Гуморальная регуляция тонуса сосудов осуществляется

Гуморальная регуляция тонуса сосудов осуществляется thumbnail

Гуморальная регуляция сосудистого тонуса

Гуморальная регуляция просвета сосудов осуществляется за счет химических, растворенных в крови веществ, к которым относятся гормоны общего действия, местные гормоны, медиаторы и продукты метаболизма. Их можно разделить на две группы: сосудосуживающие и сосудорасширяющие вещества.

К сосудосуживающим веществам относятся: гормоны мозгового слоя надпочечников – адреналин и норадреналин. Адреналин в малых дозах (1 х 10-7 г/мл) повышает АД, суживая сосуды всех органов, кроме сосудов сердца, мозга, поперечно-полосатой мускулатуры, в которых находятся бета-адренорецепторы. Норадреналин – сильный вазоконстриктор, взаимодействующий с альфа-адренорецепторами.

Разнонаправленный характер влияния катехоламинов (адреналина и норадреналина) на гладкие мышцы сосудов объясняется наличием разных типов адренорецепторов – альфа и бета. Возбуждение альфа-адренорецепторов приводит к сокращению мускулатуры сосудов, а возбуждение бета-адренорецепторов – к ее расслаблению. Норадреалин контактирует в основном с альфаадренорецепторами, а адреналин – и с альфа и с бета. Если в сосудах преобладают альфа-адренорецепторы, то адреналин их суживает, а если преобладают бета-адренорецепторы, то он их расширяет. Кроме того, порог возбуждения бета-адренорецепторов ниже, чем альфа-рецепторов, поэтому в низких концентрациях адреналин в первую очередь контактирует с бета-адренорецепторами и вызывает расширение сосудов, а в высоких – их сужение.

Вазопрессин, или антидиуретический гормон – гормон задней доли гипофиза, суживающий мелкие сосуды и, в частности, артериолы, особенно при значительном падении артериального давления.

Альдостерон – минералокортикоид – гормон коры надпочечников, повышает чувствительность гладких мышц сосудов к вазоконстрикторным агентам, усиливает прессорное действие ангиотензина II.

Серотонин – образуется в слизистой кишечника и в некоторых отделах головного мозга, содержится в тромбоцитах, суживает поврежденный сосуд и препятствует кровотечению. Он оказывает мощное сосудосуживающее влияние на артерии мягкой мозговой оболочки и может играть роль в возникновении их спазмов (приступы мигрени).

Ренин – образуется в юкстагломерулярном комплексе почки, особенно много при ее ишемии.Он расщепляет альфа-2 – глобулин плазмы – ангиотензиноген и превращает его в малоактивный декапептид – ангиотензин I, который под влиянием фермента дипептидкарбоксипептидазы превращается в очень активное сосудосуживающее вещество – ангиотензин II, повышающее АД (почечная гипертония). Ангиотензин II – мощный стимулятор выработки альдостерона, повышающего содержание в организме Na+ и внеклеточной жидкости. В таких случаях говорят о работе ренин-ангиотензин-альдостероновой системы или механизма. Последний имеет большое значение для нормализации уровня кровяного давления при кровопотере.

Эндотелии – вырабатывается эндотелием сосудов, оказывает сосудосуживающий эффект при снижении АД.

Ионы Са2+ суживают сосуды.

К сосудорасширяющим веществам относятся: медиатор ацетилхолин, а также так называемые местные гормоны. Один из них – гистамин – образуется в слизистой оболочке желудка и кишечника, в коже, скелетной мускулатуре (во время работы) и в других органах. Содержится в базофилах и тучных клетках поврежденных тканей и выделяется при реакциях антиген-антитело. Расширяет артериолы и венулы, увеличивает проницаемость капилляров.

Брадикинин выделен из экстрактов поджелудочной железы, легких. Он расширяет сосуды скелетных мышц, сердца, спинного и головного мозга, слюнных и потовых желез, увеличивает проницаемость капилляров.

