Идеальный газ в сосуде с поршнем

Идеальный газ в сосуде с поршнем thumbnail

5.4. Практическое применение уравнения состояния идеального газа

5.4.3. Уравнение состояния для газа, находящегося в сосуде под поршнем

Для идеального газа, находящегося в сосуде под поршнем, необходимо учитывать следующее:

  • масса газа, находящегося в сосуде под поршнем, вследствие изменения термодинамических параметров газа не изменяется:

m = const;

  • постоянным остается также количество вещества (газа):

ν = const;

  • плотность газа и концентрация его молекул (атомов) изменяются:

ρ ≠ const, n ≠ const.

Пусть изменение состояния идеального газа, находящегося в цилиндрическом сосуде под поршнем, вызвано действием на поршень внешней силы F→ (рис. 5.9).

Идеальный газ в сосуде с поршнем

Рис. 5.9

Начальное и конечное состояния газа в сосуде под поршнем описываются следующими уравнениями:

p1V1=νRT1,p2V2=νRT2,}

где p
1, V
1, T
1 — давление, объем и температура газа в начальном состоянии; p
2, V
2, T
2 — давление, объем и температура газа в конечном состоянии; ν — количество вещества (газа); R — универсальная газовая постоянная, R = 8,31 Дж/(моль ⋅ К).

Условия равновесия поршня, закрывающего идеальный газ в сосуде (см. рис. 5.9), в начале процесса и в конце процесса выглядят следующим образом:

Mg+FA=F1,Mg+FA+F=F2,}

где M — масса поршня; g — модуль ускорения свободного падения; F
A — модуль силы атмосферного давления, F
A = p
AS; p
A — атмосферное давление; S — площадь сечения поршня; F
1 — модуль силы давления газа на поршень в начале процесса, F
1 = p
1S; p
1 — давление газа в сосуде в начальном состоянии; F — модуль силы, вызывающей сжатие газа; F
2 — модуль силы давления газа на поршень в конце процесса, F
2 = p
2S; p
2 — давление газа в сосуде в конечном состоянии.

Температура идеального газа, находящегося в сосуде под поршнем, может как изменяться, так и оставаться неизменной:

  • если процесс движения поршня происходит достаточно быстро, то температура газа изменяется —

T ≠ const;

  • если процесс происходит медленно, то температура газа остается постоянной –

T = const.

Давление идеального газа, находящегося в сосуде под поршнем, также может изменяться или оставаться неизменным:

  • если в задаче сказано, что поршень является легкоподвижным, то давление газа под поршнем — неизменно (в том случае, когда из условия задачи не следует обратное) — p = const;
  • в остальных случаях давление газа под поршнем изменяется — p ≠ const.

Масса поршня, закрывающего газ в сосуде, либо равна нулю, либо имеет отличное от нуля значение:

  • если в задаче сказано, что поршень является легким или невесомым, то масса поршня считается равной нулю —

M = 0;

  • в остальных случаях поршень обладает определенной ненулевой массой —

M ≠ const.

Пример 19. В вертикальном цилиндре под легкоподвижным поршнем сечением 250 мм2 и массой 1,80 кг находится 360 см3 газа. Атмосферное давление равно 100 кПа. На поршень поставили гири, и он сжал газ до объема 240 см3. Температура газа при его сжатии не изменяется. Определить массу гирь.

Решение. На рисунке показаны силы, действующие на поршень:

  • сила тяжести поршня Mg→;
  • сила атмосферного давления F→A;
  • сила давления газа F→1, действующая со стороны газа (до его сжатия);
  • сила давления газа F→2, действующая со стороны газа (после его сжатия);
  • mg→ — вес гирь.

Идеальный газ в сосуде с поршнем

Условие равновесия поршня запишем в следующем виде:

  • до сжатия газа —

F
1 = Mg + F
A,

где F
1 — модуль силы давления газа, F
1 = p
1S; p
1 — давление газа до сжатия; S — площадь поршня; Mg — модуль силы тяжести поршня; M — масса поршня; F
A — модуль силы атмосферного давления, F
A = p
AS; p
A — атмосферное давление; g — модуль ускорения свободного падения;

  • после сжатия газа —

F
2 = Mg + F
A
+ mg,

где F
2 — модуль силы давления газа, F
2 = p
2S; p
2 — давление газа после сжатия; mg — вес гирь; m — масса гирь.

