Группы сосудов по их функциям

Группы сосудов по их функциям thumbnail

Функциональная классификация сосудов (по Б. И. Ткаченко в модификации В. Г. Афанасьева) состоит из:

1. Амортизирующие сосуды аорта, легочная артерия и их крупные ветви, т.е. сосуды эластического типа.

Специфическая функция этих сосудов – поддержание движу­щей силы кровотока в диастолу желудочков сердца. Здесь сгла-

живается перепад давления между систолой, диастолой и покоем желудочков за счет эластических свойств стенки сосудов. В ре­зультате в период покоя давление в аорте поддерживается на уров­не 80 мм рт. ст., что стабилизирует движущую силу, при этом эла­стические волокна стенок сосудов отдают накопленную во время систолы потенциальную энергию сердца и обеспечивают непре­рывность тока крови и давление по ходу сосудистого русла. Элас­тичность аорты и легочной артерии смягчает также гидравличе­ский удар крови во время систолы желудочков. Изгиб аорты повышает эффективность перемешивания крови (основное пере­мешивание, создание однородности транспортной среды происхо­дит в сердце).

2. Сосуды распределения средние и мелкие артерии мышеч­ного типа регионов и органов; их функция – распределение потока крови по всем органам и тканям организма. Вклад этих сосудов в общее сосудистое сопротивление небольшой и составляет 10-20%.

3. Сосуды сопротивления. К ним относят: артерии диамет­ром менее 100 мкм, артериолы, прекапиллярные сфинктеры, сфин­ктеры магистральных капилляров. На долю этих сосудов приходит­ся около 50-60% общего сопротивления кровотоку, с чем и связано их название. Разнонаправленные изменения тонуса сосудов сопро­тивления разных регионов обеспечивают перераспределение объем­ного кровотока между регионами. В регионе или органе они пере­распределяют кровоток между работающими и неработающими микрорегионами, т.е. управляют микроциркуляцией. Наконец, со­суды сопротивления микрорегиона распределяют кровоток между обменной и шунтовой цепями, определяют количество функциони­рующих капилляров. Так, включение в работу одной артериолы обеспечивает кровоток в 100 капиллярах.

4. Обменные сосуды – это капилляры. Частично транспорт веществ происходит также в артериолах и венулах. Через стенку артериол легко диффундирует кислород (в частности, этот путь играет важную роль в снабжении кислородом нейронов мозга), а через люки венул (межклеточные поры диаметром 10-20 нм) осу­ществляется диффузия из крови белковых молекул, которые в даль­нейшем попадают в лимфу.

5. Шунтирующие сосуды. К ним относят артериоло-венуляр-ные анастомозы. Их функция – шунтирование кровотока. Истин­ные анатомические шунты (артериоло-венулярные анастомозы) есть не во всех органах. Наиболее типичны эти шунты для кожи: при необходимости уменьшить теплоотдачу кровоток по системе капилляров прекращается и кровь (тепло) сбрасывается по шун­там из артериальной системы в венозную.

6. Емкостные (аккумулирующие) сосуды — это посткапил­лярные венулы, венулы, мелкие вены, венозные сплетения и спе­циализированные образования – синусоиды селезенки. Их общая емкость составляет около 50% всего объема крови, содержащейся в сердечно-сосудистой системе. Функции этих сосудов связаны со способностью изменять свою емкость. В состоянии покоя до 50% объема крови функционально выключено из кровообращения.

7. Сосуды возврата крови в сердце – это средние, крупные и полые вены, выполняющие роль коллекторов, через которые обес-

, печиваются региональный отток крови, возврат ее к сердцу. Емкость этого отдела венозного русла составляет около 18% и в физиоло­гических условиях изменяется мало (на величину менее 1/5 от исходной емкости).

Источник

Все сосуды в зависимости от выполняемой ими функции можно подразделить на 6 групп:

1. амортизирующие сосуды (сосуды эластического типа)

2. резистивные сосуды

3. сосуды-сфинктеры

4. обменные сосуды

5. емкостные сосуды

6. шунтирующие сосуды.

К амортизизиующим сосудамотносятся артерии с большим содержанием эластических волокон – аорта, легочная артерия и при­легающие к ним участки больших артерий. Эффект амортизации сос­тоит в сглаживании периодических систолических волн кровотока. Такой эффект амортизации обусловлен расширением сосуда вследствие его эластичности.

