Газ наполняющий герметичный сосуд с поршнем
Пример 1.
Определите число молекул, содержащихся в 2 мм³ воды при 4°С.
Дано
Решение
V = 2·10-9 м³
T = 277 К
______________
N = ?
Число молекул определим, используя выражение
,
(1)
где ν – количество вещества, NA–число
Авогадро.
Учитывая, что ν=m/μ, где μ-молярная масса,
использовав (1), получим:
. (2)
Массу воды определим через плотность и объем : m=ρV.
Тогда формула (2) примет вид:
. (3)
Молярную массу молекулы H2O воды вычислим:
(2·1+1·16)·10-3
кг/моль=18·10-3 кг/моль.
Окончательно, из формулы (3) получаем N≈6,68·1019
.
Пример 2. Поршневой насос, объем
цилиндра которого равен 0,5л, соединен с баллоном емкостью 3л, содержащим
воздух при нормальном атмосферном давлении. Определите давление воздуха в
баллоне после 5 рабочих ходов поршня, если насос работает в режиме: а) нагнетательном,
б) разрежающем. Считать процесс изотермическим.
Дано
Решение
V1=5·10-4 м³
V2=3·10-3 м³
p0=1,013·10-3 Па
n=5
______________
pн, pр –?
а) Поршневой насос после n-рабочих
ходов в нагнетательном режиме заберет из атмосферы объем воздуха Vn=nV1
при давлении p0. Этот воздух, попадая в баллон, создает там
парциальное давление pn. Тогда, согласно закону
Бойля-Мариотта (по условию Т=const),
, отсюда . Искомое
давление воздуха в баллоне:
(1) |
б) По условию задачи воздух в баллоне занимает объем V2 при давлении р0. К концу первого
хода в разрежающем режиме та же масса воздуха займет объем V2+V1 при давлении p1.
Тогда по закону Бойля-Мариотта
, отсюда
В начале второго хода поршня объем и давление газа в баллоне
соответственно равны V2 и p1, а в конце хода – (V2+V1)
и p2, тогда
,
Следовательно, к концу n-го рабочего хода:
(2) |
Подставляя числовые значения в выражения (1) и (2), получим
pн=1,86·105 Па; pр=0,48·105
Па.
Пример 3. Идеальный газ находится
под давлением 250 кПа и занимает объем 2,5л при температуре 200К. Сначала газ
изохорно нагревают до температуры 400К. Затем, изотермически расширяя, газ
доводят до первоначального давления. После этого газ возвращают в начальное
состояние путем изобарного сжатия. Изобразите процесс графически на
рV-диаграмме. Определите давление p2 и объем V3.
Дано
Решение
p1=2,5·103 Па
V1=2,5·10-3 м³
Т1=200К,
Т2=400К
______________
p2 – ? V3-?
Построим график цикла:
При переходе газа из состояния 1 в состояние 2 осуществляется
изохорный процесс. Следовательно, по закону Шарля имеем p1/Т1=p2/Т2,
откуда
(1)
При переходе газа из состояния 3 в состояние 1 осуществляется
изобарный процесс. Тогда, согласно закону Гей-Люссака , отсюда .
Учитывая, что Т3=Т2 (точки 2 и 3
принадлежат одной изотерме), получим
. (2)
Произведем вычисления по формулам (1) и (2): p2=5·105
Па; V3= 5·10-3 м³.
Пример 4. Идеальный газ находится в
баллоне при 27°С и давлении 3·106 Па. Какой станет температура,
если из баллона будет выпущено 0,3 массы газа, а его давление понизится до
2·106 Па?
Дано
Решение
Т1=300К
p1=3·106 Па
p2=2·106 Па
k=0,3
____________________
Т2-?
Рассмотрим два состояния идеального газа. В первом состоянии
газ имеет массу m и характеризуется параметрами p1, V и T, во
втором состоянии он имеет массу и характеризуется параметрами p2,
V и Т2.
