Идеальный газ находится в вертикальном сосуде под тяжелым поршнем

Идеальный газ находится в вертикальном сосуде под тяжелым поршнем thumbnail

5.4. Практическое применение уравнения состояния идеального газа

5.4.3. Уравнение состояния для газа, находящегося в сосуде под поршнем

Для идеального газа, находящегося в сосуде под поршнем, необходимо учитывать следующее:

  • масса газа, находящегося в сосуде под поршнем, вследствие изменения термодинамических параметров газа не изменяется:

m = const;

  • постоянным остается также количество вещества (газа):

ν = const;

  • плотность газа и концентрация его молекул (атомов) изменяются:

ρ ≠ const, n ≠ const.

Пусть изменение состояния идеального газа, находящегося в цилиндрическом сосуде под поршнем, вызвано действием на поршень внешней силы F → (рис. 5.9).

Рис. 5.9

Начальное и конечное состояния газа в сосуде под поршнем описываются следующими уравнениями:

p 1 V 1 = ν R T 1 , p 2 V 2 = ν R T 2 , }

где p 1, V 1, T 1 – давление, объем и температура газа в начальном состоянии; p 2, V 2, T 2 – давление, объем и температура газа в конечном состоянии; ν – количество вещества (газа); R – универсальная газовая постоянная, R = 8,31 Дж/(моль ⋅ К).

Условия равновесия поршня, закрывающего идеальный газ в сосуде (см. рис. 5.9), в начале процесса и в конце процесса выглядят следующим образом:

M g + F A = F 1 , M g + F A + F = F 2 , }

где M – масса поршня; g – модуль ускорения свободного падения; F A – модуль силы атмосферного давления, F A = p AS; p A – атмосферное давление; S – площадь сечения поршня; F 1 – модуль силы давления газа на поршень в начале процесса, F 1 = p 1S; p 1 – давление газа в сосуде в начальном состоянии; F – модуль силы, вызывающей сжатие газа; F 2 – модуль силы давления газа на поршень в конце процесса, F 2 = p 2S; p 2 – давление газа в сосуде в конечном состоянии.

Температура идеального газа, находящегося в сосуде под поршнем, может как изменяться, так и оставаться неизменной:

  • если процесс движения поршня происходит достаточно быстро, то температура газа изменяется –

T ≠ const;

  • если процесс происходит медленно, то температура газа остается постоянной –

T = const.

Давление идеального газа, находящегося в сосуде под поршнем, также может изменяться или оставаться неизменным:

  • если в задаче сказано, что поршень является легкоподвижным, то давление газа под поршнем – неизменно (в том случае, когда из условия задачи не следует обратное) – p = const;
  • в остальных случаях давление газа под поршнем изменяется – p ≠ const.

Масса поршня, закрывающего газ в сосуде, либо равна нулю, либо имеет отличное от нуля значение:

  • если в задаче сказано, что поршень является легким или невесомым, то масса поршня считается равной нулю –

M = 0;

  • в остальных случаях поршень обладает определенной ненулевой массой –

M ≠ const.

Пример 19. В вертикальном цилиндре под легкоподвижным поршнем сечением 250 мм2 и массой 1,80 кг находится 360 см3 газа. Атмосферное давление равно 100 кПа. На поршень поставили гири, и он сжал газ до объема 240 см3. Температура газа при его сжатии не изменяется. Определить массу гирь.

Решение. На рисунке показаны силы, действующие на поршень:

  • сила тяжести поршня M g → ;
  • сила атмосферного давления F → A ;
  • сила давления газа F → 1 , действующая со стороны газа (до его сжатия);
  • сила давления газа F → 2 , действующая со стороны газа (после его сжатия);
  • m g → – вес гирь.

Условие равновесия поршня запишем в следующем виде:

  • до сжатия газа –

F 1 = Mg + F A,

где F 1 – модуль силы давления газа, F 1 = p 1S; p 1 – давление газа до сжатия; S – площадь поршня; Mg – модуль силы тяжести поршня; M – масса поршня; F A – модуль силы атмосферного давления, F A = p AS; p A – атмосферное давление; g – модуль ускорения свободного падения;

  • после сжатия газа –

F 2 = Mg + F A + mg,

где F 2 – модуль силы давления газа, F 2 = p 2S; p 2 – давление газа после сжатия; mg – вес гирь; m – масса гирь.

Считая процесс сжатия газа изотермическим, запишем уравнение Менделеева – Клапейрона для газа под поршнем следующим образом:

  • до его сжатия –

p 1V 1 = νRT,

где V 1 – первоначальный объем газа под поршнем; ν – количество газа под поршнем; R – универсальная газовая постоянная, R = 8,31 Дж/(моль ⋅ К); T – температура газа (не изменяется в ходе процесса);

  • после его сжатия –
Читайте также:  Почему могут лопаться сосуды

p 2V 2 = νRT,

где V 2 – объем сжатого поршнем газа.