Резистивные сосуды – это сосуды, оказывающие наибольшее со­противление кровотоку. К ним относятся концевые артерии, артериолы и в меньшей степени капилляры и венулы. Артериолы представляют собой тонкие сосуды (диаметром 15— 70 мкм). Стенка этих сосудов содержит толстый слой циркулярно расположенных гладких мышечных клеток, при сокращении кото­рого просвет сосуда может значительно уменьшаться. При этом резко повышается сопротивление артериол. Изменение сопротивле­ния артериол меняет уровень давления крови в артериях. В случае увеличения сопротивления артериол отток крови из артерий уменьшается и давление в них повышается. Падение тонуса артериол увеличивает отток крови из артерий, что приводит к уменьшению артериального давления. В работающем органе тонус артериол уменьшается, что обеспечивает повышение притока крови. Чтобы общее артериальное давление при этом не снизилось в других (неработающих) органах, тонус артериол повышается.

В сосудах обменного типа происходит обмен между кровью и межтканевой жидкостью. К ним относят капилляры. Они не способны к сокращению просвета.

Емкостные сосуды – это вены. Благодаря высокой растяжимости они способны вмещать, а затем и выбрасывать большие объемы крови без существенных изменений каких-либо параметров кровотока. В связи с этим они могут играть роль депо крови.

В связи с тем что кровь выбрасывается сердцем отдельными порциями, кровоток в артериях имеет пульсирующий характер, поэтому линейная и объемная скорости непрерывно меняются: они максимальны в аорте и легочной артерии в момент систолы желудочков и уменьшаются во время диастолы. В капиллярах и венах кровоток постоянен, т. е. линейная скорость его постоянна. В превращении пульсирующего кровотока в постоянный имеют значение свойства артериальной стенки. Аорта и крупные сосуды, богатые эластической тканью, обладают значительной упругостью.

Пульс. Ритмические толчки, ощущаемые пальцем при прикосновении к любой доступной ощупывании артерии (на виске, у угла челюсти, на шее, на кисти рук, в паху, у щиколотки и т.д.) называется пульсом. При записи кривой пульса (сфигмограммы) видно, что пульс представляет собой сложное колебание стенки сосуда, слагающееся из нескольких подъемов и спусков разной высоты.

Непосредственный механизм пульса аорты и пульса артерии среднего калибра различен. Пульс аорты представляет собой колебания артериальной стенки, создаваемые прямым давлением на них крови, выброшенной сердцем во время систолы. Пульс артерий среднего калибра, напротив, не возникает в данном месте, и представляет собою волну эластического колебания сосудистых стенок, возникшую в аорте и распространяющуюся до периферической артерии. Скорость, с которой пульсовая волна распространяется от центра к периферии, зависит от растяжимости сосуда. В более растяжимой аорте эта скорость равна 3-5 м/сек, а в артериях конечностей – 7-15 м/сек.

Свойства пульса. По пульсу судят о сердечной деятельности и ее нарушениях, определяя каждый раз ряд свойств пульса. В традиционной китайской медицине их насчитывают более 200. Европейская медицина выделяет 5 основных свойств:

1. Частота пульса – число толчков пульса в минуту. Указывает на частоту сердечных сокращений. Бывает пульс частый (тахикардия) и редкий (брадикардия).

2. Ритм пульса. О ритме судят по длительности (равномерности) промежутков между пульсовыми ударами. Бывает пульс ритмичный и аритмичный.

3. Быстрота пульса. По скорости подъема и скорости падения пульсовой волны составляют представление о быстроте пульса. Пульс бывает быстрый и медленный. Быстрый подъем и быстрое падение пульсовой волны отмечается, например, при недостаточности клапанов аорты.

4. Наполнение. По высоте подъема артериальной стенки (т.е. по амплитуде пульсовой волны) судят о величине, или наполнении пульса. Это свойство зависит от систолического объема крови.

5. Напряжение пульса. О нем судят по силе, с которой следует сдавить артерию, чтобы пульс исчез. Напряжение пульса зависит от величины кровяного давления. Различают пульс твердый и мягкий. Твердый, или напряженный пульс бывает, например, при гипертонии, мягкий – при кровотечении, снижении объема циркулирующей крови.

