Интима и эндотелий сосудов

Интима и эндотелий сосудов thumbnail
Оглавление темы “Сосудистый тонус. Эндотелий сосудов. Кровоснабжение головного мозга. Кровоснабжение сердца ( миокарда ).”:

1. Регионарное кровообращение. Сосудистый тонус. Эффект Остроумова-Бейлисса.

2. Ауторегуляция кровотока. Теории механизма ауторегуляции кровотока. Миогенная, нейрогенная теория. Теория тканевого давления. Обменная теория.

3. Базальный тонус сосудов. Растяжимость сосудов. Трансмуральное давление. Мобилизация крови из вен.

4. Депонирование крови. Причина головокружения ( обморока ) при вставании. Рабочая ( или функциональная ) гиперемия.

5. Реактивная ( постокклюзионная ) гиперемия. Ауторегуляторная реакция. Функциональная гиперемия органов.

6. Нервная регуляция тонуса сосудов. Парасимпатические воздействия на сосуды. Влияние симпатической нервной системы на сосуды.

7. Влияние простогландинов на сосуды. Воздействие кининов на стенку сосуда.

8. Эндотелий сосудов. Роль ( значение ) эндотелия в регуляции просвета сосудов.

9. Кровоснабжение головного мозга. Интенсивность кровотока в сосудах мозга. Миогенная, гуморальная регуляция мозгового кровотока.

10. Кровоснабжение сердца ( миокарда ). Интенсивность кровотока в сосудах сердца ( миокарда ). Миогенная, гуморальная регуляция коронарного кровотока.

Эндотелий сосудов. Роль ( значение ) эндотелия в регуляции просвета сосудов.

Эндотелий сосудов обладает способностью синтезировать и выделять факторы, вызывающие расслабление или сокращение гладких мышц сосудов в ответ на разного рода стимулы. Общая масса эндотелиоцитов, монослойно выстилающих кровеносные сосуды изнутри (интима), у человека приближается к 500 г. Общая масса, высокая секреторная способность эндотелиальных клеток позволяют рассматривать эту «ткань» как своеобразный эндокринный орган (железу). Распределенный по сосудистой системе эндотелий, очевидно, предназначен для вынесения своей функции непосредственно к гладкомышечным образованиям сосудов. Период полужизни выделяемого эндотелиоцитами инкрета очень мал – 6-25 с (вследствие быстрого перехода его в нитраты и нитриты), но он способен сокращать и расслаблять гладкие мышцы сосудов, не оказывая влияния на эффектор-ные образования других органов (кишечник, бронхи, матка).

Выделяемые эндотелием сосудов расслабляющие факторы (ЭРФ) – нестабильные соединения, одним из которых является оксид азота (N0). В эндотелиальных клетках сосудов N0 образуется из а-аргинина при участии фермента – синтетазы окиси азота.

Эндотелий сосудов. Роль ( значение ) эндотелия в регуляции просвета сосудов.

NO рассматривается как некоторый общий путь передачи сигнала от эндотелия к гладким мышцам сосудов. Выделение из эндотелия N0 ингибируется гемоглобином и потенцируется ферментом – дисмутазой.

Участие эндотелия в регуляции тонуса сосудов общепризнанно. Для всех магистральных артерий показана чувствительность эндотелиоцитов к скорости кровотока, выражающаяся в выделении ими расслабляющего гладкие мышцы сосудов фактора, приводящего к увеличению просвета этих артерий. Таким образом, артерии непрерывно регулируют свой просвет соответственно скорости течения по ним крови, что обеспечивает стабилизацию давления в артериях в физиологическом диапазоне изменений величин кровотока. Этот феномен имеет большое значение в условиях развития рабочей гиперемии органов и тканей, когда происходит значительное увеличение кровотока, а также при повышении вязкости крови, вызывающей рост сопротивления кровотоку в сосудистой сети. Повреждение механочувствительности сосудистых эндотелиоцитов может быть одним из этиологических (патогенетических) факторов развития облитерирующего эндоартериита и гипертонической болезни.

– Также рекомендуем “Кровоснабжение головного мозга. Интенсивность кровотока в сосудах мозга. Миогенная, гуморальная регуляция мозгового кровотока.”

