Испарение жидкости в закрытом сосуде

Испарение жидкости в закрытом сосуде thumbnail

Èñïàðåíèå.

Èñïàðåíèå — ýòî ïåðåõîä âåùåñòâà èç æèäêîãî ñîñòîÿíèÿ â ãàçîîáðàçíîå (ïàð), ïðîèñõîäÿùåå ñî ñâîáîäíîé ïîâåðõíîñòè æèäêîñòè.

Ñóáëèìàöèþ, èëè âîçãîíêó, ò.å. ïåðåõîä âåùåñòâà èç òâåðäîãî ñîñòîÿíèÿ â ãàçîîáðàçíîå, òàê­æå íàçûâàþò èñïàðåíèåì.

Èç ïîâñåäíåâíûõ íàáëþäåíèé èçâåñòíî, ÷òî êîëè÷åñòâî ëþáîé æèäêîñòè (áåíçèíà, ýôèðà, âîäû), íàõîäÿùåéñÿ â îòêðûòîì ñîñóäå, ïîñòåïåííî óìåíüøàåòñÿ. Æèäêîñòü íå èñ÷åçàåò áåññëåäíî — îíà ïðåâðàùàåòñÿ â ïàð. Èñïàðåíèå — ýòî îäèí èç âèäîâ ïàðîîáðàçîâàíèÿ. Äðóãîé âèä — ýòî êèïåíèå.

Ìåõàíèçì èñïàðåíèÿ.

Êàê ïðîèñõîäèò èñïàðåíèå? Ìîëåêóëû ëþáîé æèäêîñòè íàõîäÿòñÿ â íå­ïðåðûâíîì è áåñïîðÿäî÷íîì äâèæåíèè, ïðè÷åì, ÷åì âûøå òåìïåðàòóðà æèäêîñòè, òåì áîëüøå êèíåòè÷åñêàÿ ýíåðãèÿ ìîëåêóë. Ñðåäíåå çíà÷åíèå êèíåòè÷åñêîé ýíåðãèè èìååò îïðåäåëåííóþ âåëè÷èíó. Íî ó êàæäîé ìîëåêóëû êèíåòè÷åñêàÿ ýíåðãèÿ ìîæåò áûòü êàê áîëüøå, òàê è ìåíüøå ñðåäíåé. Åñëè âáëèçè ïîâåðõíîñòè îêàæåòñÿ ìîëåêóëà ñ êèíåòè÷åñêîé ýíåðãèåé, äîñòàòî÷íîé äëÿ ïðåîäîëåíèÿ ñèë ìåæìîëåêóëÿðíîãî ïðèòÿæåíèÿ, îíà âûëåòèò èç æèäêîñòè. Òî æå ñàìîå ïîâ­òîðèòñÿ ñ äðóãîé áûñòðîé ìîëåêóëîé, ñî âòîðîé, òðåòüåé è ò. ä. Âûëåòàÿ íàðóæó, ýòè ìîëåêóëû îáðàçóþò íàä æèäêîñòüþ ïàð. Îáðàçîâàíèå ýòîãî ïàðà è åñòü èñïàðåíèå.

Ïîãëîùåíèå ýíåðãèè ïðè èñïàðåíèè.

Ïîñêîëüêó ïðè èñïàðåíèè èç æèäêîñòè âûëåòàþò áîëåå áûñòðûå ìîëåêóëû, ñðåäíÿÿ êèíåòè÷åñêàÿ ýíåðãèÿ îñòàâøèõñÿ â æèäêîñòè ìîëåêóë ñòàíîâèòñÿ âñå ìåíüøå è ìåíüøå. Ýòî çíà÷èò, ÷òî âíóòðåííÿÿ ýíåðãèÿ èñïàðÿþùåéñÿ æèäêîñòè óìåíüøàåò­ñÿ. Ïîýòîìó åñëè íåò ïðèòîêà ýíåðãèè ê æèäêîñòè èçâíå, òåìïåðàòóðà èñïàðÿþùåéñÿ æèäêîñòè ïîíèæàåòñÿ, æèäêîñòü îõëàæäàåòñÿ (èìåííî ïîýòîìó, â ÷àñòíîñòè, ÷åëîâåêó â ìîêðîé îäåæäå õîëîäíåå, ÷åì â ñóõîé, îñîáåííî ïðè âåòðå).