Считая процесс сжатия газа изотермическим, запишем уравнение Менделеева — Клапейрона для газа под поршнем следующим образом:

  • до его сжатия —

p
1V
1 = νRT,

где V
1 — первоначальный объем газа под поршнем; ν — количество газа под поршнем; R — универсальная газовая постоянная, R = 8,31 Дж/(моль ⋅ К); T — температура газа (не изменяется в ходе процесса);

  • после его сжатия —

p
2V
2 = νRT,

где V
2 — объем сжатого поршнем газа.

Равенство

p
1V
1 = p
2V
2

и два условия равновесия, записанные в явном виде, образуют полную систему уравнений:

p1S=Mg+pAS,p2S=Mg+pAS+mg,p1V1=p2V2,}

которую требуется решить относительно массы гирь m.

Для этого выразим отношение давлений p
2/p
1 из первой пары уравнений:

p2p1=Mg+pAS+mgMg+pAS

и из третьего уравнения:

p2p1=V1V2,

запишем равенство правых частей полученных отношений:

Mg+pAS+mgMg+pAS=V1V2.

Отсюда следует, что искомая масса определяется формулой

m=(M+pASg)(V1V2−1).

Вычисление дает результат:

m=(1,80+100⋅103⋅250⋅10−610)(360⋅10−6240⋅10−6−1)=2,15 кг.

Указанное сжатие газа вызвано гирями массой 2,15 кг.

Пример 20. Открытый цилиндрический сосуд сечением 10 см2 плотно прикрывают пластиной массой 1,2 кг. Атмосферное давление составляет 100 кПа, а температура окружающего воздуха равна 300 К. На сколько градусов нужно нагреть воздух в сосуде, чтобы он приподнял пластину?

Читайте также:  В каких случаях делают стентирование сосудов

Решение. На рисунке показаны силы, действующие на пластину после нагревания газа:

Идеальный газ в сосуде с поршнем

  • сила тяжести пластины Mg→;
  • сила атмосферного давления F→A;
  • сила давления газа F→2, действующая на пластину со стороны нагретого газа.

Пластина находится в состоянии неустойчивого равновесия; условие равновесия пластины выглядит следующим образом:

F
2 = Mg + F
A,

где F
2 — модуль силы давления нагретого газа, F
2 = p
2S; p
2 — давление нагретого газа; S — площадь сечения сосуда; Mg — модуль силы тяжести пластины; M — масса пластины; g — модуль ускорения свободного падения; F
A — модуль силы атмосферного давления, F
A = p
AS; p
A — атмосферное давление.

Запишем уравнение Менделеева — Клапейрона следующим образом:

  • для газа в сосуде до его нагревания

p
1V = νRT
1,

где p
1 — давление газа в сосуде до нагревания (совпадает с атмосферным давлением), p
1 = p
A; V — объем газа в сосуде; ν — количество вещества (газа) в сосуде; R — универсальная газовая постоянная, R = 8,31 Дж/(моль ⋅ К); T
1 — температура газа в сосуде до нагревания (совпадает с температурой окружающей среды);

  • для газа в сосуде после его нагревания

p
2V = νRT
2,

где p
2 — давление нагретого газа; T
2 — температура нагретого газа.

Два уравнения состояния газа (до и после нагревания) и условие равновесия пластины, записанные в явном виде, образуют полную систему уравнений:

pAV=νRT1,p2V=νRT2,p2S=Mg+pAS;}

систему необходимо решить относительно температуры T
2, до которой следует нагреть газ.

Для этого делением первой пары уравнений

pAVp2V=νRT1νRT2

получим выражение для давления нагретого газа:

p2=pAT2T1

и подставим его в третье уравнение системы:

pAT2ST1=Mg+pAS.

Преобразуем полученное выражение к виду

T2=T1(Mg+pAS)pAS=T1(MgpAS+1),

а затем найдем разность

ΔT=T2−T1=MgT1pAS.

Произведем вычисление:

ΔT=1,2⋅10⋅300100⋅103⋅10⋅10−4=36 К=36 °С.

Пример 21. В цилиндрическом сосуде поршень массой 75,0 кг и площадью сечения 50,0 см2 начинает двигаться вверх. Давление газа под поршнем постоянно и равно 450 кПа, атмосферное давление составляет 100 кПа. Считая, что поршень движется без трения, определить модуль скорости поршня после прохождения им 3,75 м пути.