Источник

Эндотелий (внутренний слой, покрывающий стенки сосудов) чрезвычайно важен для регулирования гладкой мускулатуры, которая в свою очередь регулирует тонус сосудов – из чего и складывается механизм саморегулирования давления. В отрыве от функций эндотелия гладкая мускулатура не в состоянии регулировать тонус сосудов, поскольку на режим напряженности или релаксации влияет оксид азота (NO), выделяемый эндотелием. Этот внутрисосудистый слой имеет в своем составе эндотелиальную синтазу оксида азота (eNOS). Данный протеин синтезирует оксид азота. Сама по себе гладкая мускулатура не располагает протеином eNOS, следовательно, не может производить NO, столь необходимый для расширения сосудов и понижения давления при его опасных скачках.

Отсюда можно сделать два вывода:

  • При недостатке оксида азота саморегулирование давления нарушено;
  • При нарушениях функций эндотелия (так называемая эндотелиальная дисфункция) снижается выработка оксида азота, что ведет к нарушениям саморегулирования давления.

Эндотелиальная дисфункция – «ключевое» заболевание, являющееся причиной самых разных сердечно-сосудистых расстройств: гипертонии, коронарной недостаточности, инфаркта миокарда и т.д.

Диагностика эндотелиальной дисфункции сосудов

Своевременное выявление данного недуга позволяет предотвратить и «последующие» болезни, вплоть до инфаркта. Очень важно вычислить сосудистый участок, на котором эндотелий дисфункционален. Состояние эндотелия на данном участке (например, в коронарных сосудах или в артерии) может быть проверено ангиограммой или ультразвуковыми исследованиями. В обоих случаях пациенту назначают прием сосудорасширяющих препаратов (как правило, ацетилхолин).

Еще один метод диагностики: измерение «времени передачи пульса» (Pulswellenlaufzeit, также pulsetransit, или PTT) – важного кардиоваскулярного показателя, отражающего, в частности, степень эластичности сосудов. Если выявляется недостаточная эластичность, это может указывать среди прочего и на эндотелиальную дисфункцию. Обычно время передачи пульса устанавливается на участке от сердца до указательного пальца. Начало пульса (сокращение сердечной мышцы) регистрируется на электрокардиограмме. При этом учитываются ЭКГ-максимумы, так называемые R-зубцы. А момент «добегания волны пульса» до указательного пальца фиксируется пульсоксиметром, который, вообще говоря, применяется для определения насыщения крови кислородом («прищепка», прицепленная к указательному пальцу пациента, являющаяся спектрофотометрическим датчиком).

Враги эндотелия

Говоря о вредных влияниях на состояние эндотелия, следует подчеркнуть: любые факторы риска, рассматриваемые в связи с сердечно-сосудистыми заболеваниями, в той же мере негативны и по отношению к внутренней оболочке сосудов.

Итак, основные враги эндотелия:

  • курение;
  • лишний вес;
  • сахарный диабет;
  • гиперлипидемия (аномально высокий уровень липидов и липопротеинов в крови);
  • солидный возраст.

Общим для всех этих факторов риска является то обстоятельство, что они вызывают оксидативный стресс. Химические продукты оксидативного стресса – пероксиды и свободные радикалы кислорода. Они отравляют клетки и нарушают строение эндотелия. Это становится причиной недостаточного синтеза оксида азота. К тому же свободные радикалы кислорода легко реагируют с NO, который тоже является свободным радикалом, из-за чего пропадают биологические свойства оксида азота. Связанный кислородом NO уже не в состоянии оказывать расслабляющее действие на гладкую мускулатуру и на сосуды. При повышении давления сосуды утрачивают способность «саморасширяться» – это ведет к опасным сердечно-сосудистым заболеваниям.

Семь квадратных метров эндотелия

Плоские клетки эндотелия, выстроенные в один слой, образуют внутренний покров всех кровеносных и лимфатических сосудов, а также полостей сердца.

Но это не просто покров-защита. Клетки эндотелия состоят в теснейшем взаимодействии с клетками крови и ее компонентами, выполняя самые разные функции. Общая площадь эндотелия взрослого человека составляет примерно семь квадратных метров. Это самый большой внутренний орган.

Читайте также:  Что значит оторвался тромб в сосуде

По старым представлениям, эндотелий служил естественным барьером между организмом и токсинами, инфекцией и прочими вредоносными образованиями, проникающими в кровь.

Эта теория справедлива и поныне, однако функции эндотелия значительно шире. Он участвует в метаболизме, способствуя усвоению тканями питательных веществ, гормонов, кислорода.