Îäíàêî ïðè èñïàðåíèè âîäû, íàëèòîé â ñòàêàí, ìû íå çàìå÷àåì ïîíèæåíèÿ åå òåìïåðàòóðû. ×åì ýòî îáúÿñíèòü? Äåëî â òîì, ÷òî èñïàðåíèå â äàííîì ñëó÷àå ïðîèñõîäèò ìåäëåííî, è òåìïåðà­òóðà âîäû ïîääåðæèâàåòñÿ ïîñòîÿííîé çà ñ÷åò òåïëîîáìåíà ñ îêðóæàþùèì âîçäóõîì, èç êîòîðîãî â æèäêîñòü ïîñòóïàåò íåîáõîäèìîå êîëè÷åñòâî òåïëîòû. Çíà÷èò, ÷òîáû èñïàðåíèå æèäêîñòè ïðî èñõîäèëî áåç èçìåíåíèÿ åå òåìïåðàòóðû, æèäêîñòè íåîáõîäèìî ñîîáùàòü ýíåðãèþ.

Êîëè÷åñòâî òåïëîòû, êîòîðîå íåîáõîäèìî ñîîáùèòü æèäêîñòè äëÿ îáðàçîâàíèÿ åäèíèöû ìàññû ïàðà ïðè ïîñòîÿííîé òåìïåðàòóðå, íàçûâàåòñÿ òåïëîòîé ïàðîîáðàçîâàíèÿ.

Ñêîðîñòü èñïàðåíèÿ æèäêîñòè.

 îòëè÷èå îò êèïåíèÿ, èñïàðåíèå ïðîèñõîäèò ïðè ëþáîé òåìïå­ðàòóðå, îäíàêî ñ ïîâûøåíèåì òåìïåðàòóðû æèäêîñòè ñêîðîñòü èñïàðåíèÿ âîçðàñòàåò. ×åì âûøå òåìïåðàòóðà æèäêîñòè, òåì áîëüøå áûñòðî äâèæóùèõñÿ ìîëåêóë èìååò äîñòàòî÷íóþ êèíåòè÷åñ­êóþ ýíåðãèþ, ÷òîáû ïðåîäîëåòü ñèëû ïðèòÿæåíèÿ ñîñåäíèõ ÷àñòèö è âûëåòåòü çà ïðåäåëû æèä­êîñòè, è òåì áûñòðåå èäåò èñïàðåíèå.

Ñêîðîñòü èñïàðåíèÿ çàâèñèò îò ðîäà æèäêîñòè. Áûñòðî èñïàðÿþòñÿ ëåòó÷èå æèäêîñòè, ó êîòî­ðûõ ñèëû ìåæìîëåêóëÿðíîãî âçàèìîäåéñòâèÿ ìàëû (íàïðèìåð, ýôèð, ñïèðò, áåíçèí). Åñëè êàï­íóòü òàêîé æèäêîñòüþ íà ðóêó, ìû îùóòèì õîëîä. Èñïàðÿÿñü ñ ïîâåðõíîñòè ðóêè, òàêàÿ æèä­êîñòü áóäåò îõëàæäàòüñÿ è îòáèðàòü ó íåå íåêîòîðîå êîëè÷åñòâî òåïëîòû.

Ñêîðîñòü èñïàðåíèÿ æèäêîñòè çàâèñèò îò ïëîùàäè åå ñâîáîäíîé ïîâåðõíîñòè. Ýòî îáúÿñíÿåòñÿ òåì, ÷òî æèäêîñòü èñïàðÿåòñÿ ñ ïîâåðõíîñòè, è ÷åì áîëüøå ïëîùàäü ñâîáîäíîé ïîâåðõíîñòè æèä­êîñòè, òåì áîëüøåå êîëè÷åñòâî ìîëåêóë îäíîâðåìåííî âûëåòàåò â âîçäóõ.