Равенство

p 1V 1 = p 2V 2

и два условия равновесия, записанные в явном виде, образуют полную систему уравнений:

p 1 S = M g + p A S , p 2 S = M g + p A S + m g , p 1 V 1 = p 2 V 2 , }

которую требуется решить относительно массы гирь m.

Для этого выразим отношение давлений p 2/p 1 из первой пары уравнений:

p 2 p 1 = M g + p A S + m g M g + p A S

и из третьего уравнения:

p 2 p 1 = V 1 V 2 ,

запишем равенство правых частей полученных отношений:

M g + p A S + m g M g + p A S = V 1 V 2 .

Отсюда следует, что искомая масса определяется формулой

m = ( M + p A S g ) ( V 1 V 2 − 1 ) .

Вычисление дает результат:

m = ( 1,80 + 100 ⋅ 10 3 ⋅ 250 ⋅ 10 − 6 10 ) ( 360 ⋅ 10 − 6 240 ⋅ 10 − 6 − 1 ) = 2,15 кг.

Указанное сжатие газа вызвано гирями массой 2,15 кг.

Пример 20. Открытый цилиндрический сосуд сечением 10 см2 плотно прикрывают пластиной массой 1,2 кг. Атмосферное давление составляет 100 кПа, а температура окружающего воздуха равна 300 К. На сколько градусов нужно нагреть воздух в сосуде, чтобы он приподнял пластину?

Решение. На рисунке показаны силы, действующие на пластину после нагревания газа:

  • сила тяжести пластины M g → ;
  • сила атмосферного давления F → A ;
  • сила давления газа F → 2 , действующая на пластину со стороны нагретого газа.

Пластина находится в состоянии неустойчивого равновесия; условие равновесия пластины выглядит следующим образом:

F 2 = Mg + F A,

где F 2 – модуль силы давления нагретого газа, F 2 = p 2S; p 2 – давление нагретого газа; S – площадь сечения сосуда; Mg – модуль силы тяжести пластины; M – масса пластины; g – модуль ускорения свободного падения; F A – модуль силы атмосферного давления, F A = p AS; p A – атмосферное давление.

Запишем уравнение Менделеева – Клапейрона следующим образом:

  • для газа в сосуде до его нагревания

p 1V = νRT 1,

где p 1 – давление газа в сосуде до нагревания (совпадает с атмосферным давлением), p 1 = p A; V – объем газа в сосуде; ν – количество вещества (газа) в сосуде; R – универсальная газовая постоянная, R = 8,31 Дж/(моль ⋅ К); T 1 – температура газа в сосуде до нагревания (совпадает с температурой окружающей среды);

  • для газа в сосуде после его нагревания

p 2V = νRT 2,

где p 2 – давление нагретого газа; T 2 – температура нагретого газа.

Два уравнения состояния газа (до и после нагревания) и условие равновесия пластины, записанные в явном виде, образуют полную систему уравнений:

p A V = ν R T 1 , p 2 V = ν R T 2 , p 2 S = M g + p A S ; }

систему необходимо решить относительно температуры T 2, до которой следует нагреть газ.

Для этого делением первой пары уравнений

p A V p 2 V = ν R T 1 ν R T 2

получим выражение для давления нагретого газа:

p 2 = p A T 2 T 1

и подставим его в третье уравнение системы:

p A T 2 S T 1 = M g + p A S .

Преобразуем полученное выражение к виду

T 2 = T 1 ( M g + p A S ) p A S = T 1 ( M g p A S + 1 ) ,

а затем найдем разность

Δ T = T 2 − T 1 = M g T 1 p A S .

Произведем вычисление:

Δ T = 1,2 ⋅ 10 ⋅ 300 100 ⋅ 10 3 ⋅ 10 ⋅ 10 − 4 = 36 К = 36 °С.

Пример 21. В цилиндрическом сосуде поршень массой 75,0 кг и площадью сечения 50,0 см2 начинает двигаться вверх. Давление газа под поршнем постоянно и равно 450 кПа, атмосферное давление составляет 100 кПа. Считая, что поршень движется без трения, определить модуль скорости поршня после прохождения им 3,75 м пути.

Решение. На рисунке показаны силы, действующие на поршень:

  • сила тяжести поршня M g → ;
  • сила атмосферного давления F → A ;
  • сила давления газа F → , действующая на поршень со стороны нагретого газа.

Под действием указанных сил, направленных вверх, поршень движется с ускорением a → :

F → + F → A + M g → = m a → ,

или в проекции на вертикальную ось –

F − F A − Mg = Ma,

где F – модуль силы давления газа под поршнем, F = pS; p – давление газа; S – площадь поршня; Mg – модуль силы тяжести поршня; M – масса поршня; g – модуль ускорения свободного падения; a – модуль ускорения поршня.