Параметры каждого из этих состояний связаны уравнением
Менделеева-Клапейрона:
,(1)
. (2)
Разделив почленно уравнение (1) на уравнение (2), имеем:
, откуда .
Произведем вычисления, получим Т2=286К
Пример 5. В закрытом сосуде объемом
2м³ находится 2г водорода и 32г кислорода при температуре 500К.
Определите: а) давление в сосуде, б) молярную массу смеси, в) плотность
смеси.
Дано
Решение
V= 2м³
Т= 500К
m1=0,002 кг
m2=0,032 кг
µ1=2·10-3кг/моль
µ2=32·10-3кг/моль
R=8,31Дж/моль·К
_______________
p-? µсм-? ρсм-?
Давление смеси определим по закону Дальтона
, (1)
где p1- давление водорода, p2-
давление кислорода.
Из уравнения Менделеева-Клапейрона:
, .(2)
С учетом (2) преобразуем выражение (1):
.(3)
Для определения молярной массы смеси используем (3) в виде
(4)
Обозначив через µсм молярную массу смеси,
запишем уравнение Менделеева-Клапейрона для смеси в виде
. (5)
Из выражений (4) и (5) получим
. (6)
Плотность смеси газов определим из:
, (7)
где m=m1+m2 – масса смеси газов. Объем смеси газов из(4):
.(8)
Решая совместно уравнения (7) и (8), получим:
.(9)
Произведем вычисления по формулам (3), (6) и (9):
р=4,2 кПа, µсм=17·10-3 кг/моль,
ρсм= 0,017кг/м³.
Пример 6. Чтобы не стать помехой
движению самолетов, олимпийский аэростат «Миша», наполненный гелием при p1=105Па
и температуре T0=300К, должен был подняться над Лужниками на высоту
h=1,5км, где плотность воздуха на 20% меньше, чем у поверхности Земли. Какова
масса M оболочки аэростата, если его объем V=500м3 (оболочку
считать герметичной и нерастяжимой).
Дано
Решение
V=500м3
p0=105Па
T0=300K
h=1.5×103м
mв=29×10-3кг/моль
mг=4×10-3кг/моль
_____________________
Mобл=?
Анализ
Предполагаем, что T =const, а V =const из условия. Условия
равновесия аэростатавыполняются на высоте h =1500м. Тогда, из закона
Архимеда:
,
где mв – масса вытесненного воздуха, mг-масса
гелия.
Решив это уравнение, ответим на вопрос задачи
Выразим mв и mг mв=rвV, где rв = 0,8rвп,
где rвп – плотность
воздуха у поверхности земли.
Тогда
, а .
Следовательно
.
Аналогично .
Тогда
.
Произведем вычисление: M=380кг.
Пример 7. Спутник погрузился в тень
Земли. При этом температура внутри спутника, равная вначале T1=300K,
упала на 1%, вследствие чего давление воздуха изменилось на величину Dp=10,5×102Па.
Определите массу воздуха в спутнике, если его объем V=10м3.
Дано
Решение
T1=300K
DT=0.01
T=3K
Dp=10,5×102Па
V=10м3
m=29×10-3кг/моль
________________
m=?
Считаем, что газ (воздух) внутри спутника является идеальным.
Запишем уравнение Менделеева – Клайперона для каждого состояния:
,(1)
,(2)
(3)
Объем V, масса m, молярная масса m газа являются постоянными. В системе трех уравнений не
известны три величины: m, p1 и р2. Следовательно,
система разрешима.
Так как температура упала, то T1=T2+DT. Вычитая из уравнения (1) уравнение (2),
получаем
.
Но p1–p2=Dp, а T1–T2=DT. Тогда приходим к уравнению:
.
Отсюда: .
Произведем вычисления: m=12кг.
Пример 8. Идеальный газ, масса
которого равна 6,1кг, занимает объем 5м3 при давлении 2∙105Па.
Определите среднюю квадратичную скорость движения молекул газа.
Дано
Решение
m=6,1кг
V=5м3
р=2∙105Па
_____________
<кв>-?