Решение. На рисунке показаны силы, действующие на поршень:

Идеальный газ в сосуде с поршнем

  • сила тяжести поршня Mg→;
  • сила атмосферного давления F→A;
  • сила давления газа F→, действующая на поршень со стороны нагретого газа.

Под действием указанных сил, направленных вверх, поршень движется с ускорением a→:

F→+F→A+Mg→=ma→,

или в проекции на вертикальную ось —

F − F
A − Mg = Ma,

где F — модуль силы давления газа под поршнем, F = pS; p — давление газа; S — площадь поршня; Mg — модуль силы тяжести поршня; M — масса поршня; g — модуль ускорения свободного падения; a — модуль ускорения поршня.

Преобразуем записанное уравнение, выразив модуль ускорения и выполнив подстановку выражений для модулей сил:

a=F−FA−MgM=(p−pA)SM−g.

Скорость поршня, его ускорение и пройденный путь связаны между собой соотношением

l=v22a,

где l — пройденный путь; v — модуль скорости поршня.

Выразим отсюда модуль скорости поршня:

v=2al

и подставим в записанную формулу выражение для модуля ускорения:

v=2l((p−pA)SM−g).

Выполним расчет:

v=2⋅3,75((450−100)⋅103⋅50⋅10−475,0−10)≈10 м/с.

После прохождения 3,75 м пути поршень приобретет скорость, приблизительно равную 10 м/с.

Источник

8748. Объем сосуда с идеальным газом уменьшили вдвое, выпустив половину газа и поддерживая температуру газа в сосуде постоянной. Как изменятся в результате этого давление газа в сосуде и его внутренняя энергия?
Для каждой величины определите соответствующий характер изменения:

1) не изменится
2) уменьшится
3) увеличится

Задание ЕГЭ по физике

Добавить в избранное

P.S. Нашли ошибку в задании? Пожалуйста, сообщите о вашей находке 😉
При обращении указывайте id этого вопроса – 8748.

8780. В цилиндрическом сосуде под поршнем находится газ. Поршень не закреплен и может перемещаться в сосуде без трения (см. рисунок). В сосуд закачивается еще такое же количество газа при неизменной температуре. Как изменится в результате этого давление газа и концентрация его молекул?

Задание ЕГЭ по физике

Для каждой величины определите соответствующий характер изменения:

1) не изменится
2) уменьшится
3) увеличится

Задание ЕГЭ по физике

Добавить в избранное

P.S. Нашли ошибку в задании? Пожалуйста, сообщите о вашей находке 😉
При обращении указывайте id этого вопроса – 8780.

8812. Аргон помещают в открытый сверху сосуд под легкий подвижный поршень и начинают охлаждать, Давление воздуха, окружающего сосуд, равно 105 Па. Начальный объем газа 9 л, начальная температура 450 К. Масса газа в сосуде остается неизменной. Трением между поршнем и стенками сосуда пренебречь.
Установите соответствие между физическими величинами, характеризующими аргон, и формулами, выражающими их зависимость от абсолютной температуры Т газа в условиях данной задачи.
К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ

А) внутренняя энергия газа ( U(T) )
Б) объем газа ( V(T) )

Читайте также:  Что есть чтобы сосуды сыроедение

ФОРМУЛЫ

1) ( dT, d = ) 3 Дж/К
2) ( frac{b}{T}, b = ) 4050 м3 ⋅ K
3) ( at, a = ) 2 ⋅ 10-5 м3/K
4) ( cT, c = ) 20 Дж/К

Добавить в избранное

P.S. Нашли ошибку в задании? Пожалуйста, сообщите о вашей находке 😉
При обращении указывайте id этого вопроса – 8812.

8844. На рисунке показан процесс изменения состояния одного моля одноатомного идеального газа (U – внутренняя энергия газа; p – его давление). Как изменятся в ходе этого процесса объем и теплоемкость газа? Для каждой величины определите соответствующий характер изменения:

Задание ЕГЭ по физике

1) не изменится
2) уменьшится
3) увеличится

Задание ЕГЭ по физике

Добавить в избранное

P.S. Нашли ошибку в задании? Пожалуйста, сообщите о вашей находке 😉
При обращении указывайте id этого вопроса – 8844.

8876. В цилиндре под поршнем находится твердое вещество. Цилиндр поместили в раскаленную печь. На рисунке показан график изменения температуры T вещества по мере поглощения им количества теплоты Q. Какие участки графика соответствуют нагреванию вещества в газообразном состоянии и кипению жидкости?