Методы регистрации АД. У человека кровяное давление измеряют бескровным способом по Короткову. Он основан на измерении давления, которому нужно подвергнуть стенку данного сосуда, чтобы прекратить ток крови в нем. Перерыв в токе крови по сосуду определяют или по исчезновению пульса ниже места пережатия (Рива-Роччи) или по появлению и исчезновению так называемых тонов Короткова. Обследуемому накладывают на плечо полую резиновую манжету, которая соединена с резиновой грушей, служащей для нагнетания воздуха, и с манометром. При надувании манжета сдавливает плечо, а манометр показывает величину этого давления. Для измерения давления крови с помощью этого прибора, по предложению Н. С. Короткова, вы­слушивают сосудистые тоны, возникающие в артерии к периферии от наложенной на плечо манжеты.

Читайте также:  Почему падает тонус сосудов

Кровь, если артерия не сдавлена или сдавлена очень мало, течет по артерии беззвучно. Поэтому, если на руку надета не надутая манжета сфигмоманометра, то никаких звуков не слышно. Если же давление в манжете выше диастолического, то в момент систолы кровь проходит, а во время диастолы – нет, то возникает прерывистость в движении и появляются тоны Короткова, синхронные с ритмом сердца. Когда давление в манжете больше систолического – звуки вновь исчезают, так как тока крови нет. Если перед выслушиванием накачать в манжету давление заведомо больше систолического, то при выпускании воздуха тоны появляются, когда давление в манжете становится меньше систолического, но больше диастолического. В этот момент манометр показывает систолическое давление. Когда тоны исчезают вовсе – давление равно диастолическому.

В плечевой артерии здоровых людей в возрасте от 10 до 15 лет АД систолическое давление равно 103-110 мм рт ст, в возрасте 16-40 лет – 113-126 мм рт ст, старше 50 лет – 135-140 мм рт ст. У новорожденных систолическое давление 40 мм рт ст, однако уже через несколько дней оно повышается до 70-80 мм. Диастолическое давление у взрослого равно в норме 60-85 мм рт ст. Пульсовое составляет в норме 35-50 мм.

Факторы, изменяющие артериальное давление. На уровень артериального кровяного давления оказывает влияние ряд факторов. После приема пищи наблюдается небольшое (на 6-8 мм) повышение систолического давления. Эмоциональное возбуждение (гнев, испуг) значительно повышают АД, преимущественно систолическое. Это повышение обусловлено усиленной деятельностью сердца, а также сужением сосудистого русла. Изменения эти наступают частью рефлекторно, частью под влиянием гуморальных сдвигов – поступления адреналина в кровь.

Кроме систолического, диастолического и пульсового артериального давления определяют так называемое среднее артериальное давление. Оно представляет собой ту среднюю величину давления, при которой в отсутствие пульсовых колебаний наблюдается такой же гемодинамический эффект, как и при естественном пульсирую­щим давлении крови, т. е. среднее артериальное давление — это равнодействующая всех изменений давления в сосудах. Среднее давление в одной и той же артерии представляет собой более постоянную величину, а систолическое и диастолическое изменчивы.

При физической работе давление резко возрастает, главным образом за счет усиления деятельности сердца. Систолическое давление может доходить до 180-200 мм. В большинстве случаев при этом повышается и диастолическое давление (до 100-110 мм), но в меньшей степени, чем систолическое, поэтому пульсовое давление возрастает, что служит показателем увеличения систолического объема. Практически важно то обстоятельство, что у людей с недостаточной функциональной способностью сердечно-сосудистой системы наблюдается незначительное повышение систолического и большое – диастолического, при этом пульсовое давление уменьшается. Таким людям запрещено тяжелое физическое напряжение. По окончании физической работы у здоровых людей АД быстро возвращается к норме.

У некоторых людей наблюдается стойкое изменение артериального давления (гипертензия – повышение, гипотензия – понижение). Различают гипертензии сердечного и сосудистого происхождения. Первые обусловлены изменением интенсивности работы сердца, вторые – изменениями периферического сопротивления сосудов, особенно артериол. О наличии гипотонии у взрослого говорят при снижении систолического АД до 110 мм.