Простагландины, простациклины и тромбоксан образуются во многих органах и тканях. Они синтезируются из полиненасыщенных жирных кислот арахидоновой и линолевой. Простагландины (PG) – это гормоноподобные вещества. Разные группы и подгруппы этих веществ оказывают различный эффект на сосуды. Так, PGA, и PGA2 вызывают расширение артерий чревной области. Медуллин (PGA2), выделенный из мозгового вещества почек, снижает АД, увеличивает почечный кровоток, выделение почками воды, Na+ и К +. Простагландины PGE расширяют сосуды при внутриартериальном введении и тормозят выделение норадреналина из окончаний симпатических нервов. PGF суживают сосуды и повышают АД. Тромбоксан оказывает сосудосуживающий эффект.

Продукты метаболизма – молочная и пировиноградная кислоты оказывают местный вазодилататорный эффект.

СО2 расширяет сосуды мозга, кишечника, скелетной мускулатуры.

Аденозин расширяет коронарные сосуды.

NO (оксид азота) расширяет коронарные сосуды.

Ионы К+ и Na+ расширяют сосуды.

Читайте также

9. Гуморальная регуляция деятельности сердца

9. Гуморальная регуляция деятельности сердца Факторы гуморальной регуляции делят на две группы:1) вещества системного действия;2) вещества местного действия.К веществам системного действия относят электролиты и гормоны. Электролиты (ионы Ca) оказывают выраженное

2. Гуморальная регуляция нейронов дыхательного центра

2. Гуморальная регуляция нейронов дыхательного центра Впервые гуморальные механизмы регуляции были описаны в опыте Г. Фредерика в 1860 г., а затем изучались отдельными учеными, в том числе И. П. Павловым и И. М. Сеченовым.Г. Фредерик провел опыт перекрестного кровообращения,

46. Гуморальная регуляция деятельности сердца и сосудистого тонуса

46. Гуморальная регуляция деятельности сердца и сосудистого тонуса Факторы гуморальной регуляции делят на две группы:1) вещества системного действия;2) вещества местного действия.К веществам системного действия относят электролиты и гормоны. Электролиты (ионы Ca)

50. Физиологическая характеристика дыхательного центра, его гуморальная регуляция

50. Физиологическая характеристика дыхательного центра, его гуморальная регуляция По современным представлениям дыхательный центр – это совокупность нейронов, обеспечивающих смену процессов вдоха и выдоха и адаптацию системы к потребностям организма. Выделяют

Активная регуляция мышечного тонуса

Активная регуляция мышечного тонуса Важная роль в психологических исследованиях и теоретическом обосновании эффекта релаксации принадлежит Е. Jacobson. Изучая методы объективной регистрации эмоциональных состояний, он установил, что при отрицательных эмоциональных

Гуморальная регуляция деятельности сердца

Гуморальная регуляция деятельности сердца На работу сердца прежде всего влияют медиаторы ацетилхолин, выделяющийся в окончаниях парасимпатических нервов, он тормозит деятельность сердца, а также адреналин и норадреналин – медиаторы симпатических нервов, оказывающие

Регуляция тонуса сосудов

Регуляция тонуса сосудов Механизмы, регулирующие сосудистый тонус, можно условно разделить: 1. на местные, периферические, регулирующие кровоток в отдельном органе или участке ткани независимо от центральной регуляции2. центральные, поддерживающие уровень АД и

Читайте также:  Варикозного расширения сосудов пищевода

Рефлекторная регуляция деятельности сердца и сосудистого тонуса

Рефлекторная регуляция деятельности сердца и сосудистого тонуса Рефлекторные влияния на деятельность сердца и тонус сосудов могут возникать при раздражении различных рецепторов, расположенных как в самом сердце и сосудистой системе, так и в различных органах. Условно

Гуморальная регуляция лимфотока и лимфообразования

Гуморальная регуляция лимфотока и лимфообразования Адреналин – усиливает ток лимфы по лимфатическим сосудам брыжейки и повышает давление в грудной полости.Гистамин – усиливает лимфообразование за счет увеличения проницаемости кровеносных капилляров, стимулирует