Преобразуем записанное уравнение, выразив модуль ускорения и выполнив подстановку выражений для модулей сил:

a = F − F A − M g M = ( p − p A ) S M − g .

Скорость поршня, его ускорение и пройденный путь связаны между собой соотношением

Читайте также:  Как растворимый кофе влияет на сосуды

l = v 2 2 a ,

где l – пройденный путь; v – модуль скорости поршня.

Выразим отсюда модуль скорости поршня:

v = 2 a l

и подставим в записанную формулу выражение для модуля ускорения:

v = 2 l ( ( p − p A ) S M − g ) .

Выполним расчет:

v = 2 ⋅ 3,75 ( ( 450 − 100 ) ⋅ 10 3 ⋅ 50 ⋅ 10 − 4 75,0 − 10 ) ≈ 10 м/с.

После прохождения 3,75 м пути поршень приобретет скорость, приблизительно равную 10 м/с.

Источник

12. МКТ и Термодинамика (изменение физических величин в процессах, установление соответствия)

1. Вспоминай формулы по каждой теме

2. Решай новые задачи каждый день

3. Вдумчиво разбирай решения

В вертикальном цилиндрическом сосуде под подвижным поршнем массой (M), способным скользить без трения вдоль стенок сосуда, находится идеальный газ. Газу сообщают некоторое количество теплоты. Как в этом процессе изменяются следующие физические величины: концентрация молекул и средняя кинетическая энергия хаотического движения молекул газа?

Для каждой величины определите соответствующий характер изменения:

1) увеличится

2) уменьшится

3) не изменится

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.твете могут повторяться. [begin{array}{|c|c|c|} hline text{ Концентрация молекул газа } &text{ Средняя кинетическая энергия }\ & text{ хаотического } text{ движения молекул газа} \ hline &\ hline end{array}]

Концентрация – 2

1) Концентрация молекул: [n=dfrac{N}{V},] где (N) – количество молекул газа в объеме (V).

Объем в данном процессе увеличивается, а количество молекул не меняется. Следовательно, концентрация молекул газа уменьшается.

Средняя кинетическая энергия хаотического движения молекул газа – 1

2) Среднюю кинетическую энергию можно найти по формуле: [E_{k}=dfrac{3}{2}kT,] где (k) – постоянная Больцмана, (T) – абсолютная температура газа.

Так как температура увеличивается, то (E_k) также увеличивается.

Ответ: 21

В цилиндрическом сосуде под поршнем находится газ. Поршень не закреплён и может перемещаться в сосуде без трения (см. рисунок). В сосуд закачивается ещё такое же количество газа при неизменной температуре. Как изменится в результате этого давление газа и концентрация его молекул?

Для каждой величины определите соответствующий характер изменения:

1) увеличится

2) уменьшится

3) не изменится

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться. [begin{array}{|c|c|} hline text{ Давление газа}&text{ Концентрация молекул}\ hline &\ hline end{array}]

Давление – 3

1) Так как поршень подвижный (не закреплен), то процесс будет происходить при постоянном давлении.

Концентрация – 3

2) Давление газа связано с его концентрацией: [p=nkT,] где (k) – постоянная Больцмана, (n) – концентрация молекул газа, (T) – абсолютная температура газа.

Выразим концентрацию газа: [n=dfrac{p}{kT}] Так как давление и температура постоянны, то концентрация не изменится.

Ответ: 33

В сосуде неизменного объема находится идеальный газ. Часть газа выпускали из сосуда так, что давление оставалось неизменным. Как изменились при этом температура газа, оставшегося в сосуде, и его плотность ?

Для каждой величины определите соответствующий характер изменения:

1) увеличится

2) уменьшится

3) не изменится

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться. [begin{array}{|c|c|c|} hline text{ Температура газа} &text{ Плотность газа }\ hline &\ hline end{array}]

Температура газа – 1

1)Уравнение состояния газа: [pV=nu RT,] где (p) – давление газа, (V) – объем, занимаемый газом, (nu) – количество вещестав, (R) – универасальная газовая постоянная, (T) – абсолютная температура.

Выразим температуру газа: [T=dfrac{pV}{nu R}] При уменьшении количества газа ((V=const), (p=const)) его температура увеличится.

Плотность – 2

2) Плотность газа: [rho=dfrac{m}{V},] где (m) – масса газа.

Так как объем газа не изменяется, а его масса уменьшается, то плотность газа также уменьшается.