Выделяя оксид азота (NO), эндотелий участвует в регулировании давления внутри сосудов.

Под воздействием чужеродных микробиологических объектов он возводит на своей поверхности «баррикады» из особого вида лейкоцитов (нейтрофильных гранулоцитов, моноцитов, макрофагов, Т-лейкоцитов), которые концентрируют на «опасном направлении» средства иммунной защиты – причем подавляют антигены не только внутри кровеносных сосудов, но и за их пределами, выделяясь через эндотелий и наружные сосудистые стенки к местам инфекционного поражения тканей (этот процесс называется трансмиграция лейкоцитов, или диапедес).

Пролиферация (распространение) клеток эндотелия ведет к образованию новых кровеносных сосудов.

Наконец, эндотелий регулирует свертываемость крови: в зависимости от колебаний баланса в составе крови подавляет или, наоборот, активирует процессы, заставляющие кровь загустеть или сделаться жиже.

Основные анти- и прокоагуляционные функции эндотелия осуществляются через синтез и выделение различных гормонов и прочих медиаторов.

Антикоагуляционные свойства эндотелия сосудов

Антикоагулянты – это вещества, понижающие свертываемость крови. Выделяемые эндотелием, они, так сказать, действуют в трех направлениях:

Первое: подавление тромбоцитов. Тромбоциты – особые клеточные фрагменты, лишенные ядер. Они постоянно присутствуют в крови и реагируют на повреждение сосудов, из-за которых возникают кровотечения. В этом случае они формируют клеточный агрегат (первичную пробку), который закрывает место повреждения сосуда. Однако поверхность тромбоцитов может быть использована для ускорения неконтролируемой реакции плазменного свертывания, без повреждения сосудов. Таким образом, тромбоциты, способствуя остановке кровотечений, могут способствовать и развитию тромбоза.

Выделяемые эндотелием вещества, которые подавляют активность тромбоцитов:

  • простациклин (простагландин I2);
  • оксид азота;
  • эктонуклеатидаза.

Второе: понижение свертываемости. Этому способствуют следующие продукты эндотелия:

  • протеин С;
  • гепарансульфат, запускающий процесс синтеза антитромбина в крови;
  • ингибитор фактора свертываемости крови (замедляет действие белково-фосфолипидного комплекса, который называется фактор свертывания крови III).

Третье: поддержка фибринолиза. Процесс разложения тромбов в крови называется фибринолизом. Этот процесс предотвращает закупорку сосудов фибрином, неглобулярным белком, принимающим в плазме форму волокон, которые образуют «скелет» формирующегося тромба. Таким образом фибринолиз – это лишение тромбов их «скелета», в результате чего прекращается и сам процесс образования тромбов. Вещества, способствующие фибринолизу:

  • тканевые активаторы плазминогена (t-PA, u-PA);
  • аннексины.

Прокоагуляционные свойства эндотелия сосудов

Прокоагулянты – это вещества, вырабатываемые эндотелием, наоборот, повышающие свертываемость крови. Одни из них активируют тромбоциты. Это:

  • «фактор фон Виллебранда»;
  • тромбокиназа;
  • фактор свертывания крови VIIa.

Другие продукты эндотелия сосудов (например, плазминоген-активатор-ингибитор PAI-1) замедляют фибринолиз.

Источник

Для более полного понимания сути проблемы и патогенеза развития заболеваний крупных сосудов необходимо подробно знать анатомо-физиологические аспекты строения сосудистой стенки. Она состоит из трех оболочек: интимы (внутренняя оболочка), медии (средняя оболочка) и адвентиции (наружная оболочка). Каждая из них несет определенную функцию и, как следствие, имеет свою, строго индивидуальную, структуру.

Адвентиция обеспечивает сосудистую стенку (СС) кислородом и питательными веществами, поэтому она пронизана множеством мелких сосудов, которые ее питают (vasa vasorum) и благодаря которым удаляются избыточные продукты естественного метаболизма и элементы, участвующие в патологических процессах в СС. С другой стороны, по vasa vasorum разносятся патологические микроорганизмы, которые могут поражать СС и благодаря которым происходит накопление клеточных элементов, борющихся с инфекцией и воспалительным процессом как таковым (макрофаги, нейтрофилы, лимфоциты). Таким образом осуществляется реализация механизма «снаружи внутрь», по которому обеспечивается защита СС от какого-либо воспалительного процесса [21].