Гуморальная регуляция дыхания

Гуморальная регуляция дыхания Главным физиологическим стимулом дыхательных центров является двуокись углерода. Регуляция дыхания обусловливает поддержание нормального содержания СО2 в альвеолярном воздухе и артериальной крови. Возрастание содержания СО2 в

Гуморальная регуляция боли

Гуморальная регуляция боли Медиаторы: ацетилхолин, адреналин, норадреналин, серотонин активируют хемоноцицепторы. Ацетилхолин вызывает жгучую боль при подкожном введении или при накалывании на слизистую оболочку. Эта боль длится, как правило, 15 – 45 мин и может быть

Глава 10 Гуморальная регуляция тонуса сосудов

Глава 10 Гуморальная регуляция тонуса сосудов Кроме нервной регуляции тонуса сосудов, контролируемой симпатической нервной системой, в организме человека существует и другой тип регуляции этих сосудов – гуморальный (жидкостный), который контролируют химические

Восстановление сосудистого тонуса при вегетативной дистонии

Восстановление сосудистого тонуса при вегетативной дистонии А. М. Вейн, ведущий российский специалист по вегетативной патологии, дает такое определение: «Вегетативная дистония (ВД) – это комплекс расстройств, обусловленный нарушением вегетативной регуляции

Восстановление сосудистого тонуса

Восстановление сосудистого тонуса Сосудистые заболевания и их обострения в большинстве случаев связаны с нестабильным состоянием нервной системы. Для того чтобы восстановить сосудистый тонус, прежде всего необходимо научиться расслабляться и переключаться.Если у вас

Восстановление сосудистого тонуса при вегетативной дистонии

Восстановление сосудистого тонуса при вегетативной дистонии А. М. Вейн, ведущий российский специалист по вегетативной патологии, дает такое определение: «Вегетативная дистония (ВД) – это комплекс расстройств, обусловленный нарушением вегетативной регуляции

Гуморальная регуляция

Гуморальная регуляция Каким бы не было ваше здоровье – его хватит до конца жизни. Л. Борисов Биологически активные вещества способны оказывать влияние на другие клетки в очень малых концентрациях. Они вырабатываются многими клетками организма, кроме того, в организме

Источник

Сосудосуживающие вещества. К ним относятся гормоны мозгового вещества надпочечников – адреналин и норадреналин, а также задней доли гипофиза – вазопрессин. Адреналин и норадреналинсужают артерии и артериолы кожи, орга­нов брюшной полости и легких, а вазо­прессин действует преимущественно наартериолы и капилляры и оказывает влия­ние на сосуды в очень малых концентра­циях.

К числу сосудосуживающих гумораль­ных факторов относится серотонин, про­дуцируемый в слизистой оболочке кишок и в некоторых участках головного мозга.Он образуется также при распаде тром­боцитов. Физиологическое значение серотонина состоит в том, что он сужает сосу­ды и препятствует кровотечению из пора­женного сосуда. Во второй фазе сверты­вания крови, после образования тромба,серотонин расширяет сосуды.

Еще один сосудосуживающий фактор – ренин – синтезируется в почках, причем чем ниже их кровоснабжение, тем в боль­шем количестве он продуцируется. Ренин представляет собой протеолитический фер­мент. Сам по себе он не вызывает суже­ния сосудов, но, поступая в кровь, расщеп­ляет ά2-глобулин плазмы (ангиотензиноген) и превращает его в относительно ма­лоактивный ангиотензин I, который под влиянием фермента дипептидкарбоксипептидазы (ангиотензинконвертаза, ангиотензинпревращающий фермент) переходит в очень активную сосудосуживающую фор­му – ангиотензин II. Последний быстро разрушается в капиллярах ангиотензиназой. В условиях нормального кровоснаб­жения почек образуется сравнительно не­большое количество ренина.

Открытие ренина и механизма его со­судосуживающего действия объяснило причину высокого АД, сопутствующего не­которым заболеваниям почек.