Средняя квадратичная скорость молекулы: . Из уравнения
Менделеева – Клапейрона: найдем: . Тогда .
Произведя вычисления, получим: <кв> = 700м/с
Пример 9. В баллоне находится азот
массой 4г при 300К. Определите среднюю энергию поступательного движения
молекул, находящихся в баллоне.
Дано
Решение
m=4г= 4•10-3кг
Т=300К
μ = 28•10-3кг/моль
________________
<Wn> – ?
Средняя энергия поступательного движения всех молекул определяется
выражением:
; (1)
где <εn> – средняя энергия поступательного
движения одной молекулы; N – число молекул, находящихся в баллоне. Известно,
что ,(2)
где k=1,38•10-23Дж/К – постоянная Больцмана, Т
– термодинамическая температура. Число N молекул найдем по формуле:
, (3)
где n- количество
вещества, NА =6,02•1023моль-1 – постоянная
Авогадро.
Известно, что
,(4)
где m – масса азота, μ = 28•10-3кг/моль –
молярная масса азота.
Выражение (1) с учетом (2), (3) и (4) примет вид:
. (5)
Произведем вычисления по формуле (5), получим:
<Wn>≈534 Дж.
Пример 10. Смесь водорода и гелия
при температуре 27˚C находится под давлением 2∙102Па.
Масса водорода составляет 60% от общей массы смеси. Определите концентрацию
молекул каждого газа.
Дано
Решение
Т=300К
р=2•102Па
k=1,38•10-23Дж/К
τ1=0,6
τ2=0,4
_______________
n1, n2 – ?
Масса каждого из газов определяется из соотношений
, , (1)
где m – масса смеси, τ1 и τ2
– массовые доли соответственно водорода и гелия.
С другой стороны, масса каждого из газов:
, .
(2)
Сравнив (1) и (2), получим:
,
, откуда
. (3)
Для смеси газов
. (4)
Из выражения (3) и (4) получим:
,. (5)
При заданном давлении водород и гелий можно считать идеальными
газами, подчиняющимися уравнению , отсюда (6). С учетом
(6) преобразуем соотношения (5):
, . (7)
Произведем вычисления: n1 ≈ 0,36•1023,
n2 ≈ 0,12•1023.
Пример 11. Определите полную энергию
и количество молекул воздуха между рамами окна, если площадь окна S=2м2,
расстояние между рамами ℓ=0,2м. Давление воздуха между рамами
атмосферное, а температура его линейно изменяется вдоль ℓ от t1=
-10˚C (t1 – температура наружного стекла) до t2=20˚C
(t2–температура внутреннего стекла).
Дано
Решение
S=2м2
ℓ=0,2м
Т1=263K
Т2=293K
________________
W-?
N-?
По условию задачи, воздух между рамами находится в неравновесном
состоянии, так как температура изменяется вдоль оси Оx (Рис.2), ее
распределение в объеме воздуха не изменяется со временем. В пределах
достаточно тонкого слоя толщиной dx, температуру можно считать постоянной и
равной Т. Тогда энергия
.(1)
Концентрации молекул в пределах этого слоя определив из
уравнения состояния:
.(2)
Тогда число dN молекул в объеме слоя:
,(3)
а их энергия
.(4)
По условию задачи температура между рамами изменяется
линейно:
,
(5)
где α – постоянная.
Решая совместно уравнения (2), (3), (5), получим:
.
Тогда
(6)
Постоянные α и Т0 найдем из граничных условий: при
х=0 Т=Т1, следовательно, Т0=Т1; при
х=ℓ, Т= Т2, следовательно,
,
отсюда
.
Тогда
.(7)
Полная энергия dW всех молекул в слое dx:
.
Тогда
.(8)
Произведем вычисления по формулам (7) и (8), учитывая, что
i=5, р=1,01•105Па, N = 1,06•1025, W = 1•105Дж.
Пример 12. Определите среднюю
кинетическую энергию, среднюю энергию вращательного и среднюю энергию
поступательного движения одной молекулы аммиака NH3 при 27˚C.
