Хрящевая ткань имеет кровеносные сосуды

Хрящевая ткань имеет кровеносные сосуды thumbnail

Ткань как совокупность клеток и межклеточного вещества. Типы и виды тканей, их свойства. Межклеточные взаимодействия.

В организме взрослого человека различают около 200 типов клеток. Группы клеток, имеющие одинаковое или сходное строение, связанные единством происхождения и приспособленные к выполнению определенных функций, образуют ткани. Это следующий уровень иерархической структуры организма человека – переход с клеточного уровня на тканевой (смотри рисунок 1.3.2).

Любая ткань представляет собой совокупность клеток и межклеточного вещества, которого может быть много (кровь, лимфа, рыхлая соединительная ткань) или мало (покровный эпителий).

Ткань = клетки + межклеточное вещество

 
  

Клетки каждой ткани (и некоторых органов) имеют собственное название: клетки нервной ткани называются нейронами, клетки костной ткани – остеоцитами, печени – гепатоцитами и так далее.

Межклеточное вещество химически представляет собой систему, состоящую из биополимеров в высокой концентрации и молекул воды. В нем расположены структурные элементы: волокна коллагена, эластина, кровеносные и лимфатические капилляры, нервные волокна и чувствительные окончания (болевые, температурные и другие рецепторы). Это обеспечивает необходимые условия для нормальной жизнедеятельности тканей и выполнения ими своих функций.

Всего выделяют четыре типа тканей: эпителиальную, соединительную (включая кровь и лимфу), мышечную и нервную (смотри рисунок 1.5.1).

Эпителиальная ткань, или эпителий, покрывает тело, выстилает внутренние поверхности органов (желудка, кишечника, мочевого пузыря и других) и полостей (брюшной, плевральной), а также образует большинство желез. В соответствии с этим различают покровный и железистый эпителий.

Покровный эпителий (вид А на рисунке 1.5.1) образует пласты клеток (1), тесно – практически без межклеточного вещества – прилегающие друг к другу. Он бывает однослойным или многослойным. Покровный эпителий является пограничной тканью и выполняет основные функции: защита от внешних воздействий и участие в обмене веществ организма с окружающей средой – всасывание компонентов пищи и выделение продуктов обмена (экскреция). Покровный эпителий обладает гибкостью, обеспечивая подвижность внутренних органов (например, сокращения сердца, растяжение желудка, перистальтику кишечника, расширение легких и так далее).

Железистый эпителий состоит из клеток, внутри которых находятся гранулы с секретом (от латинского secretio – отделение). Эти клетки осуществляют синтез и выделение многих веществ, важных для организма. Путем секреции образуются слюна, желудочный и кишечный сок, желчь, молоко, гормоны и другие биологически активные соединения. Железистый эпителий может образовывать самостоятельные органы – железы (например, поджелудочная железа, щитовидная железа, железы внутренней секреции, или эндокринные железы, выделяющие непосредственно в кровь гормоны, выполняющие в организме регулирующие функции и другие), а может являться частью других органов (например, железы желудка).

Соединительная ткань (виды Б и В на рисунке 1.5.1) отличается большим разнообразием клеток (1) и обилием межклеточного субстрата, состоящего из волокон (2) и аморфного вещества (3). Волокнистая соединительная ткань может быть рыхлой и плотной. Рыхлая соединительная ткань (вид Б) присутствует во всех органах, она окружает кровеносные и лимфатические сосуды. Плотная соединительная ткань выполняет механическую, опорную, формообразующую и защитную функции. Кроме того, существует еще очень плотная соединительная ткань (вид В), из нее состоят сухожилия и фиброзные мембраны (твердая мозговая оболочка, надкостница и другие). Соединительная ткань не только выполняет механические функции, но и активно участвует в обмене веществ, выработке иммунных тел, процессах регенерации и заживления ран, обеспечивает адаптацию к меняющимся условиям существования.

К соединительной ткани относится и жировая ткань (вид Г на рисунке 1.5.1). В ней депонируются (откладываются) жиры, при распаде которых высвобождается большое количество энергии.

Важную роль в организме играют скелетные (хрящевая и костная) соединительные ткани. Они выполняют, главным образом, опорную, механическую и защитную функции.