Сосудорасширяющие вещества. Во многих тканях тела синтезируются со­судорасширяющие вещества, получившие название простагландинов, которые пред­ставляют собой производные насыщенных жирных кислот. Из подчелюстной, под­желудочной желез, легких и некоторых других органов выделены сосудорасширя­ющие пептиды, относящиеся к группе ки-нинов. Наиболее известным из них являет­ся брадикинин, вызывающий расслабление гладкой мускулатуры артериол и сниже­ние АД.

К сосудорасширяющим веществам отно­сят также ацетилхолин, который продуци­руется в окончаниях парасимпатических нервов, и гистамин, образующийся в сли­зистой оболочке желудка и кишок, а так­же в других органах, в частности в коже и скелетной мускулатуре. Эти вещества вы­зывают расширение артериол и увеличе­ние кровенаполнения капилляров.

В последние годы установлена важная роль эндотелия сосудистой стенки в регу­ляции кровотока. Эндотелиоциты под вли­янием химических раздражителей, прино­симых кровью (например, NO), способны выделять вещества, действующие на сосу­дистый тонус и вызывающие расширение сосудов.

Сосуды ряда органов и тканей облада­ют специфическими особенностями регу­ляции, которые определяются структурой и функцией данного органа.

4.2.2. Патофизиологические изменения в сердечно-сосудистой системе при критических состояниях

Как в экспериментальных, так и в кли­нических исследованиях продемонстриро­вано, что в патогенезе нарушений циркуляторного гомеостаза при критических состояниях принимают участие разные факторы: гипоксия, токсемия, перераспре­деление жидкости по секторам при общем ее уменьшении, водно-электролитный, кис­лотно-основный и энергетический дисба­лансы, нарушения гемореологии и др. Все они вызывают уменьшение венозного под­пора, снижение сократимости миокарда и производительности сердца, изменение сосудистого сопротивления, централизации кровообращения, что в конечном итоге приводит к ухудшению перфузии тканей. При всей полиэтиологичности циркулятор-ных расстройств у больных в критичес­ких состояниях существует группа факторов, непосредственно определяющих гемо-динамический статус пациента, и ряд кри­териев, позволяющих оценить этот статус. Главным критерием функционального состояния сердечно-сосудистой системы является величина сердечного выброса. Его адекватность обеспечивают:

Читайте также:  Как почистить сосуды в клинике

а) венозный возврат;

б) сократительная способность миокарда;

в) периферическое сопротивление для правого и левого желудочков;

г) частота сердечных сокращений;

д) состояние клапанного аппарата сердца.

Любые расстройства кровообращения можно увязать с функциональной недо­статочностью сердечного насоса, если счи­тать главным показателем его адекватно­сти сердечный выброс:

острая сердечная недостаточность- снижение сердечного выброса при нор­мальном или повышенном венозном воз­врате;

острая сосудистая недостаточность- нарушение венозного возврата вследствие увеличения сосудистого русла;

острая недостаточность кровообра­щения- снижение сердечного выброса независимо от состояния венозного воз­врата.

Рассмотрим наиболее важные факто­ры, влияющие на величину сердечного вы­броса.

Венозный возврат – это объем крови, поступающей по полым венам в правое предсердие. В обычных клинических усло­виях прямое измерение его практически неосуществимо, поэтому широко исполь­зуются косвенные методы его оценки, на­пример, исследование центрального веноз­ного давления (ЦВД). Нормальный уро­вень ЦВД составляет примерно 7 -12 см вод. ст. (686-1177 Па).

Величина венозного возврата зависит от следующих компонентов:

  1. объема циркулирующей крови;

  2. величины внутригрудного давления;

  3. положения тела (при возвышенном положении головного конца венозный воз­врат уменьшается);

  4. изменения тонуса вен (сосудов-ем­костей): при действии симпатомиметиков и глюкокортикоидов возникает повышение тонуса вен; ганглиоблокаторы и адренолитики снижают венозный возврат;

  1. ритмичности изменения тонуса ске­летных мышц в сочетании с работой ве­нозных клапанов;

  2. адекватности сокращения предсер­дий и ушек сердца, что обеспечивает 20 – 30 % дополнительного наполнения и рас­тяжения желудочков.