Источник

Сосуды в организме выполняют различные функции. Специалисты выделяют шесть основных функциональных групп сосудов: амортизирующие, резистивные, сфинктеры, обменные, емкостные и шунтирующие.

Классификация кровеносных сосудов по функциям

Амортизирующие сосуды

К группе амортизирующих относятся эластические сосуды: аорта, легочная артерия, примыкающие к ним участки крупных артерий. Высокий процент эластических волокон позволяет этим сосудам сглаживать (амортизировать) периодические систолические волны кровотока. Данное свойство получило название Windkessel-эффект. В немецком языке это слово означает «компрессионная камера».

Способность эластических сосудов выравнивать и увеличивать ток крови обуславливается возникновением энергии эластического напряжения в момент растяжения стенок порцией жидкости, то есть переходом некоторой доли кинетической энергии давления крови, которое создает сердце во время систолы, в потенциальную энергию эластического напряжения аорты и крупных артерий, отходящих от нее, выполняющего функцию поддержания кровотока во время диастолы.

Более дистально расположенные артерии относятся к сосудам мышечного типа, так как содержат больше гладкомышечных волокон. Гладкие мышцы в крупных артериях обуславливают их эластические свойства, при этом не изменяя просвета и гидродинамического сопротивления данных сосудов.

Резистивные сосуды

К группе резистивных сосудов принадлежат концевые артерии и артериолы, а также капилляры и венулы, но в меньшей степени. Прекапиллярные сосуды (концевые артерии и артериолы) имеют относительно малый просвет, их стенки обладают достаточной толщиной и развитой гладкой мускулатурой, поэтому способны оказывать наибольшее сопротивление кровотоку.

В многочисленных артериолах вместе с изменением силы сокращения мышечных волокон изменяется диаметр сосудов и, соответственно, общая площадь поперечного сечения, от которой зависит гидродинамическое сопротивление. В связи с этим можно сделать вывод, что основным механизмом распределения системного дебита крови (сердечного выброса) по органам и регулирования объемной скорости кровотока в разных сосудистых областях служит сокращение гладкой мускулатуры прекапиллярных сосудов.

На силу сопротивления посткапиллярного русла влияет состояние вен и венул. От соотношения прекапилярного и посткапиллярного сопротивления зависит гидростатическое давление в капиллярах и, соответственно, качество фильтрации и реабсорбции.

Сосуды-сфинктеры

Схема микроциркуляторного русла выглядит следующим образом: от артериолы ответвляются более широкие, чем истинные капилляры, метаартериолы, которые продолжаются основным каналом. В области ответвления от артериолы стенка метаартериолы содержит гладкомышечные волокна. Такие же волокна присутствуют в области отхождения капилляров от прекапиллярных сфинктеров и в стенках артериовенозных анастомозов.

Таким образом, сосуды-сфинктеры, представляющие собой конечные отделы прекапиллярных артериол, посредством сужения и расширения регулируют количество функционирующих капилляров, то есть от их деятельности зависит площадь обменной поверхности данных сосудов.

Обменные сосуды

К обменным сосудам относятся капилляры и венулы, в которых происходит диффузия и фильтрация. Данные процессы играют важную роль в организме. Капилляры не могут самостоятельно сокращаться, их диаметр изменяется вследствие колебания давления в сосудах-сфинктерах, а также пре- и посткапиллярах, являющихся резистивными сосудами.

Емкостные сосуды

В организме человека нет так называемых истинных депо, в которых задерживается кровь и выбрасывается по мере необходимости. Например, у собаки таким органом служит селезенка. У человека функцию резервуаров крови выполняют емкостные сосуды, к которым относятся главным образом вены. В замкнутой сосудистой системе при изменении емкости какого-либо отдела происходит перераспределение объема крови.

Вены обладают высокой растяжимостью, поэтому при вмещении или выбросе большого объема крови не изменяют параметры кровотока, хотя прямо или косвенно влияют на общую функцию кровообращения. Некоторые вены при пониженном внутрисосудистом давлении имеют просвет в форме овала. Это позволяет им вмещать дополнительный объем крови без растяжения, а изменяя уплощенную форму на более цилиндрическую.

Наибольшую емкость имеют печеночные вены, крупные вены в области чрева и вены подсосочкового сплетения кожи. Всего они вмещают свыше 1000 мл крови, которую выбрасывают при необходимости. Способностью кратковременно депонировать и выбрасывать большое количество крови также обладают легочные вены, параллельно соединенные с системным кровообращением.