 îòêðûòîì ñîñóäå ìàññà æèäêîñòè âñëåäñòâèå èñïàðåíèÿ ïîñòåïåííî óìåíüøàåòñÿ. Ýòî ñâÿ­çàíî ñ òåì, ÷òî áîëüøèíñòâî ìîëåêóë ïàðà ðàññåèâàåòñÿ â âîçäóõå, íå âîçâðàùàÿñü â æèäêîñòü (â îòëè÷èå îò òîãî, ÷òî ïðîèñõîäèò â çàêðûòîì ñîñóäå). Íî íåáîëüøàÿ ÷àñòü èõ âîçâðàùàåòñÿ â æèäêîñòü, çàìåäëÿÿ òåì ñàìûì èñïàðåíèå. Ïîýòîìó ïðè âåòðå, êîòîðûé óíîñèò ìîëåêóëû ïàðà, èñïàðåíèå æèäêîñòè ïðîèñõîäèò áûñòðåå.

Ïðèìåíåíèå èñïàðåíèÿ â òåõíèêå.

Èñïàðåíèå èãðàåò âàæíóþ ðîëü â ýíåðãåòèêå, õîëîäèëüíîé òåõíèêå, â ïðîöåññàõ ñóøêè, èñïàðèòåëüíîãî îõëàæäåíèÿ. Íàïðèìåð, â êîñìè÷åñêîé òåõíèêå áûñòðîèñïàðÿþùèìèñÿ âåùåñòâàìè ïîêðûâàþò ñïóñêàåìûå àïïàðàòû. Ïðè ïðîõîæäåíèè ÷åðåç àòìîñôåðó ïëàíåòû êîðïóñ àïïàðàòà â ðåçóëüòàòå òðåíèÿ íàãðåâàåòñÿ, è ïîêðûâàþùåå åãî âåùåñòâî íà÷è­íàåò èñïàðÿòüñÿ. Èñïàðÿÿñü, îíî îõëàæäàåò êîñìè÷åñêèé àïïàðàò, ñïàñàÿ åãî òåì ñàìûì îò ïåðå­ãðåâà.

Êîíäåíñàöèÿ.

Êîíäåíñàöèÿ (îò ëàò. condensatio — óïëîòíåíèå, ñãóùåíèå) — ïåðåõîä âåùåñòâà èç ãàçîîáðàç­íîãî ñîñòîÿíèÿ (ïàðà) â æèäêîå èëè òâåðäîå ñîñòîÿíèå.

Èçâåñòíî, ÷òî ïðè íàëè÷èè âåòðà æèäêîñòü èñïàðÿåòñÿ áûñòðåå. Ïî÷åìó? Äåëî â òîì, ÷òî îä­íîâðåìåííî ñ èñïàðåíèåì ñ ïîâåðõíîñòè æèäêîñòè èäåò è êîíäåíñàöèÿ. Êîíäåíñàöèÿ ïðîèñõîäèò èç-çà òîãî, ÷òî ÷àñòü ìîëåêóë ïàðà, áåñïîðÿäî÷íî ïåðåìåùàÿñü íàä æèäêîñòüþ, ñíîâà âîçâðàùà­åòñÿ â íåå. Âåòåð æå âûíîñèò âûëåòåâøèå èç æèäêîñòè ìîëåêóëû è íå äàåò èì âîçâðàùàòüñÿ.

Êîíäåíñàöèÿ ìîæåò ïðîèñõîäèòü è òîãäà, êîãäà ïàð íå ñîïðèêàñàåòñÿ ñ æèäêîñòüþ. Èìåííî êîíäåíñàöèåé îáúÿñíÿåòñÿ, íàïðèìåð, îáðàçîâàíèå îáëàêîâ: ìîëåêóëû âîäÿíîãî ïàðà, ïîäíèìà­þùèåñÿ íàä çåìëåé, â áîëåå õîëîäíûõ ñëîÿõ àòìîñôåðû ãðóïïèðóþòñÿ â ìåëü÷àéøèå êàïåëüêè âîäû, ñêîïëåíèÿ êîòîðûõ è ïðåäñòàâëÿþò ñîáîé îáëàêà. Ñëåäñòâèåì êîíäåíñàöèè âîäÿíîãî ïàðà â àòìîñôåðå ÿâëÿþòñÿ òàêæå äîæäü è ðîñà.