Задание ЕГЭ по физике

ТЕПЛОВЫЕ ПРОЦЕССЫ

А) кипение жидкости
Б) нагревание вещества в газообразном состоянии

УЧАСТКИ ГРАФИКА

1) 1
2) 2
3) 3
4) 4

Добавить в избранное

P.S. Нашли ошибку в задании? Пожалуйста, сообщите о вашей находке 😉
При обращении указывайте id этого вопроса – 8876.

8908. При исследовании изопроцессов использовался закрытый сосуд переменного объема, заполненный аргоном и соединенный с манометром. Объем сосуда медленно уменьшают, сохраняя температуру аргона в нем неизменной. Как изменятся при этом внутренняя энергия аргона в сосуде и концентрация его молекул?

Для каждой величины определите соответствующий характер изменения:

1) не изменится
2) уменьшится
3) увеличится

Задание ЕГЭ по физике

Добавить в избранное

P.S. Нашли ошибку в задании? Пожалуйста, сообщите о вашей находке 😉
При обращении указывайте id этого вопроса – 8908.

8940. В ходе адиабатного процесса внутренняя энергия 1 моль разреженного гелия увеличивается. Как изменяются при этом температура гелия и его давление?
Для каждой величины определите соответствующий характер изменения:

1) не изменится
2) уменьшится
3) увеличится

Задание ЕГЭ по физике

Добавить в избранное

P.S. Нашли ошибку в задании? Пожалуйста, сообщите о вашей находке 😉
При обращении указывайте id этого вопроса – 8940.

8972. Установите соответствие между процессами в идеальном газе и значениями физических величин, характеризующих эти процессы (( Delta U ) – изменение внутренней энергии; ( A ) работа газа, ( nu ) – количество газа).
К каждой позиции первого столбца подберите соответствующую позицию второго и запишите в таблицу выбранные цифры под соответствующими буквами.

ПРОЦЕССЫ

А) изотермическое сжатие при ( nu = const )
Б) изобарное расширение при ( nu = const )

ЗНАЧЕНИЯ ФИЗИЧЕСКИХ ВЕЛИЧИН

1) ( Delta U > 0,~A = 0 )
2) ( Delta U > 0,~A > 0 )
3) ( Delta U = 0,~A > 0 )
4) ( Delta U = 0,~A

Добавить в избранное

P.S. Нашли ошибку в задании? Пожалуйста, сообщите о вашей находке 😉
При обращении указывайте id этого вопроса – 8972.

9004. Установите соответствие между процессами в идеальном газе и значениями физических величин, характеризующих эти процессы (( Delta U ) – изменение внутренней энергии; ( A ) – работа газа, ( upsilon ) – количество газа).
К каждой позиции первого столбца подберите соответствующую позицию второго и запишите в таблицу выбранные цифры под соответствующими буквами.

ПРОЦЕССЫ

А) адиабатическое сжатие при ( nu = const )
Б) изохорное нагревание при ( nu = const )

ЗНАЧЕНИЯ ФИЗИЧЕСКИХ ВЕЛИЧИН

1) ( Delta U > 0,~A = 0 )
2) ( Delta U > 0,~A > 0 )
3) ( Delta U = 0,~A > 0 )
4) ( Delta U > 0,~A

Добавить в избранное

P.S. Нашли ошибку в задании? Пожалуйста, сообщите о вашей находке 😉
При обращении указывайте id этого вопроса – 9004.

9036. Температуру холодильника теплового двигателя, работающего по циклу Карно, увеличили, оставив температуру нагревателя прежней. Количество теплоты, полученное газом от нагревателя за цикл, не изменилось. Как изменились при этом КПД теплового двигателя и количество теплоты, отданное газом за цикл холодильнику?
Для каждой величины определите соответствующий характер изменения:

1) не изменилась
2) уменьшилась
3) увеличилась

Задание ЕГЭ по физике

Добавить в избранное

P.S. Нашли ошибку в задании? Пожалуйста, сообщите о вашей находке 😉
При обращении указывайте id этого вопроса – 9036.

Для вас приятно генерировать тесты, создавайте их почаще

Источник

Изобарный процесс

Заполните пропуск в тексте.

Повторите определение изобарного процесса.

Процесс изменения состояния термодинамической системы данной массы при называют изобарным.

Читайте также:  Кровеносные сосуды на глазах если лопнул что делать

постоянном давлении

постоянной температуре

постоянном объёме

Газовые законы

Заполните таблицу.

Повторите газовые законы.