Следующей оболочкой является медия. Ее основная функция каркасная, поэтому она достигает 80% общей толщины СС. Именно на эту оболочку приходится наибольшее гемодинамическое напряжение, и, чтобы его компенсировать, она содержит большое количество эластина и коллагена, а также гладкомышечные клетки (ГМК). Густое скопление эластических волокон находится на границе между интимой и медией, а также медией и адвентицией, тем самым образуя внутреннюю и наружную пластинки, пространство между ними пронизано большим количеством ГМК, перекрещивающихся с эластином и коллагеном. Стоит отметить, что наиболее толстый слой эластических волокон находится в восходящей аорте и ее дуге (артерии эластического типа) и постепенно уменьшается к бифуркации (артерии мышечно-эластического типа); в противоположность этому происходит увеличение числа ГМК. Такие изменения необходимы для поддержания достаточно высоких цифр артериального давления (АД) и, соответственно, проталкивания крови в нижележащие отделы организма.

Внутренний слой СС – интима. Она содержит большое количество эндотелия, с помощью которого происходит питание внутренней пластинки медии посредством диффузии. Кроме того, интима играет значительную роль при некоторых заболеваниях, например при атеросклерозе. Именно в ней происходит накопление липидов, которые способствуют прогрессированию этого заболевания.

После ознакомления с общим планом строения СС необходимо перейти к морфологическим элементам каждого слоя, так как именно изменения в этих элементах и приводят к развитию патологического процесса.

Для питания крупных артерий, на которые приходится основная гемодинамическая нагрузка, необходимы структуры, содержащие множество капилляров, благодаря которым происходил бы забор крови из кровеносного русла для питания сосудистой стенки. Таким элементом является эндотелий. Он практически полностью состоит из капилляров, которые обеспечивают макромолекулярный транспорт и диффузию крови к базальной мембране и медии.

Долгое время считалось, что эндотелий является гомогенным, инертным, пассивным контейнером для крови, но исследования показали его взаимодействие с клетками иммунной системы и молекулами, которые обеспечивают поддержание АД, проницаемости сосудистой стенки и гомеостаза. Это привело к более полному пониманию активной роли эндотелия в здоровой СС и при ее патологии [3, 12, 13, 17].

Одна из главных функций эндотелия – это препятствие образованию тромбов внутри стенки сосудов, что достигается за счет возможности неповрежденного эндотелия стимулировать фибринолиз и тем самым препятствовать агрегации тромбоцитов на своей поверхности. Это действие реализуется образованием на поверхности эндотелия специфических антикоагулятных факторов: тромбомодулина, протеина С и др., а также активизации синтеза секреции простагландина I2 (PGI2) и тканевого активатора плазминогена [5]. Необходимо отметить, что при протезировании или стентировании сосудов синтетическими/металлическими протезами на их внутренней поверхности постепенно образуется (нарастает) неоинтима, которая начинает выполнять те же защитные функции, что и естественная интима сосудов.

Следующим свойством эндотелия является его избирательная проницаемость для жидкостей и питательных веществ к средней оболочке артерии. При этом происходят секреция, фильтрация и абсорбция воды, ионов и солей [17, 37]. Прерывается эндотелий только в костном мозге, селезенке и синусах печени. Через слой эндотелия непрерывно могут проходить элементы с диаметром от 1 до 4 нм, для более крупных элементов необходимы специальные транспорты, которые способствуют преодолению этого барьера [43].

Читайте также:  Как проводится узи сосудов

На данный момент представлены данные, что эндотелий помогает поддерживать тонус сосудов, тем самым регулируя кровяное АД. Этот механизм реализуется за счет секреции различных молекул, в том числе простагландинов и ацетилхолина [14, 17]. Эндотелийзависимая релаксация осуществляется за счет действия на него NO и PGI2, в то время как сокращение – за счет ангиотензина-2 (Анг-2) и эндотелина-1 (Эн-1).

Высвобождение NO происходит под действием ацетилхолина, вазопрессина, а в некоторых случаях в связи с сильным стрессом [16, 18]. Количество механизмов, влияющих на высвобождение NO, а тем самым расслабляющих гладкую мускулатуру сосудов велико, однако это компенсируется хорошей лабильностью реакции на такое высвобождение. Постоянное высвобождение NO стимулирует пролиферацию и миграцию ГМК [25], что приводит к ремоделированию сосудистой стенки в этой области.