Дано
Решение
Т=300К
________________
<ε>-?
<εn>-?
<εвр>-?
Средняя полная энергия молекулы:
,(1)
где i – число степеней свободы, k =1,38•10-23Дж/К
– постоянная Больцмана, Т – термодинамическая температура.
Средняя энергия поступательного движения молекулы:
, (2)
где число 3 означает число степеней поступательного движения
молекул. Средняя энергия поступательного движения молекул:
.
Учтя, что молекула аммиака является четырехатомной, т.е.
ее число степеней свободы равно 6, получим:
,
откуда
. (3)
Произведем вычисления по формулам (1) и (3):
<ε>=1,24•10-20Дж; =6,2•10-21Дж.
Пример 13. Определите среднюю
арифметическую скорость молекул идеального газа, плотность которого при
давлении 35кПа составляет 0,3кг/м3.
Дано
Решение
р=35×103Па
ρ=0,3кг/м3
_______________
<υ>-?
Согласно уравнению молекулярно – кинетической теории
идеальных газов
,(1)
где n – концентрация молекул, m0–масса одной
молекулы, <υкв> – средняя квадратичная скорость
молекул.
Учитывая, что , а , получаем:
.(2)
Так как плотность газа , где m – масса газа, V
– его объем, N – число всех молекул газа, то уравнение (1) можно записать в
виде:
или .
Подставляя это выражение в формулу (2), находим искомую
среднюю арифметическую скорость:
.
Вычисляя, получаем: <υ> = 545 м/с.
Пример 14. Используя функцию
распределения молекул идеального газа по относительным скоростям , где , определите число
молекул, скорости которых меньше 0,002 наиболее вероятной скорости, если в
объеме газа содержится N=1,67×1024
молекул.
Дано
Решение
υmax =0,002 υв
N=1,67×1024
_______________
DN-?
Число dN(u) молекул, относительные скорости которых заключены
в пределах от u до u+du
,(1)
где N – число молекул в объеме газа.
По условию задачи, υmax=0,002υв,
то umax= υmax/υв=0,002.
Так как u<1, то e-u² ≈ 1-u2. Пренебрегая
u2<1, выражение (1) можно записать в виде:
.(2)
Проинтегрировав выражение (2) по u в пределах от 0 до umax,
найдем
.
Вычисляя, получаем ∆N=1016 молекул.
Пример 15. Средняя длина
<ℓ> свободного пробега молекулы углекислого газа при нормальных
атмосферных условиях равна 40 нм. Определите среднюю арифметическую скорость
<υ> молекул и среднее число <z> соударений, которые испытывает
молекула в 1 секунду.
Дано
Решение
<ℓ> = 40×10-9м
_______________
<υ>-?, <z>-?
Средняя арифметическая скорость молекул определяется по
формуле:
,(1)
где μ- молярная масса вещества.
Среднее число соударений молекулы в 1 секунду равно отношению
средней скорости <υ> молекулы к средней длине <ℓ> ее
свободного пробега:
.(2)
Произведем вычисления по формулам (1) и (2):
<υ>=362м/с, <z>=9,05·109с-1.
Пример 16. Барометр в кабине
летящего самолета все время показывает одинаковое давление р=79кПа, благодаря
чему летчик считает высоту h1 полета неизменной. Однако температура
воздуха за бортом изменилась с t=5˚C до t=1˚C. Какую ошибку
∆h в определении высоты допустил летчик? Давление р0 у
поверхности Земли считать нормальным.
Дано
Решение
р=79 ×103Па
t1=5˚C,
Т1=278К
t2=1˚C,
Т2=274К
_____________
∆h – ?
Для решения задачи воспользуемся барометрической формулой:
.
Барометр может показывать одинаковое давление р при изменении
температуры за бортом от Т1 до Т2 только в том случае,
если самолет изменяет высоту полета от h1 (которую летчик считает
неизменной), до некоторой другой h2. Запишем барометрическую формулу
для этих двух случаев:
Найдем отношение р0/р и обе части полученного
равенства прологарифмируем:
;
.