Среди факторов, определяющих состо­яние венозного возврата, важнейшим яв­ляется ОЦК. Он состоит из объема фор­менных элементов, в основном эритро­цитов (относительно постоянный объем), и объема плазмы. Последний обратно пропорционален величине гематокрита. Объем крови составляет в среднем 50 – 80 мл на 1 кг массы тела (5 -7 % массы). Наибольшая часть крови (до 75 %) содер­жится в системе низкого давления (веноз­ная часть сосудистого русла). В артери­альном отделе находится около 20 % кро­ви, в капиллярном – около 5 %. В сос­тоянии покоя до половины объема крови может быть представлена пассивной фрак­цией, депонированной в органах и вклю­чающейся в кровообращение в случае не­обходимости (например, кровопотери или мышечной работы).

Для адекватной функции системы кро­вообращения важно прежде всего не аб­солютное значение ОЦК, а степень его со­ответствия емкости сосудистого русла. У ослабленных больных и у больных с длительным ограничением подвижности всегда имеется абсолютный дефицит ОЦК, однако он компенсируется венозной вазоконстрикцией. Недооценка этого факта зачастую приводит к осложнениям во вре­мя вводной анестезии, когда использова­ние индукторов (например, барбитуратов) снимает вазоконстрикцию. Возникает не­соответствие ОЦК емкости сосудистого русла, вследствие чего снижается веноз­ный возврат и сердечный выброс.

В основу современных методов изме­рения ОЦК положен принцип разведения индикаторов, однако в силу его трудоем­кости и необходимости соответствующего аппаратурного обеспечения он не может быть рекомендован для рутинного клини­ческого использования.

К клиническим признакам снижения ОЦК относятся: бледность кожных по­кровов и слизистых, снижение кровотока в периферическом венозном русле, тахи­кардия, артериальная гипотензия, сниже­ние ЦВД. Ни один из этих признаков не имеет самостоятельного значения для оценки дефицита ОЦК и только их комп­лексное использование позволяет прибли­зительно оценить его.

В настоящее время сократительная спо­собность миокарда и периферическое со­судистое сопротивление определяются с использованием концепций преднагрузки и постнагрузки.

Преднагрузкаэквивалентна силе, рас­тягивающей мышцу перед ее сокращением. Очевидно, что степень растяжения воло­кон миокарда до диастолической длины определяется величиной венозного возвра­та. Иными словами, конечный диастолический объем (КДО) эквивалентен преднагрузке. Однако в настоящее время не существует рутинных методов, позволя­ющих в условиях клиники осуществлять прямое измерение КДО. Плавающий (флотационно-баллонный) катетер, прове­денный в легочную артерию, дает возмож­ность измерить давление заклинивания в легочных капиллярах (ДЗЛК), которое равно конечному диастолическому давле­нию (КДД) в левом желудочке. В боль­шинстве случаев это соответствует исти­не – ЦВД равно КДД в правом желудоч­ке, а ДЗЛК – в левом. Тем не менее КДД эквивалентно КДО только при нормаль­ной растяжимости миокарда. Любые про­цессы, вызывающие снижение растяжимо­сти (воспаление, склероз, отек, ИВЛ с ПДКВ и др.), приводят к нарушению кор­реляции между КДД и КДО (для дости­жения той же величины КДО потребуется большее КДД). Таким образом, КДД по­зволяет надежно охарактеризовать преднагрузку только при неизмененной растя­жимости желудочков. Кроме того, ДЗЛК может не соответствовать КДД в левом желудочке при аортальной недостаточнос­ти и при выраженной патологии легких.