Действуя на циклооксигеназу, PGI2 осуществляет вазодилатацию за счет активации метаболического пути арахидоновой кислоты в эндотелии. Кроме того, такой же процесс происходит и в тромбоцитах, что препятствует их агрегации, но не влияет на адгезию [9, 28, 29, 35].

Эндотелин-1 – фактор, приводящий к сокращению сосудистой стенки за счет активации препроэндотелина-1, который первоначально находится внутри эндотелиальной клетки. Активация осуществляется через метаболический путь трансформирующего фактора роста β (TGF-β) при гипоксии или сильном стрессе [19, 24, 27, 30, 47]. Синтез, высвобождение и непосредственное влияние Эн-1 приводят к расслаблению ГМК в медии сосудов. Однако в некоторых случаях он может действовать и как констриктор ГМК, это зависит от совокупности внешних действующих факторов.

Эндотелий выступает как иммуномодулирующий орган. Кроме того, он обладает барьерной функцией. На него постоянно воздействуют бактериальные агенты, которые могут попасть в кровь, клетки иммунного воспаления (моноциты, макрофаги, нейтрофилы, лимфоциты), а также различные патогенетические молекулы (цитокины, хемокины и др). Эндотелий интенсивно поддерживает противовоспалительную среду, однако постоянное присутствие агрессора может нарушить его защитную функцию, вследствие чего начинает развиваться патологический процесс. Для своей защиты эндотелий способен вырабатывать различные цитокины, использовать растворимые в крови факторы, а также активировать гены цитопротективных агентов, таких как оксидредуктаза [43].

Важным является тот факт, что 1 раз активировав эти механизмы, эндотелий может быстро стимулировать противовоспалительные процессы, что определяется высоким числом цитокиновых и хемокиновых рецепторов, которые регулируют взаимодействие между лейкоцитами и эндотелиальными клетками [32]. В ответ на активацию и избыточный синтез провоспалительных элементов активируется механизм «down-регуляции», в результате которого происходит ограничение воспалительного ответа и, в конце концов, реакция прекращается, тем самым предотвращая неадекватную патологическую активацию в эндотелии.

Эндотелий играет важную роль в регуляции васкулогенеза, ангиогенеза и ремоделировании СС [40]. У здорового взрослого человека пролиферация в СС очень низкая, что создает стабильность сосудистого русла, посредником которой выступает эндотелий. Длительное влияние различных внешних факторов может нарушить стабильность эндотелия, это приводит к развитию гиперплазии интимы. Кроме того, через поврежденный эндотелий начинают проникать липиды с последующей инфильтрацией моноцитами и Т-лимфоцитами [38]. Вследствие этого процесса развивается атеросклероз.

2. Гладкомышечные клетки сосудов

Гладкомышечные клетки сосудов участвуют в поддержании АД, в адаптационных механизмах СС и в процессах ее восстановления. Преимущественно ГМК находятся в медии сосудов, при этом чем дистальнее находится артерия, тем большее количество ГМК содержится в ее стенке.

Интересно, что длительное воздействие клеточных элементов воспаления или активного кислорода на ГМК приводит к экспрессии различных факторов роста, а соответственно к пролиферации клеток. Из-за этого может происходить постоянный миогенез. Продукция и активация факторов роста осуществляются за счет эндотелиальных клеток, поэтому сдерживание гемодинамического напряжения происходит во взаимодействии двух структур [10, 11, 33]. Современная теория гласит, что ГМК являются клетками широкого спектра действия, которые несут функциональную нагрузку. Пластичность ГМК осуществляется за счет изменения структуры в ответ на агрессивные факторы окружающей среды.

Процесс образования СС в эмбриогенезе – васкулогенез – первоначально требует дифференцировки ангиобластов внутри эндотелиальной клетки, которые существуют уже внутри примитивной сосудистой сети. У взрослых людей процессы образования сосудистой сети состоят из следующих этапов: васкулогенез, ангиогенез и артериогенез. Ангиогенез – развитие новых сосудов из уже имеющихся, когда происходит разрастание ветвей сосудов при участии эндотелия. Артериогенез осуществляется за счет коллатерального расширения сосудистой сети, в результате происходит активизация мелких артериол внутри крупных сосудов. Все эти процессы сейчас широко изучаются [8]. G. Yancopoulos и соавт. [46] указывают, что специфические признаки каждого сосуда появляются за счет разной дифференцировки ГМК.