Хрящевая ткань (вид Д) состоит из клеток (1) и большого количества упругого межклеточного вещества (2), она образует межпозвоночные диски, некоторые компоненты суставов, трахеи, бронхов. Хрящевая ткань не имеет кровеносных сосудов и получает необходимые вещества, поглощая их из окружающих тканей.

Костная ткань (вид Е) состоит их костных пластинок, внутри которых лежат клетки. Клетки соединены друг с другом многочисленными отростками. Костная ткань отличается твердостью и из этой ткани построены кости скелета.

Разновидностью соединительной ткани является и кровь. В нашем представлении кровь – это нечто очень важное для организма и, в то же время, сложное для понимания. Кровь (вид Ж на рисунке 1.5.1) состоит из межклеточного вещества – плазмы (1) и взвешенных в ней форменных элементов (2) – эритроцитов, лейкоцитов, тромбоцитов (на рисунке 1.5.2 даны их фотографии, полученные при помощи электронного микроскопа). Все форменные элементы развиваются из общей клетки-предшественницы. Подробнее свойства и функции крови рассматриваются в разделе 1.5.2.3.

Клетки мышечной ткани (рисунок 1.3.1 и виды З и И на рисунке 1.5.1) обладают способностью сокращаться. Так как для сокращения требуется много энергии, клетки мышечной ткани отличаются повышенным содержанием митохондрий.

Различают два основных типа мышечной ткани – гладкую (вид З на рисунке 1.5.1), которая присутствует в стенках многих, и, как правило полых, внутренних органов (сосуды, кишечник, протоки желез и другие), и поперечно-полосатую (вид И на рисунке 1.5.1) , к которой относятся сердечная и скелетная мышечные ткани. Пучки мышечной ткани образуют мышцы. Они окружены прослойками соединительной ткани и пронизаны нервами, кровеносными и лимфатическими сосудами (смотри рисунок 1.3.1).

Нервная ткань (вид К на рисунке 1.5.1) состоит из нервных клеток (нейронов) (1) и межклеточного вещества (2) с различными клеточными элементами (3), называемыми в совокупности нейроглией (от греческого glia – клей). Основным свойством нейронов (нейрон обозначен цифрой 7 на рисунке 1.3.4) является способность воспринимать раздражение, возбуждаться, вырабатывать импульс и передавать его далее по цепи. Они синтезируют и выделяют биологически активные вещества – посредники (медиаторы).

Нервная система регулирует функции всех тканей и органов, объединяет их в единый организм путем передачи информации по всем звеньям и осуществляет связь с окружающей средой.

 
  

Обобщающие сведения по тканям приведены в таблице 1.5.1.

