оболочке шара сообщается с атмосферой.
Решение. Силы, действующие на воздушный шар, показаны на рисунке:
- сила Архимеда
F A = ρ0gV,
где ρ0 – плотность воздуха, окружающего шар; g – модуль ускорения свободного падения; V – объем оболочки шара (объем вытесненного оболочкой воздуха);
- сила тяжести
mg = (m обол + m возд)g,
где m обол – масса оболочки; m возд – масса воздуха в оболочке, m возд = ρV; ρ – плотность воздуха внутри оболочки.
Шар взлетает, когда выполняется равенство
F → A + m g → = 0,
или, в проекции на вертикальную ось, –
F A − mg = 0.
Преобразуем равенство (условие равновесия шара в воздухе)
F A = mg
с учетом записанных выше выражений
ρ0gV = (m обол + m возд)g, или (ρ0 − ρ)V = m обол.
Входящие в равенство плотности воздуха не известны, но фигурируют в качестве параметра в уравнении состояния:
- для воздуха снаружи оболочки воздушного шара
p 0 = ρ 0 R T 1 M ,
где p 0 – атмосферное давление; ρ0 – плотность воздуха снаружи оболочки; R – универсальная газовая постоянная, R = 8,31 Дж/(моль ⋅ К); T 1 – температура окружающего шар воздуха; M – молярная масса воздуха;
- для воздуха внутри оболочки воздушного шара
p = ρ R T 2 M ,
где p – давление воздуха внутри оболочки; ρ – плотность воздуха внутри оболочки; T 2 – температура воздуха внутри оболочки.
Давления воздуха внутри и снаружи оболочки воздушного шара одинаковы, так как воздух, находящийся в оболочке, сообщается с атмосферой; поэтому
p = p 0.
Плотности:
- для воздуха снаружи оболочки воздушного шара
ρ 0 = p 0 M R T 1 ;
- для воздуха внутри оболочки воздушного шара
ρ = p 0 M R T 2 .
Подставим выражения для плотностей в условие равновесия шара в воздухе:
( 1 T 1 − 1 T 2 ) p 0 M V R = m обол .
Температура воздуха внутри оболочки, при которой шар начинает взлетать, определяется как
T 2 = p 0 M V T 1 p 0 M V − R T 1 m обол ,
а искомая разность –
Δ T = T 2 − T 1 = p 0 M V T 1 p 0 M V − R T 1 m обол − T 1 = T 1 p 0 M V R T 1 m обол − 1 .
Произведем вычисление:
Δ T = 300 100 ⋅ 10 3 ⋅ 29,0 ⋅ 10 − 3 ⋅ 830 ⋅ 10 − 3 8,31 ⋅ 300 ⋅ 333 ⋅ 10 − 3 − 1 = 158 К.
Следовательно, чтобы воздушный шар начал взлетать, воздух в его оболочке необходимо нагреть на 158 К, или 158 °С.
Пример 18. Камеру футбольного мяча объемом 3,00 л накачивают с помощью насоса, забирающего из атмосферы 0,150 л воздуха при каждом качании. Атмосферное давление составляет 100 кПа. Определить давление в камере после 30 качаний, если первоначально она была пустой. Температура постоянна.
Решение. За N качаний насос забирает из атмосферы определенное количество воздуха ν. Это же количество воздуха попадает в камеру футбольного мяча.
Указанное количество воздуха имеет следующий объем:
- воздух, забранный из атмосферы за N качаний насоса, –
V 1 = NV нас,
где V нас – объем насоса, V нас = 0,150 л; N – количество качаний;
- воздух, накачанный в камеру футбольного мяча, –
V 2 = V мяч,
где V мяч – объем камеры мяча, V мяч = 3,00 л.
Данное количество воздуха находится при следующем давлении:
- воздух, забранный из атмосферы за N качаний насоса, –
p 1 = 100 кПа
совпадает с атмосферным давлением;
- воздух, накачанный в камеру футбольного мяча, – p 2 (является искомой величиной).
Считая процесс заполнения воздухом камеры мяча изотермическим, запишем уравнение Менделеева – Клапейрона следующим образом:
- для воздуха, забранного из атмосферы за N качаний насоса, –
p 1V 1 = νRT,
где R – универсальная газовая постоянная, R = 8,31 Дж/(моль ⋅ К); T – температура газа (не изменяется в ходе процесса);
- для воздуха, накачанного в камеру футбольного мяча, –
p 2V 2 = νRT.
Равенство
p 1V 1 = p 2V 2,
записанное в явном виде
p 1NV нас = p 2V мяч,
позволяет получить формулу для вычисления давления в камере футбольного мяча:
p 2 = p 1 N V нас V мяч .
Произведем вычисление:
p 2 = 100 ⋅ 10 3 ⋅ 30 ⋅ 0,15 ⋅ 10 − 3 3,00 ⋅ 10 − 3 = 150 ⋅ 10 3 Па = 150 кПа.
Источник