Из полученных соотношений выразим высоты h2 и h1
и найдем их разность:
.(1)
Подставим в выражение (1) значения величин (давления в отношении
р0/р можно выразить в килопаскалях, это не повлияет на окончательный
результат): ∆h=-28,5 м. Знак “–“ означает, что h2<h1
и, следовательно, самолет спустился на 28,5 метров по сравнению с предполагаемой высотой.
Пример 17. Определите, во сколько
раз отличаются коэффициенты диффузии азота (μ1=28·10-3кг/моль)
и углекислого газа (μ2=44·10-3кг/моль), если оба
газа находятся при одинаковых температуре и давлении. Эффективные диаметры
молекул этих газов считать одинаковыми.
Дано
Решение
μ1=28·10-3кг/моль
μ2=44·10-3кг/моль
________________
D1/D2-?
Коэффициент диффузии газа
,(1)
где – средняя арифметическая
скорость его молекул, – средняя длина свободного
пробега молекул. Поскольку p=nkT,
из условия задачи (p1=p2, Т1=Т2)
следует, что n1=n2. Подставив значения
<υ>,<ℓ> в формулу (1) и учитывая условие задачи,
найдем Вычисляя, получим D1/D2=1,25.
Источник
8748. Объем сосуда с идеальным газом уменьшили вдвое, выпустив половину газа и поддерживая температуру газа в сосуде постоянной. Как изменятся в результате этого давление газа в сосуде и его внутренняя энергия?
Для каждой величины определите соответствующий характер изменения:
1) не изменится
2) уменьшится
3) увеличится
P.S. Нашли ошибку в задании? Пожалуйста, сообщите о вашей находке 😉
При обращении указывайте id этого вопроса – 8748.
8780. В цилиндрическом сосуде под поршнем находится газ. Поршень не закреплен и может перемещаться в сосуде без трения (см. рисунок). В сосуд закачивается еще такое же количество газа при неизменной температуре. Как изменится в результате этого давление газа и концентрация его молекул?
Для каждой величины определите соответствующий характер изменения:
1) не изменится
2) уменьшится
3) увеличится
P.S. Нашли ошибку в задании? Пожалуйста, сообщите о вашей находке 😉
При обращении указывайте id этого вопроса – 8780.
8812. Аргон помещают в открытый сверху сосуд под легкий подвижный поршень и начинают охлаждать, Давление воздуха, окружающего сосуд, равно 105 Па. Начальный объем газа 9 л, начальная температура 450 К. Масса газа в сосуде остается неизменной. Трением между поршнем и стенками сосуда пренебречь.
Установите соответствие между физическими величинами, характеризующими аргон, и формулами, выражающими их зависимость от абсолютной температуры Т газа в условиях данной задачи.
К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.
ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ
А) внутренняя энергия газа ( U(T) )
Б) объем газа ( V(T) )
ФОРМУЛЫ
1) ( dT, d = ) 3 Дж/К
2) ( frac{b}{T}, b = ) 4050 м3 ⋅ K
3) ( at, a = ) 2 ⋅ 10-5 м3/K
4) ( cT, c = ) 20 Дж/К
P.S. Нашли ошибку в задании? Пожалуйста, сообщите о вашей находке 😉
При обращении указывайте id этого вопроса – 8812.
8844. На рисунке показан процесс изменения состояния одного моля одноатомного идеального газа (U – внутренняя энергия газа; p – его давление). Как изменятся в ходе этого процесса объем и теплоемкость газа? Для каждой величины определите соответствующий характер изменения:
1) не изменится
2) уменьшится
3) увеличится
P.S. Нашли ошибку в задании? Пожалуйста, сообщите о вашей находке 😉
При обращении указывайте id этого вопроса – 8844.