Таблица 1.5.1. Ткани, их строение и функции
Название ткани Специфические названия клеток Межклеточное вещество Где встречается данная ткань Функции Рисунок
ЭПИТЕЛИАЛЬНЫЕ ТКАНИ
Покровный эпителий (однослойный и многослойный)Клетки (эпителиоциты) плотно прилегают друг к другу, образуя пласты. Клетки мерцательного эпителия имеют реснички, кишечного – ворсинки.Мало, не содержит кровеносных сосудов; базальная мембрана отграничивает эпителий от нижележащей соединительной ткани.Внутренние поверхности всех полых органов (желудка, кишечника, мочевого пузыря, бронхов, сосудов и т.д.), полостей (брюшной, плевральной, суставных), поверхностный слой кожи (эпидермис).Защита от внешних воздействий (эпидермис, мерцательный эпителий), всасывание компонентов пищи (желудочно-кишечный тракт), выведение продуктов обмена (мочевыделительная система); обеспечивает подвижность органов.Рис.1.5.1, вид А
Железистый
эпителий
Гландулоциты содержат секреторные гранулы с биологически активные вещества. Могут располагаться поодиночке или образовывать самостоятельные органы (железы).Межклеточное вещество ткани железы содержит кровеносные, лимфатические сосуды, нервные окончания.Железы внутренней (щитовидная, надпочечники) или внешней (слюнные, потовые) секреции. Клетки могут располагаться поодиночке в покровном эпителии (дыхательная система, желудочно-кишечный тракт).Выработка гормонов (раздел 1.5.2.9), пищеварительных ферментов (желчь, желудочный, кишечный, панкреатический сок и др.), молока, слюны, потовой и слезной жидкости, бронхиального секрета и т.д.Рис. 1.5.10 «Строение кожи» – потовые и сальные железы
Соединительные ткани
Рыхлая соединительнаяКлеточный состав характеризуется большим разнообразием: фибробласты, фиброциты, макрофаги, лимфоциты, единичные адипоциты и др.Большое количество; состоит из аморфного вещества и волокон (эластин, коллаген и др.)Присутствует во всех органах, включая мышцы, окружает кровеносные и лимфатические сосуды, нервы; основная составляющая дермы.Механические (оболочка сосуда, нерва, органа); участие в обмене веществ (трофика), выработке иммунных тел, процессах регенерации.Рис.1.5.1, вид Б
Плотная соединительнаяВолокна преобладают над аморфным веществом.Каркас внутренних органов, твердая мозговая оболочка, надкостница, сухожилия и связки.Механическая, формообразующая, опорная, защитная.Рис.1.5.1, вид В
ЖироваяПочти всю цитоплазму адипоцитов занимает жировая вакуоль.Межклеточного вещества больше, чем клеток.Подкожная жировая клетчатка, околопочечная клетчатка, сальники брюшной полости и т.д.Депонирование жиров; энергетическое обеспечение за счет расщепления жиров; механическая.Рис.1.5.1, вид Г
Хрящевая Хондроциты, хондробласты (от лат. chondron – хрящ)Отличается упругостью, в т. ч. за счет химического состава.Хрящи носа, ушей, гортани; суставные поверхности костей; передние отделы ребер; бронхи, трахея и др.Опорная, защитная, механическая. Участвует в минеральном обмене («отложение солей»). В костях содержится кальций и фосфор (почти 98% от общего количества кальция!).Рис.1.5.1, вид Д
Костная Остеобласты, остеоциты, остеокласты (от лат. os – кость)Прочность обусловлена минеральным «пропитыванием».Кости скелета; слуховые косточки в барабанной полости (молоточек, наковальня и стремечко)Рис.1.5.1, вид Е
Кровь Эритроциты (включая юные формы), лейкоциты, лимфоциты, тромбоциты и др. Плазма на 90-93% состоит из воды, 7-10% – белки, соли, глюкоза и др.Внутреннее содержимое полостей сердца и сосудов. При нарушении их целостности – кровотечения и кровоизлияния.Газообмен, участие в гуморальной регуляции, обмене веществ, терморегуляции, иммунной защите; свертывание как защитная реакция.Рис.1.5.1, вид Ж; рис.1.5.2
ЛимфаВ основном лимфоциты Плазма (лимфоплазма)Внутреннее содержимое лимфатической системыУчастие в иммунной защите, обмене веществ и др.Рис. 1.3.4 “Формы клеток”
МЫШЕЧНЫЕ ТКАНИ
Гладкомышечная тканьУпорядоченно расположенные миоциты веретенообразной формыМежклеточного вещества мало; содержит кровеносные и лимфатические сосуды, нервные волокна и окончания.В стенках полых органов (сосудов, желудка, кишечника, мочевого и желчного пузыря и др.)Перистальтика желудочно-кишечного тракта, сокращение мочевого пузыря, поддержание артериального давления за счет тонуса сосудов и т. д.Рис.1.5.1, вид З
Поперечно-полосатая Мышечные волокна могут содержать свыше 100 ядер!Скелетная мускулатура; сердечная мышечная ткань обладает автоматизмом (глава 2.6)Насосная функция сердца; произвольная мышечная активность; участие в теплорегуляции функций органов и систем.Рис.1.5.1 (вид И)
НЕРВНАЯ ТКАНЬ
Нервная Нейроны; клетки нейроглии выполняют вспомогательные функции Нейроглия богата липидами (жирами)Головной и спинной мозг, ганглии (нервные узлы), нервы (нервные пучки, сплетения и т.д.)Восприятие раздражения, выработка и проведение импульса, возбудимость; регуляция функций органов и систем.Рис.1.5.1, вид К
Читайте также:  Сдавливание сосудов шейного отдела лечение

Сохранение формы и выполнение специфических функций тканью генетически запрограммировано: дочерним клеткам посредством ДНК передается способность к выполнению специфических функций и к дифференцированию. О регуляции экспрессии генов, как основе дифференцировки, было сказано в разделе 1.3.4.

Дифференцировка – это биохимический процесс, при котором относительно однородные клетки, возникшие из общей клетки-предшественницы, превращаются во все более специализированные, специфические типы клеток, формирующие ткани или органы. Большинство дифференцированных клеток обычно сохраняет свои специфические признаки даже в новом окружении.

