Герметичный сосуд полностью заполнен водой на легкий поршень
| |||
| |||
| |||
Источник
Часть задач есть решенные, https://vk.com/id5150215
Задача 1
Определить изменение плотности жидкости (ρ = 1000 кг/м3) при изменении давления от р1 = 1 · 105 Па до р2 = 1 · 107 Па.
Задача 2
Определить плотность жидкости, полученной смешиванием 15 л жидкости плотностью ρ1 = 720 кг/м3 и 25 л жидкости плотностью ρ2 = 1000 кг/м3.
Задача 3
Каким должен быть объем нефтехранилища для размещения нефти массой 60 т, удельным весом γ = 8500 Н/м3?
Задача 4
Определить динамический коэффициент вязкости жидкости и ее относительный вес, если вязкость, определенная при помощи вискозиметра Энглера, равна 18,5°Е. Удельный вес жидкости принять γ = 8,84 кН/м3.
Задача 5
Стальной трубопровод, заполненный водой при t1 = 10 °С, находится под давлением p = 2 · 106 Па. Диаметр трубопровода d = 0,4 м, длина 1 км. Определить давление воды в трубопроводе при повышении температуры до t2 = 15 °С.
Задача 6
В цилиндрическом резервуаре высотой 6 м находится бензин (βt = 0,0008°С-1). При температуре t1= 15°С бензин не доходит до края на 10 см. Определить, при какой температуре бензин начнет переливаться через край резервуара.
Задача 7
При гидравлическом испытании участка трубопровода диаметром 400 мм и длиной 600 м давление воды в трубе было повышено до 2,943 МПа. Через час оно снизилось до 1,962 МПа. Сколько воды вытекло через неплотности, если коэффициент объемного сжатия воды βр = 5 · 10-10 Па-1?
Задача 8
При заполнении объемного гидропривода рабочая жидкость (масло) имеет температуру t1 = 15 °C. Определить температуру t2, которую может приобрести масло в процессе работы, чтобы давление в системе гидропривода повысилось не более чем на Δp = 40 МПа. Вместимость системы (объем масла до его нагревания) Wн = 20 л, βt = 0,0009 °C-1, E = 1390 МПа. (Считать, что гидропривод заполнен маслом полностью, расширительные резервуары отсутствуют, деформацию элементов гидропривода не учитывать).
Задача 9
Две плоские стеклянные пластины опущены нижними концами в воду параллельно друг другу (рис. 10), расстояние между ними d = 0,2 мм. Определить дополнительное давление, возникающее в воде от действия сил поверхностного натяжения рпов, а также высоту h, на которую поднимется жидкость между пластинами. Коэффициент поверхностного натяжения воды принять равным 7,2 · 10-2 Н/м.
Задача 10
Капиллярная трубка (рис. 11) с внутренним диаметром 1 мм наполнена водой. Часть воды повисла внизу в виде капли, которую можно принять за часть сферы радиусом 5 мм. Определить дополнительные давления рдоп1 и рдоп2, возникающие от действия сил поверхностного натяжения, искривляющие верхние и нижние мениски. Чему будут равны эти давления, если вместо воды в капилляре будет находиться: спирт; бензин? Температуру жидкостей принять равной 20°С.
1. ГИДРОСТАТИКА
1.1. Гидростатическое давление. Методы и средства для измерения давления
Задача 1
В герметически закрытом сосуде (рис. 1.15) налиты две несмешивающиеся жидкости до уровня h3 = 7 м. Показание манометра, установленного в верхней части сосуда, p = 16 кПа. Удельный вес жидкости, образующей верхний слой γ1 = 8 кН/м3, толщина этого слоя h1 = 3 м. Удельный вес жидкости нижнего слоя γ2 = 10 кН/м3. На глубине h2 = 5 м от свободной поверхности жидкости в сосуде присоединен открытый пьезометр. Определить высоту hх, на которую поднимется жидкость в пьезометре. Чему будет равно избыточное давление на дне сосуда?
Задача 2
Два герметичных сосуда (рис. 1.16) наполнены жидкостями с удельными весами γ1 = 10 кН/м3 и γ2 = 12 кН/м3 на высоту h1 = 1 м и h2 = 2 м соответственно. Сосуды соединены изогнутой трубкой, частично заполненной жидкостями из сосудов. Между точками А и В находится воздух. Уровень свободной поверхности жидкости γ1 в ле вой ветви трубки относительно основания сосудов h3 = 0,4 м. Вертикаль ное расстояние между точками А и В h4 = 1 м. В верхних точках сосудов установлены манометры. Показание первого манометра р1 =5 кПа. Чему равно показание второго манометра р2, а также избыточное давление воздуха в точках А и В?