Постнагрузкаопределяется как сила, которую необходимо преодолеть желудоч­ку, чтобы выбросить ударный объем крови. Она эквивалентна трансмуральному напряжению, возникающему в стенке же­лудочка во время систолы и включает в себя следующие компоненты:

  • преднагрузку;

  • общее периферическое сопротивле­ние сосудов;

  • давление в плевральной полости (от­рицательное давление в плевральной по­лости увеличивает постнагрузку, положи­тельное – уменьшает).

Таким образом, постнагрузка создается не только сосудистым сопротивлением, она включает в себя и преднагрузку, посколь­ку на преодоление последней затрачива­ется часть систолической работы желудоч­ка, а также компонент, не являющийся частью сердечно-сосудистой системы.

Необходимо различать сократительную способность и сократимость миокарда. Первая является эквивалентом полезной работы, которую может выполнить мио­кард при оптимальных значениях пред- и постнагрузки, т. е. потенциальной функ­цией. Сократимость же является функцией актуальной, поскольку определяется рабо­той, выполняемой миокардом при их ре­альных значениях. Если пред- и постна­грузка неизменны, то систолическое дав­ление зависит от сократимости.

Фундаментальным законом физиологии сердечно-сосудистой системы является за­кон Франка – Старлинга:сила сокраще­ния пропорциональна исходной длине миокардиальных волокон, т. е. работа сердца зависит от объема крови в желудоч­ках в конце диастолы. Первые исследова­ния, в результате которых получены эти данные, были проведены в 1885 г. О. Фран­ком и несколько позднее продолжены Э. Старлингом. Физиологический смысл сформулированного ими закона (закона Франка – Старлинга) заключается в том, что большее наполнение полостей сердца кровью автоматически увеличивает силу сокращения и, следовательно, обеспечива­ет более полное опорожнение.

Читайте также:  Задачи на сосуды и емкости

Как уже упоминалось, величина давле­ния в левом предсердии определяется ве­личиной венозного подпора. Однако сер­дечный выброс возрастает линейно до опре­деленного потенциала, затем его увеличение происходит более полого. И, наконец, наступает момент, когда повышение конеч­ного диастолического давления не приво­дит к увеличению сердечного выброса. Взаимосвязь между этими величинами приближается к линейной только на на­чальном отрезке кривой «давление – объем». В целом, ударный объем увеличи­вается до тех пор, пока диастолическое растяжение не превысит 2/3 максималь­ного растяжения. Это соответствует уров­ню конечного диастолического давления, равному приблизительно 60 мм рт. ст. Если диастолическое растяжение (напол­нение) превышает 2/3 максимального, то ударный объем перестает увеличиваться. В клинике подобное давление наблюдает­ся редко, однако в случае патологии мио­карда ударный объем сердца может сни­жаться и при более низких цифрах конеч­ного диастолического давления (КДД).

При умеренной сердечной недостаточ­ности способность желудочка реагировать на преднагрузку сохраняется только при давлении наполнения, превышающем нор­му. Это свидетельствует о том, что сердеч­ный выброс и уровень кровотока на дан­ном этапе еще могут быть сохранены за счет включения компенсаторных механиз­мов (увеличение венозного подпора), по­скольку деятельность желудочка при уме­ренной недостаточности зависит не столько от постнагрузки, сколько от преднагруз­ки. По мере дальнейшего снижения функ­ции сердца деятельность желудочка ста­новится все менее зависимой от преднагрузки. Роль же постнагрузки при тяже­лой сердечной недостаточности продолжа­ет возрастать, поскольку вазоконстрикция не только снижает сердечный выброс, но и уменьшает периферический кровоток.

Таким образом, при прогрессировании сердечной недостаточности компенсатор­ная функция увеличенной преднагрузки постепенно утрачивается и давление веноз­ного подпора не должно превышать крити­ческий уровень, чтобы не вызвать перерас­тяжение левого желудочка. По мере уве­личения дилатации желудочков пропор­ционально растет и потребление кислоро­да. Когда диастолическое растяжение пре­вышает 2/3 максимального, а потребность в кислороде растет, развивается «кисло­родная ловушка» – потребление кисло­рода большое, а сила сокращений не уве­личивается. При хронической сердечной недостаточности гипертрофированные и дилатированные участки миокарда начи­нают потреблять до 27 % всего необходи­мого организму кислорода (больное сер­дце работает только на себя).