В 1952 году ученые из Чикагского университета осуществили разделение клеток куриного эмбриона, выращивая (инкубируя) их в растворе фермента при осторожном помешивании. Однако клетки не оставались разделенными, а начинали объединяться в новые колонии. Более того, при смешивании печеночных клеток с клетками сетчатки глаза образование клеточных агрегатов происходило так, что клетки сетчатки всегда перемещались во внутреннюю часть клеточной массы.

Взаимодействия клеток. Что же позволяет тканям не рассыпаться при малейшем внешнем воздействии? И чем обеспечивается слаженная работа клеток и выполнение ими специфических функций?

Множество наблюдений доказывает наличие способности у клеток распознавать друг друга и соответствующим образом реагировать. Взаимодействие – это не только способность передавать сигналы от одной клетки к другой, но и способность действовать совместно, то есть синхронно. На поверхности каждой клетки располагаются рецепторы (смотри раздел 1.3.2), благодаря которым каждая клетка распознает другую себе подобную. И функционируют эти “детекторные устройства” согласно правилу “ключ – замок” – этот механизм неоднократно упоминается в книге.

Давайте немного поговорим о том, как клетки взаимодействуют друг с другом. Известно два основных способа межклеточного взаимодействия: диффузионное и адгезивное. Диффузионное – это взаимодействие на основе межклеточных каналов, пор в мембранах соседних клеток, расположенных строго напротив друг друга. Адгезивное (от латинского adhaesio – прилипание, слипание) – механическое соединение клеток, длительное и стабильное удерживание их на близком расстоянии друг от друга. В главе, посвященной строению клетки, описаны различные виды межклеточных соединений (десмосомы, синапсы и другие). Это является основой для организации клеток в различные многоклеточные структуры (ткани, органы).

Каждая клетка ткани не только соединяется с соседними клетками, но и взаимодействует с межклеточным веществом, получая с его помощью питательные вещества, сигнальные молекулы (гормоны, медиаторы) и так далее. Посредством химических веществ, доставляемых ко всем тканям и органам тела, осуществляется гуморальный тип регуляции (от латинского humor – жидкость).

Читайте также:  От чего появляются кровеносные сосуды на носу

Другой путь регуляции, как уже упоминалось выше, осуществляется с помощью нервной системы. Нервные импульсы всегда достигают цели в сотни или тысячи раз быстрее доставки к органам или тканям химических веществ. Нервный и гуморальный способы регуляции функций органов и систем тесно между собой взаимосвязаны. Однако само образование большинства химических веществ и выделение их в кровь находятся под постоянным контролем нервной системы.

Клетка, ткань – это первые уровни организации живых организмов, но и на этих этапах можно выделить общие механизмы регуляции, обеспечивающие жизнедеятельность органов, систем органов и организма в целом.

Источник

В организме человека имеется множество систем органов, каждый из которых нуждается в постоянном восполнении питательных веществ и отведении продуктов метаболизма. С этой целью справляется кровь, которая является главной транспортной средой. В таком контексте закономерно задать вопрос о том, какие ткани лишены кровеносных сосудов. Как они называются и как осуществляется их питание, следует рассмотреть детальнее.

какие ткани лишены кровеносных сосудов

Питание суставных хрящей

Рассматривая вопрос о том, какие ткани лишены кровеносных сосудов, следует вспомнить два очевидных варианта ответа. Первый — это хрящевая, второй — производные эпидермиса кожи. Хрящевая гиалиновая ткань является примером соединительной, которая формирует защитную амортизирующую оболочку для суставов. В остальных хрящах тела, к примеру, в гортани, ушных раковинах, фиброзных кольцах и клапанах сердца кровеносные сосуды присутствуют. Но в хрящах, которые обеспечивают защиту суставов, их нет. Питание суставного хряща достигается за счет синовиальной жидкости и растворенных в ней веществ. Также кровеносные сосуды полностью отсутствуют в роговице глаза, питание которой обеспечивается слезной жидкостью.

какие ткани лишены кровеносных сосудов у человека

Производные эпидермиса

Все известные в биологии производные эпидермиса кожи не обеспечиваются кровью. Такие ткани лишены кровеносных сосудов, которых не имеет и сам эпидермис. Он представляет собой отмирающие клетки, которые не нужно обеспечивать питательными веществами. Волосы, в отличие от ногтей и эпидермиса, имеют признаки жизни. Их питание обеспечивает волосяная луковица.