На биологию ГМК влияет их фенотипически высокая изменчивость. Они состоят из множества нитей актина и миозина, что способствует их сокращению; на более глубоком уровне основой являются эндоплазматический ретикулум и комплекс Гольджи [6]. Фенотипическую изменчивость используют для объяснения гетерогенности и множества функций ГМК. На изменчивость ГМК в процессе их развития влияет множество факторов, начиная от повреждения экстрацеллюлярного матрикса (ЭМ), до прямого воздействия на них эндотелия.

Основные процессы, которые происходят в системе ГМК, имеют характерные особенности и подразделяются на несколько категорий: 1) восстановление и расширение; 2) дифференцировка; 3) ремоделирование. В результате происходит разделение нового сосуда на артерии и вены.

Наиболее интересны на практике процессы ремоделирования СС за счет изменения ГМК, так как они включаются не только в ангиогенезе, но и при патологических состояниях. Эти процессы начинают работать при активации факторов роста и, что важно, в ответ на физическое или химическое воздействие. Подобное влияние может оказывать, например, эндотелиальный сосудистый фактор роста. Из примеров физического воздействия можно описать увеличение тока крови и давления в сосуде. В этот момент происходит выброс NO для компенсации перерастяжения мышц. Ангиогенез также происходит под действием хронической гипоксии, за счет активации гипоксия-индуцированного фактора, что помогает регулировать данный процесс [7]. Таким образом, основным процессом, которым отвечают ГМК на любое внешнее раздражение, является ремоделирование СС.

Регуляция основной функции ГМК (поддержания тонуса сосудов) происходит под действием различных факторов (Анг-2, тромбин, протромбин и др.). Повышение локальной экспрессии факторов и увеличение количества рецепторов к ним приводит к динамической регуляции тонуса сосуда. Новые молекулярные технологии помогают определять факторы, которые приводят к расширению просвета сосуда [2]. Одним из отличительных признаков ГМК является их пластичность в ответ на расширение. Существует три основных вида ответа ГМК на избыточное расширение СС: 1) гиперплазия; 2) гипертрофия; 3) апоптоз. Большинство заболеваний сосудов связано с одним из них.

Читайте также:  Сосуд в глазу у собак

При избыточном давлении на сосудистую стенку (например, при артериальной гипертензии) происходит гипертрофия ГМК. Ингибиторы ангиотензин-превращающего фермента действуют профилактически на гипертрофию ГМК за счет снижения АД [36], а антагонист рецепторов ангиотензина (лозартан) уменьшает гипертрофию ГМК, несмотря на повышенное АД [41]. При этом действие β-адреноблокаторов оказывается незначительным. Отсюда можно сделать вывод, что гипертрофия ГМК сосудов происходит под действием ренин-ангиотензиновой системы, что делает препараты, воздействующие на нее, предпочтительными при патологии, сопровождающейся гипертрофией ГМК.

Гиперплазия ГМК наблюдается при атеросклерозе, повышенном АД и рестенозах сосудов. В большинстве случаев она сопровождается атрофией медии (апоптоз или некроз), связанной с потерей ГМК. Гиперплазия – очень медленный процесс, который возникает при хронических заболеваниях сосудов. В опытах на крысах была показана возможность увеличения ГМК аорты примерно на 0,01% в сутки [44], а максимальная скорость на некоторых моделях достигала 1% в сутки. Такие процессы наблюдаются при повышении АД и атеросклерозе, однако не все ГМК выдерживают такой бурной пролиферации, у некоторых из них включатся механизмы «естественной» гибели [1].

Апоптоз возникает при воздействии какого-либо воспалительного фактора и играет ключевую роль в создании механизмов восстановления ткани и ремоделирования. Объем ГМК, подвергающихся апоптозу, зависит от степени развития атеросклеротической бляшки или диспластических нарушений, а также от локализации процесса [23], и, кроме того, играет важную роль в формировании аневризмы аорты [20]. Известно, что ГМК могут уничтожаться макрофагами, которые в больших количествах скапливаются в средней оболочке артерий при таких поражениях СС. При активном апоптозе в качестве компенсации происходит нарастание синтеза коллагена, который производится ГМК. Это приводит к дестабилизации атеросклеротической бляшки, а также нарушает упругость и усиливает ломкость СС, что является причиной расширения сосуда. Мертвые клетки не могут обезвреживать тромбин, и это приводит к нарастанию тромботических масс вокруг образовавшейся атеромы.