Читайте также:  Выброс адреналина спазмы сосудов

Шунтирующие сосуды

К шунтирующим сосудам относятся артериовенозные анастомозы, которые присутствуют в некоторых тканях. В открытом виде они способствуют уменьшению либо полному прекращению кровотока через капилляры.

Кроме этого, все сосуды в организме делятся на присердечные, магистральные и органные. Присердечные сосуды начинают и заканчивают большой и малый круги кровообращения. К ним относятся эластические артерии – аорта и легочный ствол, а также легочные и полые вены.

Функция магистральных сосудов заключается в распределении крови по организму. К сосудам данного типа относятся крупные и средние мышечные экстраорганные артерии и экстраорганные вены.

Органные кровеносные сосуды предназначены для обеспечения обменных реакций между кровью и основными функционирующими элементами внутренних органов (паренхимой). К ним относятся внутриорганные артерии, внутриорганные вены и капилляры.

Видео про сосудистую систему человека:

Источник

Содержание:

  • Что такое сосуды?
  • Кровеносные сосуды человека
  • Функциональные группы сосудов
  • Заболевания кровеносных сосудов
  • К какому врачу обращаться?

Что такое сосуды?

Сосуды – трубковидные образования, которые простилаются по всему телу человека и по которым движется кровь. Давление в системе кровообращения очень велико, поскольку система замкнута. По такой системе кровь достаточно быстро циркулирует.

По истечении многих лет на сосудах образуются препятствия для передвижения крови – бляшки. Это образования с внутренней стороны сосудов. Таким образом, сердце должно интенсивнее качать кровь, чтобы преодолеть преграды в сосудах, что нарушает работу сердца. В этот момент сердце уже не может доставлять кровь к органам тела и не справляется с работой. Но на этой стадии ещё можно вылечиться. Сосуды очищаются от солей и холестериновых наслоений.

При очищении сосудов возвращается их эластичность и гибкость. Уходят многие болезни, связанные с сосудами. К таковым относят склероз, боли в голове, склонность к инфаркту, паралич. Восстанавливается слух и зрение, уменьшается варикозное расширение вен. Приходит в норму состояние носоглотки.

Кровеносные сосуды человека

Кровеносные сосуды человека

Кровь циркулирует по сосудам, которые составляют большой и малый круг кровообращения.

Все кровеносные сосуды состоят из трех слоев:

  • Внутренний слой сосудистой стенки образуют клетки эндотелия, поверхность сосудов внутри гладкая, что облегчает продвижение крови по ним.

  • Средний слой стенок обеспечивает прочность кровеносных сосудов, состоит их мышечных волокон, эластина и коллагена.

  • Верхний слой сосудистых стенок составляют соединительные ткани, он отделяет сосуды от близлежащих тканей.

Артерии

Стенки артерий более прочные и толстые, чем у вен, так как кровь продвигается по ним с большим давлением. Артерии разносят кровь, насыщенную кислородом, от сердца к внутренним органам. У мертвецов артерии пустые, что обнаруживается при вскрытии, поэтому раньше считалось, что артерии – это воздухоносные трубки. Это отразилось и на названии: слово «артерия» состоит из двух частей, в переводе с латыни первая часть “аеr” означает воздух, а “tereo” – содержать.

В зависимости от строения стенок различают две группы артерий:

  1. Эластический тип артерий – это сосуды, расположенные ближе к сердцу, к ним относится аорта и её крупные разветвления. Эластический каркас артерий должен быть настолько прочным, чтобы выдерживать давление, с которым кровь выбрасывается в сосуд от сердечных сокращений. Противостоять механическому воздействию и растяжению помогает волокна эластина и коллагена, составляющие каркас средней стенки сосуда.

    Благодаря упругости и прочности стенок эластических артерий кровь непрерывно поступает в сосуды и обеспечивается постоянная её циркуляция для питания органов и тканей, снабжения их кислородом. Левый желудочек сердца сокращается и с силой выбрасывает большой объем крови в аорту, её стенки растягиваются, вмещая в себя содержимое желудочка. После расслабления левого желудочка кровь в аорту не поступает, давление ослабляется, и кровь из аорты поступает в другие артерии, на которые она разветвляется. Стенки аорты обретают прежнюю форму, так как эластино-коллагеновый каркас обеспечивает их упругость и сопротивление растяжению. Кровь продвигается по сосудам непрерывно, поступая небольшими порциями из аорты после каждого сердечного сокращения.