Эпителиальная ткань

Несмотря на косвенное сообщение с системой кровоснабжения, эпителиальная ткань не имеет своих артерий и вен. Это отвечает на вопрос о том, какие ткани лишены кровеносных сосудов. Почему? Следует разобраться детальнее. Любой эпителий представляет собой совокупность клеток, расположенных на базальной мембране. Последняя представляет собой полупроницаемую структуру, через которую свободно проходят растворенные в межклеточной жидкости питательные вещества. Сами кровеносные сосуды не пронизывают базальную мембрану, которая состоит из фибриллярных белков.

какие ткани лишены кровеносных сосудов почему

Питание эпителиальной ткани достигается за счет простой диффузии и активного транспорта веществ из межклеточной жидкости. Туда они поступают через капиллярные фенестры и свободно проходят базальную мембрану, достигая эпителиальных клеток. При этом питательные вещества в большей свой массе расходуются на обеспечение нужд росткового слоя эпителия. Чем дальше от него, тем меньше питания получает эпителиальная ткань. Однако этого достаточно для ее функционирования.

На вопрос о том, какие ткани лишенны кровеносных сосудов у человека, следует отвечать, что эпителиальные, так как они связаны только с межклеточной жидкостью. Из нее эпителий получает питание, а продукты метаболизма может сбрасывать в открывающуюся полость, а не в кровь. Особая ситуация наблюдается в случае с кишечным эпителием, который помимо экскреции способен всасывать вещества из кишечника.

Итак, какие ткани лишены кровеносных сосудов? Ответ: все эпителиальные, ограниченные от сосудов базальной мембраной, но косвенно сообщающиеся с кровеносной системой. Потому в норме все питательные вещества из кишечника также попадают в межклеточное пространство и позже диффундируют в кровь.

Источник

ХРЯЩЕВАЯ ТКАНЬ [textus cartilagineus (LNH)] — разновидность соединительной ткани, выполняет опорную функцию.

Xрящевая ткань входит в состав скелета (см.) в виде хрящевых покрытий суставных поверхностей костей (суставной хрящ), хряща межпозвоночных дисков, реберных хрящей, а также формирует внескелетные опорные структуры (хрящи гортани, трахеи, бронхов, хрящевую часть евстахиевой трубы, хрящевые пластинки ушной раковины, носа и др.).

В эмбриогенезе хрящевая ткань образуется из мезенхимы (см.). Предшественниками хондроцитов являются мало-дифференцированные прохондробласты и хондробласты. Они составляют основную массу закладки хрящевой ткани в процессе гистогенеза, а в дальнейшем присутствуют в надхрящнице. На ранних этапах внутриутробного развития почти весь скелет высших позвоночных и человека является хрящевым. В этот период хрящевая ткань составляет до 45% веса (массы) тела. В процессе антенатального и раннего постнатального развития хрящевая ткань в основном замещается костной тканью (см. Кость), в результате чего у взрослого человека масса всех хрящевых образований не превышает 2% массы тела.

Все хрящевые образования за исключением суставного хряща покрыты надхрящницей, состоящей из плотной волокнистой соединительной ткани, богатой сосудами. Надхрящница обеспечивает рост и питание хряща. Кроме того, питание суставного хряща осуществляется при активном участии синовиальной жидкости (см.), находящейся в суставной полости.

Хрящевая ткань состоит из хондроцитов (хрящевых клеток) и хрящевого матрикса. Хондроциты представляют собой крупные клетки овальной или округлой формы с небольшими отростками. В зависимости от степени зрелости различают хондроциты нескольких типов. Хондроцит I типа — молодая активная клетка с высокими показателями синтеза ДНК, обладающая способностью к митозу (см.). Зрелые хондроциты II и III типа содержат в цитоплазме хорошо развитую эндоплазматиче-скую сеть и комплекс Гольджи, активно продуцируют и секретируют коллаген, гликопротеиды, протеогликаны. Для них характерен амитотический тип деления (см. Амитоз).