Физическое напряжение и гиперметабо­лические состояния приводят к усилению сокращений поперечнополосатых мышц, увеличению частоты сердечных сокращений и минутного объема дыхания. При этом возрастает приток крови по венам, увели­чиваются центральное венозное давление, ударный и минутный объемы сердца.

При сокращении желудочков никогда не выбрасывается вся кровь – остается некоторое ее количество – остаточный систолический объем (ОСО). В норме фракция выброса в состоянии покоя со­ставляет около 70 %. При физической нагрузке в норме фракция выброса воз­растает, а абсолютное значение ОСО ос­тается прежним вследствие увеличения ударного объема сердца.

Начальное диастолическое давление в желудочках определяется величиной ОСО. В норме при физической нагрузке увели­чивается приток крови и потребность в кислороде, а также объем производимой работы. Таким образом, энергетические затраты целесообразны, и коэффициент по­лезного действия сердца не снижается.

При развитии различных патологичес­ких процессов (миокардиты, интоксикация и т. д.) происходит первичное ослабле­ние функции миокарда. Он не в состоя­нии обеспечить адекватный сердечный выброс, и ОСО увеличивается. При сохра­ненном ОЦК на ранних этапах (до разви­тия систолической дисфункции) это при­ведет к увеличению диастолического дав­ления и к усилению сократительной функ­ции миокарда.

В неблагоприятных условиях миокард сохраняет величину ударного объема, но в результате более выраженной дилата­ции потребность в кислороде увеличива­ется. Сердце выполняет ту же работу, но с большими энергетическими затратами.

При гипертонической болезни повыша­ется сопротивление выбросу. Минутный объем сердца (МОС) либо остается неиз­менным, либо увеличивается. Сократитель­ная функция миокарда на начальных эта­пах заболевания сохраняется, но сердце гипертрофируется, чтобы преодолеть воз­росшее сопротивление выбросу. Затем, если гипертрофия прогрессирует, она сме­няется дилатацией. Возрастают энергети­ческие затраты, КПД сердца снижается. Часть работы сердца расходуется на со­кращение дилатированного миокарда, что приводит к его истощению. Поэтому у ги­пертоников часто развивается левожелудочковая недостаточность.

Кроме того, сила миокардиального со­кращения может увеличиваться в зави­симости от пресистолического растяжения в ответ на учащение ритма. Повышение то­нуса симпатической нервной системы так­же увеличивает силу сердечных сокраще­ний. Положительное инотропное действие оказывают симпатические амины, β-адреностимуляторы, сердечные гликозиды, эуфиллин, ионы Са2+. Эти вещества уси­ливают сокращение миокарда независимо от его пресистолического наполнения, но при передозировке они могут вызвать электрическую нестабильность миокарда. Сократительная способность сердца угне­тается: гипоксией; респираторным и ме­таболическим ацидозом (рН < 7,3) и алка­лозом (рН > 7,5), некрозом, склерозом, вос­палительными и дистрофическими изме­нениями миокарда; повышением или сни­жением температуры.

Важнейшим фактором сократительной способности миокарда является состояние коронарного кровотока, которое зависит от диастолического давления в аорте, прохо­димости коронарных сосудов, напряжения газов крови, симпатоадреналовой актив­ности и регулируется только потребно­стью миокарда в кислороде. Миокард не может «брать кислород в долг», а метабо­лизм в сердце – происходить в условиях образования кислых продуктов и гипо­ксии. При прекращении кровотока мета­болизм в скелетных мышцах длится еще 1,5 -2 ч, а в миокарде прекращается че­рез 1-3 мин. Сократительная способность зависит также от внутри- и внеклеточно­го содержания ионов К+, Na+, Ca2+, Mg2+, которые обеспечивают силу мышечного сокращения и электрическую стабильность миокарда.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Источник