Задача 3
Две запаянные с одного конца трубки и заполненные жидкостями с удельными весами γ1 = 11 кН/м3 и γ2 = 10 кН/м3, опрокинуты в открытые сосуды с теми же жидкостями (рис. 1.17). В запаянных трубках жидкость поднялась на высоту h1 и h2, соответственно. Принимая давление паров рассматриваемых жидкостей равным нулю, определить величину атмосферного давления, если разность высот столбов этих жидкостей составляет 0,9 м. Как изменится разность уровней жидкостей в трубках, если атмосферное давление повысится на 2%?
Задача 4
Герметически закрытый сосуд (рис. 1.18) наполнен жидкостью с удельным весом γ1 до высоты h1 = 2 м. Избыточное давление в верхней части сосуда, измеренное манометром, p = 100 кПа. От сосуда отходит изогнутая трубка, заполненная жидкостью с удельным весом γ1, ртутью (ρрт = 13600 кг/м3) и жидкостью с удельным весом γ2 = 12 кН/м3. Высота уровней жидкостей в трубке h2 = 0,8 м, h3 = 1,5 м, h4 = 3,5 м. Определить удельный вес жидкости γ1.
Задача 5
Две трубы, заполненные жидкостями γ1 = 10 кН/м3 и γ2 = 15 кН/м3, соединены изогнутой трубкой, частично заполненной ртутью γ3 = 133,4 кН/м3 (рис. 1.19). Определить разность давлений Δр = р2 – р= в центрах этих труб, расположенных в одной горизонтальной плоскости, если уровень ртути в правой ветви находится на высоте h1 = 0,5 м, а разность уровней ртути h2 = 2 м.
Задача 6
Герметично закрытый сосуд на высоту h1 = 1,5 м заполнен жидкостью, имеющей удельный вес γ1 = 10 кН/м3 (стр. 1.20). От дна сосуда отходит изогнутая трубка, заполненная в нижней части ртутью (γ2 = 133,4 кН/м3). Уровень ртути в правой ветви трубки находится ниже дна сосуда на h2 = 1,2 м. Разность уровней ртути h3 = 0,8 м. Над ртутью в левой ветви находится жидкость, плотность которой ρ3 = 2000 кг/м3. Показание манометра, установленного на крышке сосуда р = 127,72 кПа. Определить высоту столба жидкости h4 над ртутью в левой ветви.
Задача 7
Два герметичных сосуда (рис. 1.21), основания которых расположены на одной горизонтальной плоскости, наполнены жидкостями, имеющими разные удельные веса γ1 = 20 кН/м3 и γ2 = 10 кН/м3, на высоту h1 = 2 м и h2 = 1 м. Сосуды соединены изогнутой трубкой, в которой между точками А и В находится воздушный пузырь. Нижний край пузыря расположен на высоте h3 = 0,8 м над основанием сосуда. Определить положение верхнего края пузыря hх, если показания манометров на крышках сосудов р1 = 100 кПа, р2 = 78 кПа. Чему равно избыточное давление в точках А и В?
Задача 8
Два резервуара установлены на одной горизонтальной плоскости (рис. 1.22), соединены изогнутой трубкой, в которой между точками А и В находится газовый пузырь. Показание манометра левого резервуара, установленного на высоте h1 = 1 м над плоскостью оснований резервуаров, р1 = 100 кПа, уровень жидкости в пьезометре правого резервуара h2 = 4,75 м. Жидкость в левом резервуаре имеет удельный вес γ1 = 10 кН/м3, в правом — γ2 =20 кН/м3. Определить положение верхнего края пузыря hх, если его нижний край находится на высоте h3 = 1 м от оснований резервуаров.
Задача 9
Два сосуда (рис. 1.23), основания которых расположены в одной горизонтальной плоскости, наполнены разными жидкостями с удельными весами γ1 = 10 кН/м3, γ2 = 20 кН/м3, соединены изогнутой трубкой, в которой между жидкостями находится ртуть (γ3 = 133,4 кН/м3). В левом сосуде на высоте h1 = 3 м над плоскостью основания установлен манометр, показывающий давление р1 = 100 кПа. На крышке правого сосуда установлен манометр, его показание р2 = 192,72 кПа. Уровень жидкости в правом сосуде h2 = 1 м над плоскостью оснований. Определить разность уровней ртути hх, если ее верхний уровень находится на h3 = 0,8 м ниже плоскости оснований сосудов.
Задача 10
Герметично закрытый резервуар (рис. 1.24) заполнен водой до уровня h1 = 2,6 м относительно основания резервуара. Слева к резервуару присоединен пьезометр, уровень воды в котором относительно основания резервуара H. Справа к резервуару присоединена изогнутая трубка, заполненная водой и ртутью, уровни которых расположены на высоте h2 = 0,6 м, h3 = 1,6 м, h4 = 0,8 м, h5 = 1,8 м от основания сосуда. Плотность ртути ρ = 13 600 кг/м3.