Ответ: 12

Идеальный газ совершает два процесса. Процесс 1 – газ сначала охлаждался при постоянном давлении, потом его давление уменьшалось при постоянном объеме, затем при постоянной температуре объем газа уменьшался до первоначального значения. Процесс 2 – температура газа уменьшалась при постоянном давлении, потом давление газа увеличивалось при постоянном объеме, а затем температура газа оставалась неизменной при уменьшении давления. Какие из графиков в координатных осях р – T соответствует этим изменениям состояния газа?

Читайте также:  Освидетельствование сосудов работающих под давлением в москве

[begin{array}{|c|c|} hline text{ПРОЦЕССЫ}&text{ГРАФИКИ}\ hline 1& 1)\ &2)\ hline 2&3)\ &4)\ hline end{array}]

Распишем, как должны выглядеть процессы в координатах p-T. Процесс 1 – газ сначала охлаждался при постоянном давлении – горизонтальная прямая , потом его давление уменьшалось при постоянном объеме – прямая, проходящая через начало координат, затем при постоянной температуре объем газа уменьшался до первоначального значения – вертикальная прямая. Нам подходит вариант 2, а вариант 3 не подходит так как газ по условию вернулся в первоначальное положение. Процесс 2 – температура газа уменьшалась при постоянном давлении – горизонтальная прямая, потом давление газа увеличивалось при постоянном объеме – прямая, проходящая через начало координат, а затем температура газа оставалась неизменной при уменьшении давления – вертикальная прямая. Нам подходит вариант 3.

Ответ: 23

Идеальный газ совершает два процесса. Процесс 1 – газ сначала нагревался при постоянном давлении, потом его давление уменьшалось при постоянном объеме, затем при постоянной температуре давление газа увеличилось до первоначального значения. Процесс 2 – газ расширяется таким образом, что давление обратно пропорционально температуре, затем давление газа увеличивалось при постоянной температуре, а в конце температура газа уменьшалось при уменьшении объема газа. Какие из графиков в координатных осях р – Т соответствует этим изменениям состояния газа?

[begin{array}{|c|c|} hline text{ПРОЦЕССЫ}&text{ГРАФИКИ}\ hline 1& 1)\ &2)\ hline 2&3)\ &4)\ hline end{array}]

Распишем, как должны выглядеть процессы в координатах p-T. Процесс 1 – газ сначала нагревался при постоянном давлении – горизонтальная прямая, потом его давление уменьшалось при постоянном объеме – прямая, направленная под углом к осям, затем при постоянной температуре давление газа увеличилось до первоначального значения – вертикальня прямая.График – 1. Процесс 2 – газ расширяется таким образом, что давление обратно пропорционально температуре – гипербола, затем давление газа увеличивалось при постоянной температуре – вертикальная прямая, а в конце температура газа уменьшалось при уменьшении объема газа – горизонтальная прямая. График – 4.

Ответ: 14

В цилиндрическом сосуде под закрепленным поршнем находится газ. Поршень немного выдвигают из сосуда и снова закрепляют. Как при этом изменяется концентрация молекул газа (n) и давление газа (p), если средняя квадратичная скорость движения молекул (overline{v_0}) остается неизменной?

Для каждой величины определите соответствующий характер изменения:

1) увеличилась;

2) уменьшилась;

3) не изменилась.

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

[begin{array}{|c|c|} hline text{Концентрация}&text{Давление}\ text{молекул газа}&text{газа}\ hline & \ hline end{array}]

Запишем основное уравнение МКТ: [~~~~~~~~~~~~~~~p=dfrac{1}{3}nm_0overline{v_0^2},~~~~~~~(1)] где (m_0) – масса одной молекулы газа. [n=dfrac{N}{V},] где (V) – объем газа.

Значит (nsimdfrac{1}{V}).

По условию объем увеличивается, т.к. поршень выдвигают из сосуда. Значит, концентрация молекул газа уменьшается.

Из (1) получаем, что (psim n), значит давление газа также уменьшается.

Ответ: 22

В сосуде под закрепленным поршнем находится газ. Как изменятся его плотность (rho) и давление (p), если среднюю квадратичную скорость молекул газа (overline{v_0}) увеличить?

Для каждой величины определите соответствующий характер изменения:

1) увеличилась;

2) уменьшилась;

3) не изменилась.

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

[begin{array}{|c|c|} hline text{Плотность}&text{Давление}\ text{газа}&text{газа}\ hline & \ hline end{array}]

Запишем основное уравнение МКТ: [~~~~~~~~~~~~~~~p=dfrac{1}{3}rhooverline{v_0^2}~~~~~~~(1)] Известно, что (rho=dfrac{m}{V}). В нашем случае (m) и (V) – не изменяющиеся величины, значит (rho=const).

Из (1) получаем, что (psim overline{v_0^2}). Значит, если (overline{v_0}) увеличивается, то и (p) увеличивается.

Ответ: 31

Математика: Наперегонки со временем + самый сложный №19

Источник