    Упругие свойства артерий также обеспечивают передачу колебаний по стенкам сосудов – это свойство любой упругой системы при механических воздействиях, в роли которого выступает сердечный толчок. Кровь ударяется в упругие стенки аорты, а они передают колебания по стенкам всех сосудов тела. Там, где сосуды подходят близко к коже, эти колебания можно ощутить, как слабую пульсацию. На основе этого явления основаны методы измерения пульса.

  2. Артерии мышечного типа в среднем слое стенок содержат большое количество волокон гладкой мускулатуры. Это необходимо для обеспечения циркуляции крови и непрерывности её движения по сосудам. Сосуды мышечного типа расположены дальше от сердца, чем артерии эластического типа, поэтому сила сердечного толчка в них ослабевает, чтобы обеспечить дальнейшее продвижение крови необходимо сокращение мышечных волокон. При сокращении гладкой мускулатуры внутреннего слоя артерий, они сужаются, а при их расслаблении – расширяются. В результате кровь продвигается по сосудам с постоянной скоростью и своевременно поступает в органы и ткани, обеспечивая их питание.

Еще одна классификация артерий определяет их расположение по отношению к органу, кровоснабжение которого они обеспечивают. Артерии, которые проходят внутри органа, образуя разветвляющуюся сеть, называются интраорганными. Сосуды, расположенные вокруг органа, до вхождения в него называются экстраорганными. Боковые ветки, которые отходят от одного или разных артериальных стволов, могут снова соединяться или разветвляться на капилляры. В месте их соединения до начала ветвления на капилляры эти сосуды называют анастомозом или соустьем.

Артерии, которые не имеют анастомоза с соседними сосудистыми стволами, называют конечными. К таким, например, относятся артерии селезенки. Артерии, которые образуют соустья, называют анастомозирующими, к этому типу относится большинство артерий. У конечных артерий больше риск закупорки тромбом и высокая предрасположенность к инфаркту, в результате которого может омертветь часть органа.

В последних разветвлениях артерии очень истончаются, такие сосуды называют артериолами, а артериолы уже переходят непосредственно в капилляры. В артериолах есть мышечные волокна, которые выполняют сократительную функцию и регулируют поступление крови в капилляры. Слой гладкомышечных волокон в стенках артериол очень тонкий, в сравнении с артерией. Место разветвления артериолы на капилляры называется прекапилляром, тут мышечные волокна не составляют сплошной слой, а расположены диффузно. Ещё одно отличие прекапилляра от артериолы – отсутствие венулы. Прекапилляр даёт начало многочисленным ветвлениям на мельчайшие сосуды – капилляры.

Капилляры

Капилляры – мельчайшие сосуды, диаметр которых варьируется от 5 до 10 мкм, они имеются во всех тканях, являясь продолжением артерий. Капилляры обеспечивают тканевой обмен и питание, снабжая все структуры организма кислородом. Для того, чтобы обеспечивать передачу кислорода с питательными веществами из крови в ткани, стенка капилляров настолько тонкая, что состоит всего из одного слоя клеток эндотелия. Эти клетки обладают высокой проницаемостью, поэтому сквозь них растворенные в жидкости вещества поступают в ткани, а продукты метаболизма возвращаются в кровь.

Количество работающих капилляров в разных участках тела различается – в большом количестве они сконцентрированы в работающих мышцах, которые нуждаются в постоянном кровоснабжении. Например, в миокарде (мышечном слое сердца) на одном квадратном миллиметре обнаруживается до двух тысяч открытых капилляров, а в скелетных мышцах на ту же площадь приходится несколько сотен капилляров. Не все капилляры функционируют одновременно – многие из них находятся в резерве, в закрытом состоянии, чтобы начать работать при необходимости (например, при стрессе или увеличении физических нагрузок).