В зрелом хряще присутствуют также пузырчатые сильно вакуолизированные разрушающиеся клетки, окончившие свой жизненный цикл. Хондроциты находятся в полостях (лакунах) матрикса изолированно или группами, образовавшимися в результате деления одной клетки (изогенные группы). Стенки лакуны представляют собой плотный волокнистый коллагеновый каркас (так наз. перицеллюлярную корзину), который защищает клетки от механических воздействий. Внутри лакуны хондроциты окружены тонкофибриллярным богатым водой основным веществом.

В хрящевом матриксе различают волокна и основное вещество. Волокнистыми компонентами хрящевого матрикса являются коллаген II типа, эластин, белки неколлагеновой природы, гликопротеиды, протеогликаны. Макромолекулы коллагена образуют волокнистые структуры при взаимодействии с гликопротеидами и протеогликанами.

Основное вещество состоит из протеогликанов и гликопротеидов и не является аморфным. Выявлена строгая ориентация, упорядоченность в расположении макромолекул и их агрегатов; векторами ориентации являются как направление волокон коллагена, так и расположение хондроцитов.

Хрящевой ткани свойственна четкая упорядоченность во взаимном расположении клеток и матрикса. В ней принято различать территориальные и межтерриториальные участки. Территориальные участки образованы изогенными группами клеток, окруженных основным веществом и ограниченных волокнистым каркасом циркулярно расположенных коллагеновых волокон. Межтерриториальные участки представлены пучками волокон с прослойками основного вещества, ориентированных соответственно вектору силовых линий распределения нагрузки.

Читайте также:  Чистка сосудов при помощи чеснока

В зависимости от преобладания тех или иных волокнистых компонентов и степени маскировки их гомогенным основным веществом принято различать гиалиновый, волокнистый и эластический хрящи. Наиболее часто в организме встречается гиалиновый хрящ. Гиалиновыми являются суставные и реберные хрящи, а также хрящи носа, гортани (щитовидный и перстневидный), эпифизарный хрящ длинных трубчатых костей, хрящи трахеи и бронхов. Нативный гиалиновый хрящ — плотный, упругий, жемчужно-белый (стекловидный), что связано со значительным содержанием в нем гомогенного основного вещества, богатого протеогликанами, при удалении которых выявляется волокнистый коллагеновый каркас.

Для волокнистого хряща характерно наличие выраженных пучков коллагеновых волокон, а также гетерогенность клеток (наряду с хондроцитами в нем присутствуют и фибробласты). Из волокнистого хряща построены межпозвоночные диски, непрерывные соединения (синхондрозы), а также участки сухожилий и связок в месте их прикрепления.

Эластический хрящ обнаруживается в ушной раковине, надгортаннике, рожковидных и черпаловидных хрящах гортани. Он отличается большим содержанием в матриксе эластических волокон и не подвергается обызвествлению.

Своеобразной разновидностью хрящевой ткани является хондроидная ткань стромы сердца, сохраняющаяся в отдельных участках фиброзных колец у взрослых.

Регенерация хрящевой ткани осуществляется за счет малодифференцированных клеток надхрящницы, а также, по-видимому, благодаря способности хондроцитов при определенных условиях к митотическому делению.

Биохимия хрящевой ткан и химический состав хрящевой ткани в связи с бедностью клетками практически полностью определяется составом ее матрикса, или межклеточного вещества (см.). Хрящевая ткань богата водой (более 70%); сухой остаток составляет около 30%, в нем содержится примерно 50% коллагена (см.), причем специфическим для хрящевой ткани является коллаген II типа, молекулы которого состоят из трех одинаковых полипептидных альфа-цепей. Кроме того, в хрящевой ткани содержится несколько своеобразных, так называемых минорных, коллагенов. В нормальном гиалиновом хряще коллаген II типа составляет основную массу коллагена, в эластическом и фиброзном хрящах наряду с коллагеном II типа присутствует также коллаген I типа. В суставных хрящах концентрация коллагена наиболее высока в поверхностном слое.

Другим компонентом хрящевой ткани являются гликозаминогликаны (см. Мукополисахариды), суммарное содержание которых в эмбриональном периоде достигает 25% сухого остатка, затем постепенно снижается и в пожилом возрасте составляет 14%. Сульфатированные гликозаминогликаны — хондроитинсульфаты (см. Хондроитинсерные кислоты) и кератансульфат — присоединены к так наз. стержневому белку и образуют макромолекулы протеогликанов (протеинполисахаридов, хондромукопротеинов) массой 1 000 000 — 3 000 000. Особенностью хрящевой ткани является то, что протеогликаны соединяются с помощью гиалуроновой кислоты (см. Гиалуроновые кислоты) в агрегаты массой до 50 000 000 — 100 000 000. Агрегаты протеогликанов удерживают в связанном состоянии основную часть содержащихся в хрящевой ткани воды и растворов электролитов, благодаря осмотическому эффекту способствуют поддержанию коллагенового каркаса в расправленном состоянии и обеспечивают диффузию веществ в хрящевую ткань, не содержащую кровеносных сосудов.