Определить избыточное давление р0 воздуха в напорном баке. Какой высоты H должен быть пьезометр для измерения того же давления р0? Как изменится высота H, если р0 увеличится на 10%?
1.1.1
Задача 1
Пренебрегая разностью высот гидросистемы (рис. 1.33), определить показание манометра p и вес груза G, лежащего на поршне 2, если для его подъема к поршню 1 приложена сила F = 1,8 кН. Диаметры поршней: D = 255 мм, d = 68 мм. Разностью высот пренебречь.
Задача 2
Определить избыточное давление жидкости р1 фиксируемое манометром, которое необходимо подвести к гидроцилиндру (рис. 1.34), чтобы преодолеть усилие, направленное вдоль штока F = 0,85 кН. Диаметры: цилиндра – D = 41 мм, штока – d = 16 мм. Давление в бачке р0 = 41 кПа, высота Н0 = 4,55 м. Силу трения не учитывать. Плотность жидкости ρ = 1000 кг/м3.
Задача 3
Определить давление р в верхнем цилиндре гидропреобразователя (мультипликатора) (рис. 1.35), если показание манометра, присоединенного к нижнему цилиндру, рм = 0,35 МПа. Поршни перемешаются вверх, причем сила трения составляет 10 % силы давления жидкости на нижний поршень. Вес поршней G = 3,7 кН. Диаметры поршней: D = 370 мм, d = 75 мм; высота Н = 2 м; плотность масла ρ = 900 кг/м3.
Задача 4
Определить показание мановакуумметра pмв, если к штоку поршня (рис. 1.36) приложена сила F = 0,95 кН, его диаметр D = 85 мм, высота Н = 0,98 м, плотность жидкости ρ = 800 кг/м3.
Задача 5
Определить силу F, действующую на шток гибкой диафрагмы (рис 1.37), если ее диаметр D = 225 мм, показание вакуумметра pвак = 10 кПа, высота h = 1,2 м. Площадью штока пренебречь. Найти абсолютное давление в левой полости, если hатм = 760 мм рт. ст.
Задача 6
Определить силу F на штоке золотника (рис. 1.38), если показание вакуумметра pвак = 43 кПа, избыточное давление p1 = 0,68 МПа, высота h = 2,65 м, диаметры поршней D = 60 мм и d = 17 мм, ρ = 990 кг/м3.
Задача 8
При подъеме груза (рис. 1.40) массой 6 т на высоту 0,45 м воспользовались гидравлическим домкратом с кпд 75%. Отношение площадей большого поршня к малому ω1/ω2 = D2/d2 = 100, ход малого поршня 0,2 м. Сколько ходов сделает малый поршень для подъема груза? Какое максимальное усилие F необходимо приложить к рукоятке при ходе нагнетания, если a/b = 10? Весами обоих поршней пренебречь.
Задача 10
С какой силой каждая из тормозных колодок 1 (рис. 1.42) будет прижиматься к тормозному барабану 2 колеса, если сила нажатия на малый поршень F = 850 Н? Диаметр малого поршня d = 310 мм, больших поршней D = 390 мм.
1.2. Сообщающиеся сосуды. Закон Паскаля
Задача 1
Стеклянная трубка (рис. 1.58) с одной стороны закрыта пластиной и опущена этим концом вертикально в воду на глубину 0,68 м. Какой высоты нужно налить в трубку ртуть или керосин, чтобы пластика отпала?
Задача 2
В вертикальной перегородке закрытого резервуара (рис. 1.59) прямоугольная крышка шириной b = 0,4 м и высотой h = 0,5 м перекрывает отверстие. Правый отсек заполнен нефтью (ρ = 870 кг/м3) под избыточным давлением 12 кПа, левый — воздухом. Показание ртутною мановакуумметра, подключенного к левому отсеку резервуара, hрт = 60 мм. Определить значение и точку приложения силы давления нефти на крышку, если ее центр тяжести расположен на глубине Н = 0,75 м от свободной поверхности нефти. Атмосферное давление принять 100 кПа.
Задача 3
Открытый резервуар заполнен тремя несмешивающимися жидкостями (рис. 1.60), имеющими удельный вес и высоту слоя соответственно γ1 = 7,8 кН/м3, h1 = 1 м; γ2 = 9,81 кН/м3, h2 = 0,7 м; γ3 = 133,4 кН/м3, h3 = 0,3 м. Определить силу избыточного давления на наклонную (α = 60°) боковую стенку резервуара, если ее ширина b = 2 м. Расчет выполнить графоаналитическим методом, построив эпюры давления.
Задача 4
Определить натяжение каната Т, удерживающего затвор (рис. 1.61), который закрывает круглое отверстие r = 1 м в плоской наклонной стенке, если заданы следующие линейные размеры: H = 3м; l = 1,8ми углы α1 = α2 = 60º.