Капилляры анастомозируют и, разветвляясь, составляют сложную сеть, основными звеньями которой являются:

  • Артериолы – разветвляются на прекапилляры;

  • Прекапилляры – переходные сосуды между артериолами и собственно капиллярами;

  • Истинные капилляры;

  • Посткапилляры;

  • Венулы – места перехода капилляр в вены.

Читайте также:  Паспорт сосуда работающего под давлением содержание

В каждом типе сосудов, составляющих эту сеть, действует собственный механизм передачи питательных веществ и метаболитов между содержащейся в них кровью и близлежащими тканями. За продвижение крови и её поступление в мельчайшие сосуды отвечает мускулатура более крупных артерий и артериол. Кроме того, регуляция кровотока осуществляется также мышечными сфинктерами пре- и посткапилляров. Функция этих сосудов в основном распределительная, тогда как истинные капилляры выполняют трофическую (питательную) функцию.

Вены

Вены

Вены – это другая группа сосудов, функция которой, в отличие от артерий, заключается не в доставке крови к тканям и органам, а в обеспечении её поступления в сердце. Для этого движение крови по венам происходит в обратном направлении – от тканей и органов к сердечной мышце. Ввиду различия функций, строение вен несколько отличается от строения артерий. Фактор сильного давления, которое кровь оказывает на стенки сосудов, в венах проявляется гораздо меньше, чем в артериях, поэтому эластино-коллагеновый каркас в стенках этих сосудов слабее, в меньшем количестве представлены и мышечные волокна. Именно поэтому вены, в которых не поступает кровь, спадаются.

Аналогично с артериями, вены широко разветвляются, образуя сети. Множество микроскопических вен сливаются в единые венозные стволы, которые ведут к самым крупным сосудам, впадающим в сердце.

Продвижение крови по венам возможно благодаря действию на нее отрицательного давления в грудной полости. Кровь продвигается по направлению присасывающей силы в сердце и грудную полость, кроме того, её своевременный отток обеспечивает гладкомышечный слой в стенках сосудов. Движение крови от нижних конечностей вверх затруднено, поэтому в сосудах нижней части тела мускулатура стенок развита сильнее.

Чтобы кровь продвигалась к сердцу, а не в обратном направлении, в стенках венозных сосудов расположены клапаны, представленные складкой эндотелия с соединительнотканным слоем. Свободный конец клапана беспрепятственно направляет кровь в направлении сердца, а отток обратно перегораживается.

Большинство вен проходят рядом с одной или несколькими артериями: возле небольших артерий обычно расположено две вены, а рядом с более крупными – одна. Вены, которые не сопровождают какие-либо артерии, встречаются в соединительной ткани под кожей.

Питание стенок более крупных сосудов обеспечивают артерии и вены меньших размеров, отходящие от того же ствола или от соседних сосудистых стволов. Весь комплекс расположен в окружающем сосуд соединительнотканном слое. Эта структура называется сосудистым влагалищем.

Венозные и артериальные стенки хорошо иннервированы, содержат разнообразные рецепторы и эффекторы, хорошо связанные с руководящими нервными центрами, благодаря чему осуществляется автоматическая регуляция кровообращения. Благодаря работе рефлексогенных участков кровеносных сосудов обеспечивается нервная и гуморальная регуляция метаболизма в тканях.

Функциональные группы сосудов

Всю кровеносную систему по функциональной нагрузке разделяют на шесть разных групп сосудов. Таким образом, в анатомии человека можно выделить амортизирующие, обменные, резистивные, емкостные, шунтирующие и сфинктерные сосуды.

Амортизирующие сосуды

К этой группе, в основном, относятся артерии, в которых хорошо представлен слой эластиновых и коллагеновых волокон. В нее входят самые крупные сосуды – аорта и легочная артерия, а также прилегающие к этим артериям участки. Эластичность и упругость их стенок обеспечивает необходимые амортизирующие свойства, благодаря которым сглаживаются систолические волны, возникающие при сердечных сокращениях.

Рассматриваемый эффект амортизации также называют Windkessel-эффектом, что на немецком языке означает «эффект компрессионной камеры».