Белки неколлагеновой природы составляют 10—20% сухого остатка, в том числе белки, связанные с гликозаминогликанами 7 — 13%, структурные гликопротеиды (см.) и липопротеиды (см.) 3 — 7%, липиды (см.) и дезоксирибонуклеиновые кислоты (см.) 1,3—1,8%. Клетки и матрикс хрящевой ткани содержат также гликоген (см.), а хрящевая ткань эпифизарных отделов костей — фосфорно-кальциевые соли.

Обмен веществ в хрящевой ткани в связи с отсутствием васкуляризации осуществляется хондроцитами (благодаря физическим свойствам и специфическому строению матрикса) и обеспечивается энергией за счет гликолиза (см.), протекающего преимущественно по анаэробному типу. Обмен веществ весьма интенсивен в период роста, особенно в эпифизарных хрящах, но затем резко замедляется, и зрелая хрящевая ткань характеризуется выраженной метаболической инертностью. Xрящевая ткань обладает способностью к обратимой деформации в условиях значительных механических нагрузок, а также слабой иммунологической реактивностью в связи со способностью гидратированного матрикса задерживать и изолировать антигены.

В процессе старения организма в хрящевой ткани уменьшается концентрация протеогликанов, а следовательно, и стелень гидратированности матрикса.

В хондроцитах накапливаются гликоген и липиды, уменьшаются размеры комплекса Гольджи (см. Гольджи комплекс) и эндоплазматической сети (см. Эндоплазматический ретикулум), а также число митохондрий (см.). Клетки вакуолизируются и гибнут, а лакуны заполняются основным веществом. В матриксе откладываются соли кальция и уменьшается содержание воды, что ведет к потере хрящом эластодинамических свойств.

В патологических условиях обмен веществ в хрящевой ткани нарушается: повышается активность протеолитических ферментов, интенсифицируются катаболические и биосинтетические процессы, происходит нарушение структуры и агрегации протеогликанов, появляются несвойственные хрящевой ткани коллагены, отмечаются отложение пигментов и избыток липидов.

Патология хрящевой ткани включает пороки развития (см. Хондрогенез несовершенный, Хондродисплазия); повреждения (см. Коленный сустав, Микротравма, Позвоночник, Радикулит, Суставы); заболевания (см. Артриты, Артрозы, Артропатия, Бехтерева болезнь, Кенига болезнь, Остеоартрит, Остеохондрит, Перихондрит, Рахит, Хондрит), опухоли (см. Хондробластома, Хондрома, Хондромиксоидная фиброма, Хондросаркома).

Библиогр.: Жаденов И. И. и Пастель В. Б. Обменные процессы в суставном хряще в норме (возрастной аспект) и при патологии (остеоартроз), Ортоп. и травмат., № 3, с. 65, 1982, библиогр.; Многотомное руководство по ортопедии и травматологии, под ред. Н. П. Новаченко, т. 1, с. 427, 606, М., 1967; Многотомное руководство по патологической анатомии, под ред. А. И. Струкова, т. 5, с. 234, 433, М., 1959; Павлова В. Н. Синовиальная среда суставов, с. 155, М., 1980; Рейнберг С. А. Рентгенодиагностика заболеваний костей и суставов, кн. 1, М., 1964; Слуцкий Л. И. Биохимия нормальной и патологически измененной соединительной ткани, Л., 1969; Тагер И. Л. Рентгенодиагностика заболеваний позвоночника, с. 101, М., 1983; Франке К. Спортивная травматология, пер. с нем., с. 74, М., 1981; Хэм А. и Кормак Д. Гистология, пер. с англ., т. 3, М., 1983; KneseK. -H. Stiitzgewebe und Skelett-system, В. u. а., 1979; Thompson R. С. a. Robinson H. J. Articular cartilage matrix metabolism, J. Bone Jt. Surg. v. 63-A, p. 327, 1981.

Источник