Задача 5
Определить результирующую силу избыточного давления воды, действующую на плоскую ломаную стенку (рис. 1.62) шириной b = 2 м; глубина воды h = 2 м, высота нижней части стенки h1 = 1 м, угол наклона верхней части стенки к горизонтальной плоскости α = 45°. Давление на свободную поверхность жидкости – атмосферное. Построить эпюру избыточного давления воды на стенку и найти координату центра давления стенки.
Задача 6
Четыре стенки, наклоненные к горизонтальной плоскости под углом 90°, 60°, 45° и 30° соответственно, показаны на рис. 1.63. Ширина каждой из стенок b = 1 м. Определить силу гидростатического давления воды на каждую из стенок, если уровень воды h = 1 м; на свободную поверхность воды действует атмосферное давление. На каком вертикальном расстоянии от свободной поверхности находится центр давления?
Задача 7
Промежуточная вертикальная стенка делит емкость (рис. 1.64) шириной b = 1,2 м на два отсека. Определить значение равнодействующей сил избыточного гидростатического давления на эту стенку и точку ее приложения, а также точки приложения сил P1 и P2, если уровень воды в левом отсеке h1 = 1200 мм, а в правом – h2 = 480 мм.
Задача 8
Щит, перекрывающий ирригационный канал, расположен под углом α = 45° к горизонту и прикреплен шарнирно к опоре над водой (рис. 1.65). Пренебрегая весом щита и трением в шарнире, определить усилие, которое необходимо приложить к тросу для открывания щита, если его ширина b = 1,5 м, глубина воды перед щитом h1 = 3 м, за щитом h2 = 2 м. Шарнир расположен на расстоянии h3 = 1,5 м над высшим уровнем воды.
Задача 9
Емкость, наполненная жидкостью с плотностью ρ = 750 кг/м3, имеет форму перевернутой вершиной вниз пирамиды (рис. 1.66). Определить силы давления жидкости, действующие на каждую грань емкости, если рм = 200 кПа, Н = 5 м, h = 1,5 м и стороны основания пирамиды: а = 1,1 м; b = 0,8 м.
Задача 10
Определить силу давления масла (γ = 8650 Н/м3) на болты крышки (рис. 1.67), которая имеет форму прямоугольника высотой a = 0,64 м и шириной b = 1,5 м. Показание манометра рм = 120 кПа, высота h = 2 м.
Задача 11
В нижней части вертикальной плоской стенки открытого резервуара имеется проем прямоугольной формы шириной b = 4 м, закрытый криволинейной крышкой ab в виде четверти боковой поверхности цилиндра радиусом r = 1 м (рис. 1.68). Глубина воды в резервуаре h = 3 м.
Определить значение и направление действия силы P давления воды на крышку.
Задача 12
Металлическая цистерна диаметром d = 1,8 м и длиной l = 10 м полностью заполнена минеральным маслом γ = 9000 Н/м3 (рис. 1.69). Давление на поверхности масла – атмосферное. Чему равна сила избыточного давления масла на внутреннюю поверхность цистерны abc?
Задача 13
Определить значение и направление действия силы гидростатического давления бензина (γ = 7,6 кН/м3) на полуцилиндрическую крышку радиусом r = 1 м, закрывающую прямоугольное отверстие в вертикальной стенке герметично закрытого резервуара (рис. 1.70). Показание манометра, подключенного над свободной поверхностью бензина, рм = 15 кПа. Центр отверстия расположен на глубине h = 2 м от свободной поверхности.
Задача 14
Секторный затвор (рис. 1.71) радиусом r = 1,2 м закрывает донное отверстие прямоугольной формы в плотине. Определить значение и направление действия силы избыточного давления воды на затвор, если напор на плотине h = 5 м, ширина отверстия b = 2,5 м.
Задача 15
С какой силой жидкость (ρ = 800 кг/м3) воздействует на цилиндрическую крышку (рис. 1.72) радиусом r = 0,5 м и длиной l = 2 м, если избыточное давление на свободной поверхности pизб = 15 кПа?
Закрытый резервуар наполнен жидкостью на глубину h = 2,5 м?
Задача 17
Герметично закрытый резервуар (рис. 1.74) наполнен двумя несмешивающимися (ρ1 = 800 кг/м3, ρ2 = 1000 кг/м3) жидкостями на глубину h1 = 0,5 м и h2 = 1,6 м. На свободной поверхности жидкости избыточное давление равно 12 кПа. Определить значение и направление действия силы избыточного давления на полуцилиндрическую крышку диаметром d = 0,8 м, длиной l = 2,5 м, в вертикальной стенке резервуара.
Задача 19
Герметически закрытый резервуар наполнен жидкостью, имеющий плотность ρ = 870
Источник