Для наглядной демонстрации этого эффекта используют следующий опыт. К ёмкости , которая наполнена водой, присоединяют две трубки, одна из эластичного материала (резина), а другая из стекла. Из твердой стеклянной трубки вода выплескивается резкими прерывистыми толчками, а из мягкой резиновой – вытекает равномерно и постоянно. Этот эффект объясняется физическими свойствами материалов трубки. Стенки эластичной трубки под действием давления жидкости растягиваются, что приводит к возникновению так называемой энергии эластического напряжения. Таким образом, кинетическая энергия, появляющаяся вследствие давления, превращается в потенциальную энергию, повышающую напряжение.

Кинетическая энергия сердечного сокращения действует на стенки аорты и крупных сосудов, которые от нее отходят, вызывая их растяжение. Эти сосуды образуют компрессионную камеру: кровь, поступающая в них под давлением систолы сердца, растягивает их стенки, кинетическая энергия преобразуется в энергию эластического напряжения, что способствует равномерному продвижению крови по сосудам в период диастолы.

Артерии, расположенные дальше от сердца, относятся к мышечному типу, их эластичный слой выражен меньше, в них больше мышечных волокон. Переход от одного типа сосуда к другому происходит постепенно. Дальнейший ток крови обеспечивается сокращением гладкой мускулатуры мышечных артерий. В тоже время, гладкомышечный слой крупных артерий эластического типа практически не влияет на диаметр сосуда, что обеспечивает стабильность гидродинамических свойств.

Резистивные сосуды

Резистивные свойства обнаруживаются у артериол и концевых артерий. Эти же свойства, но в меньшей мере, характерны для венул и капилляров. Резистентность сосудов зависит от площади их поперечного сечения, а у концевых артерий хорошо развит мышечный слой, регулирующий просвет сосудов. Сосуды с небольшим просветом и толстыми прочными стенками оказывают механическое сопротивление току крови. Развитая гладкая мускулатура резистивных сосудов обеспечивает регуляцию объемной скорости крови, контролирует кровоснабжение органов и систем за счет сердечного выброса.

Сосуды-сфинктеры

Сфинктеры расположены в концевых отделах прекапилляров, при их сужении или расширении происходит изменение количества работающих капилляров, обеспечивающих трофику тканей. При расширении сфинктера капилляр переходит в функционирующее состояние, у неработающих капилляров сфинктеры сужены.

Обменные сосуды

Капилляры – это сосуды, выполняющие обменную функцию, осуществляющие диффузию, фильтрацию и трофику тканей. Капилляры не могут самостоятельно регулировать свой диаметр, изменения просвета сосудов происходит в ответ на изменения в сфинктерах прекапилляров. Процессы диффузии и фильтрации происходят не только в капиллярах, но и в венулах, так что эта группа сосудов также относится к обменным.

Емкостные сосуды

 Сосуды, которые выступают в качестве резервуаров для больших объемов крови. Чаще всего к емкостным сосудам относятся вены – особенности их строения позволяют вмещать больше 1000 мл крови и выбрасывать её по мере необходимости, обеспечивая стабильность кровообращения, равномерный ток крови и полноценное кровоснабжение органов и тканей.

У человека, в отличие от большинства других теплокровных животных, нет специальных резервуаров для депонирования крови, из которых она могла бы выбрасываться по мере необходимости (у собак, например, эту функцию выполняет селезенка). Накапливать кровь для регуляции перераспределения её объемов по организму могут вены, чему способствует их форма. Уплощенные вены вмещают в себя большие объемы крови, при этом не растягиваясь, но приобретая овальную форму просвета.

К емкостным сосудам относятся крупные вены в области чрева, вены в подсосочковом сплетении кожи, вены печени. Функцию депонирования больших объемов крови могут также выполнять легочные вены.

Шунтирующие сосуды

  • Шунтирующие сосуды представляют собой анастомоз из артерий и вен, когда они находятся в открытом состоянии, кровообращение в капиллярах существенно уменьшается. Шунтирующие сосуды разделяют на несколько групп согласно их функции и особенностям строения:

  • Присердечные сосуды – к ним относятся артерии эластического типа, полые вены, легочный артериальный ствол и легочная вена. Ими начинаются и заканчиваются большой и малый круг кровообращения.

  • Магистральные сосуды – крупные и средние сосуды, вены и артерии мышечного типа, расположенные вне органов. С их помощью происходит распределение крови по всем участкам организмы.

  • Органные сосуды – интраорганные артерии, вены, капилляры, обеспечивающие трофику тканей внутренних органов.