8876. В цилиндре под поршнем находится твердое вещество. Цилиндр поместили в раскаленную печь. На рисунке показан график изменения температуры T вещества по мере поглощения им количества теплоты Q. Какие участки графика соответствуют нагреванию вещества в газообразном состоянии и кипению жидкости?
ТЕПЛОВЫЕ ПРОЦЕССЫ
А) кипение жидкости
Б) нагревание вещества в газообразном состоянии
УЧАСТКИ ГРАФИКА
1) 1
2) 2
3) 3
4) 4
P.S. Нашли ошибку в задании? Пожалуйста, сообщите о вашей находке 😉
При обращении указывайте id этого вопроса – 8876.
8908. При исследовании изопроцессов использовался закрытый сосуд переменного объема, заполненный аргоном и соединенный с манометром. Объем сосуда медленно уменьшают, сохраняя температуру аргона в нем неизменной. Как изменятся при этом внутренняя энергия аргона в сосуде и концентрация его молекул?
Для каждой величины определите соответствующий характер изменения:
1) не изменится
2) уменьшится
3) увеличится
P.S. Нашли ошибку в задании? Пожалуйста, сообщите о вашей находке 😉
При обращении указывайте id этого вопроса – 8908.
8940. В ходе адиабатного процесса внутренняя энергия 1 моль разреженного гелия увеличивается. Как изменяются при этом температура гелия и его давление?
Для каждой величины определите соответствующий характер изменения:
1) не изменится
2) уменьшится
3) увеличится
P.S. Нашли ошибку в задании? Пожалуйста, сообщите о вашей находке 😉
При обращении указывайте id этого вопроса – 8940.
8972. Установите соответствие между процессами в идеальном газе и значениями физических величин, характеризующих эти процессы (( Delta U ) – изменение внутренней энергии; ( A ) работа газа, ( nu ) – количество газа).
К каждой позиции первого столбца подберите соответствующую позицию второго и запишите в таблицу выбранные цифры под соответствующими буквами.
ПРОЦЕССЫ
А) изотермическое сжатие при ( nu = const )
Б) изобарное расширение при ( nu = const )
ЗНАЧЕНИЯ ФИЗИЧЕСКИХ ВЕЛИЧИН
1) ( Delta U > 0,~A = 0 )
2) ( Delta U > 0,~A > 0 )
3) ( Delta U = 0,~A > 0 )
4) ( Delta U = 0,~A
P.S. Нашли ошибку в задании? Пожалуйста, сообщите о вашей находке 😉
При обращении указывайте id этого вопроса – 8972.
9004. Установите соответствие между процессами в идеальном газе и значениями физических величин, характеризующих эти процессы (( Delta U ) – изменение внутренней энергии; ( A ) – работа газа, ( upsilon ) – количество газа).
К каждой позиции первого столбца подберите соответствующую позицию второго и запишите в таблицу выбранные цифры под соответствующими буквами.
ПРОЦЕССЫ
А) адиабатическое сжатие при ( nu = const )
Б) изохорное нагревание при ( nu = const )
ЗНАЧЕНИЯ ФИЗИЧЕСКИХ ВЕЛИЧИН
1) ( Delta U > 0,~A = 0 )
2) ( Delta U > 0,~A > 0 )
3) ( Delta U = 0,~A > 0 )
4) ( Delta U > 0,~A
P.S. Нашли ошибку в задании? Пожалуйста, сообщите о вашей находке 😉
При обращении указывайте id этого вопроса – 9004.
9036. Температуру холодильника теплового двигателя, работающего по циклу Карно, увеличили, оставив температуру нагревателя прежней. Количество теплоты, полученное газом от нагревателя за цикл, не изменилось. Как изменились при этом КПД теплового двигателя и количество теплоты, отданное газом за цикл холодильнику?
Для каждой величины определите соответствующий характер изменения:
1) не изменилась
2) уменьшилась
3) увеличилась
P.S. Нашли ошибку в задании? Пожалуйста, сообщите о вашей находке 😉
При обращении указывайте id этого вопроса – 9036.
Для вас приятно генерировать тесты, создавайте их почаще
Источник