Необходимо отметить, что ГМК сосудов отвечают на большинство изменений особым образом, что делает их важными элементами в понимании процессов, происходящих при патологии сосудов.

3. Элементы соединительной ткани сосудов

Соединительная ткань – важное звено целостности СС. Она поддерживает каркасность, обеспечивает необходимые упругие свойства и представляет собой механическую защиту СС. Основными молекулами, входящими в ее состав, являются коллаген и эластин.

Исходя из соотношения содержания различных молекул в соединительной ткани, видны свойства каждого типа сосудов. Например, мелкие сосуды очень жесткие, это обусловливается высоким содержанием коллагена в них. Их основная функция – поддержание тока крови внутри тканей, и эта регуляция достигается посредством сокращения ГМК. В крупных сосудах, таких как аорта, имеются две пластинки, содержащие в себе обильное количество эластина, кроме того, в средней оболочке находится относительно малое количество эластических волокон, но множество ГМК, которые располагаются перпендикулярно оси сосуда [26]. В ЭМ содержится много эластина и коллагена, которые плотно прилегают друг к другу. В СС, в основном, содержится коллаген 1-го, 3-го и 5-го типов, которые в больших количествах синтезируются ГМК.

Молекула коллагена является основным элементом коллагеновой ткани, она представляет собой палочковидные образования, которые образуют полипептидные α- цепи. Коллаген 1-го и 3-го типов обладает примерно одинаковой структурой. Даже синтез этих двух типов коллагена осуществляется одинаковыми клетками, которые синтезируют один или другой тип коллагена в зависимости от типа ткани, возраста и множества других параметров [4, 45]. В норме метаболизм коллагена идет чрезвычайно медленно, а при быстром нарастании этой ткани происходит резкое ремоделирование СС. В обычном состоянии коллаген является очень устойчивой молекулой, но при повреждениях его молекулы хорошо распадаются под широким спектром протеаз. Из специфических протеаз, которые могут воздействовать на коллаген, можно назвать матриксные металлопротеиназы [34]. Они разрушают целостность молекулы коллагена, в результате чего она начинает самопроизвольно распадаться в течение некоторого времени.

Если коллаген обеспечивает жесткостные свойства СС, то для ее упругости существуют эластические волокна.

Большое количество эластических волокон содержит ЭМ. Они обеспечивают хорошие упругие свойства на протяжении всех сосудов. Крупные артерии состоят примерно на 50% из эластических волокон. Нерастворимые эластические волокна – это комплексная структура, состоящая из эластина и не эластических молекул. Такой «сшитый» эластин развивается в позднем натальном и постнатальном периодах и обычно остается в таком виде в течение жизни человека. Ядро зрелого эластического волокна состоит из элементов «сшитого» эластина и покрыто фибриллином со связанными с ним молекулами [22, 31]. Фибриллин – это гомологичный белок, который имеет три изоформы: фибриллин-1, фибриллин-2 и фибриллин-3.

Эластин является основным белком ЭМ и содержится в больших количествах в эластических волокнах. Эластическое волокно возникает, как считается, после осаждения тропоэластина на уже сформировавшиеся микрофибриллы. Эластин – нерастворимый белок, поэтому его тяжело изучать. Хотя уже известно, что он имеет схожую структуру с коллагеном, но содержание гидроксипролина и гидроксилизина в нем намного меньше. Период полувыведения эластина оценивается примерно в 50 лет, и его синтез в теле человека может вообще не происходить [39]. Выведение с мочой продуктов распада эластина составляет примерно 1% в год от всего имеющегося эластина. Его разрушение происходит под действием тех же металлопротеиназ, которые могут активироваться в стенке сосуда [15]. Для их активации необходима травма сосуда, которая может быть как механическая, так и происходить за счет действия воспалительных факторов.

Таким образом, очевидно, что структурные компоненты ЭМ несут на себе основную нагрузку в стенке сосуда. Его разрушение ведет к развитию слабости стенки сосуда, при этом образуются компенсаторные процессы в виде гипертрофии и гиперплазии ГМК, которые в свою очередь не могут полностью компенсировать нагрузку, из-за чего начинается их апоптоз. Как результат взаимодействия этих процессов, развиваются атеросклероз, стенозы и аневризмы сосудов.

Источник