Закон Изопроцесс Формула

$frac{V}{T}=const$

Изотермический

Шарля

Бойля–Мариотта

$frac{p}{T}=const$

Изохорный

Изобарный

Гей-Люссака

$pV=const$

Физические величины

Установите соответствие между физическими величинами и их единицами измерения.

Вспомните основные величины и единицы их измерения.

Уравнение состояния идеального газа

Соедините попарно физическую величину с её значением так, чтобы получились верные ответы.

1. В баллоне объёмом 2 $м^3$ находится 2 кг молекулярного кислорода при давлении $10^5$ Па. Какова температура кислорода (ответ в К)?

2. В баллоне ёмкостью 10 л находится углекислый газ при температуре 17 $^circ$ С под давлением 107 Па. Какой объём займёт этот газ при нормальных условиях (ответ в $м^3$)?

3. В закрытом сосуде объёмом 10 литров находится 2 моль азота. Температура газа равна 27 $^circ$ С. Чему равно давление газа (ответ в кПа)?

Повторите уравнение состояния идеального газа.

Изопроцессы

Соедините попарно фигуры так, чтобы каждому изопроцессу соответствовала формула.

Вспомните определения изопроцессов.

Основные величины МКТ

Решите кроссворд.

Вспомните основные величины МКТ и единицы их измерения.

Физические термины

Выделите мышкой 5 слов, которые относятся к теме урока.

1. Состояние вещества, в котором расстояние между атомами и молекулами в среднем во много раз больше размеров самих молекул.

2. Мельчайшая частица вещества.

3. Итальянский учёный XIX века, в честь которого названа постоянная, показывающая, какое количество атомов или молекул содержится в 1 моле вещества.

4. Синоним слова «корпускула».

5. Единица измерения количества вещества в СИ.

Повторите авторов законов и определения.

Газовые законы

Заполните пропуски в тексте, выбрав правильные варианты ответа из выпадающего меню.

Повторите газовые законы.

В сосуде под поршнем находится газ. При его изотермическом расширении давление газа на стенки сосуда

, температура

, объём газа

.

Измерительные приборы

Установите соответствие между физическими величинами и приборами для их измерения. 

Повторите определения давления, температуры.

Экспериментальные исследования

Выберите верные утверждения, которые соответствуют результатам проведённых экспериментальных исследований.

В сосуде неизменного объема при комнатной температуре находилась смесь водорода и гелия, по 1 моль каждого. Половину содержимого сосуда выпустили, а затем добавили в сосуд 1 моль водорода. Газы считаются идеальными, а их температура постоянной.

Вспомните закон Гей-Люссака, закон Дальтона, определение парциального давления.

Давление смеси газов в сосуде не изменилось

В начале опыта концентрации газов были одинаковые

Парциальное давление водорода уменьшилось

Концентрация гелия увеличилась

В начале опыта массы газов были одинаковые

Изотермический процесс

На рисунке приведены графики двух изотермических процессов, проводимых с одной и той же массой газа. На основании графиков выберите верные утверждения о процессах, происходящих с газом.

Идеальный газ в сосуде с поршнем

Вспомните график изотермического процесса, на графике посмотрите направление стрелки.

Никаких выводов по графику сделать нельзя

Процесс 2 идёт при более высокой температуре

Процесс 1 идёт при более высокой температуре

Оба процесса идут при одной и той же температуре

В процессе 1 объём увеличивается

Газовые законы

Выделите мышкой 5 слов, которые относятся к теме урока.

1. Один из учёных, открывших изотермический процесс.

2. Единица измерения абсолютной температуры.

3. Параметр состояния газа постоянный в изохорном процессе.

4. Процессы, происходящие при постоянном значении одного из макропараметров состояния

5. Параметр состояния газа постоянный в изотермическом процессе.

Вспомните газовые законы.

Изопроцессы

Выделите мышкой 4 слова, которые относятся к теме урока.

1. Макроскопический параметр постоянный во всех изопроцессах.

2. Величины, характеризующие состояние газа.

3. График изопроцесса с постоянным объёмом.

4. График изопроцесса с постоянным давлением.

Вспомните изопроцессы.

Газовые законы

Выделите мышкой 4 слова, которые относятся к теме урока.

1. То, из чего состоит молекула.

2. Масса моля вещества.

3. Упрощённая модель реального газа.

4. Учёный, открывший взаимосвязь между давлением и температурой при постоянном объёме.

Повторите конспекты.

Источник