Ïðè èñïàðåíèè æèäêîñòü îõëàæäàåòñÿ è, ñòàâ áîëåå õîëîäíîé, ÷åì îêðóæàþùàÿ ñðåäà, íà÷è­íàåò ïîãëîùàòü åå ýíåðãèþ. Ïðè êîíäåíñàöèè æå, íàîáîðîò, ïðîèñõîäèò âûäåëåíèå íåêîòîðîãî êîëè÷åñòâà òåïëîòû â îêðóæàþùóþ ñðåäó, è åå òåìïåðàòóðà íåñêîëüêî ïîâûøàåòñÿ. Êîëè÷åñòâî òåïëîòû, âûäåëÿþùååñÿ ïðè êîíäåíñàöèè åäèíèöû ìàññû, ðàâíî òåïëîòå èñïàðåíèÿ.

Источник

Испарение жидкости в закрытом сосуде

1. Явление превращения вещества из жидкого состояния в газообразное называется парообразованием. Парообразование может осуществляться в виде двух процессов: испарения и кипения.

Испарение происходит с поверхности жидкости при любой температуре. Так, лужи высыхают и при 10 °С, и при 20 °С, и при 30 °С. Таким образом, испарением называется процесс превращения вещества из жидкого состояния в газообразное, происходящий с поверхности жидкости при любой температуре.

С точки зрения молекулярно-кинетической теории строения вещества испарение жидкости объясняется следующим образом. Молекулы жидкости, участвуя в непрерывном движении, имеют разные скорости. Наиболее быстрые молекулы, находящиеся на границе поверхности воды и воздуха и имеющие сравнительно большую энергию, преодолевают притяжение соседних молекул и покидают жидкость. Таким образом, над жидкостью образуется пар.

Читайте также:  Кровяные сосуды на миндалине у ребенка что это такое

Поскольку из жидкости при испарении вылетают молекулы, обладающие большей внутренней энергией по сравнению с энергией молекул, остающихся в жидкости, то средняя скорость и средняя кинетическая энергия молекул жидкости уменьшаются и, следовательно, температура жидкости уменьшается.

Скорость испарения жидкости зависит от рода жидкости. Так, скорость испарения эфира больше, чем скорость испарения воды и растительного масла. Кроме того, скорость испарения зависит от движения воздуха над поверхностью жидкости. Доказательством может служить то, что бельё сохнет быстрее на ветру, чем в безветренном месте при тех же внешних условиях.

Скорость испарения зависит от температуры жидкости. Иапример, вода при температуре 30 °С испаряется быстрее, чем вода при 10 °С.

Хорошо известно, что вода, налитая в блюдце, испариться быстрее, чем вода такой же массы, налитая в стакан. Следовательно, скорость испарения зависит от площади поверхности жидкости.

2. Процесс превращения вещества из газообразного состояния в жидкое называется конденсацией.

Процесс конденсации происходит одновременно с процессом испарения. Молекулы, вылетевшие из жидкости и находящиеся над её поверхностью, участвуют в хаотическом движении. Они сталкиваются с другими молекулами, и в какой-то момент времени их скорости могут быть направлены к поверхности жидкости, и молекулы вернутся в неё.

Если сосуд открыт, то процесс испарения происходит быстрее, чем конденсация, и масса жидкости в сосуде уменьшается. Пар, образующийся над жидкостью, называется ненасыщенным.

Если жидкость находится в закрытом сосуде, то вначале число молекул, вылетающих из жидкости, будет больше, чем число молекул, возвращающихся в неё, но с течением времени плотность пара над жидкостью возрастет настолько, что число молекул, покидающих жидкость, станет равным числу молекул, возвращающихся в неё. В этом случае наступает динамическое равновесие жидкости с её паром.

Пар, находящийся в состоянии динамического равновесия со своей жидкостью, называется насыщенным паром.

Если сосуд с жидкостью, в котором находится насыщенный пар, нагреть, то вначале число молекул, вылетающих из жидкости, увеличится и будет больше, чем число молекул, возвращающихся в неё. С течением времени равновесие восстановится, но плотность пара над жидкостью и соответственно его давление увеличатся.

3. В воздухе всегда содержится водяной пар, являющийся продуктом испарения воды. Содержание водяного пара в воздухе характеризует его влажность.

Абсолютной влажностью воздуха ​( (rho) )​ называют массу водяного пара, содержащегося в 1 м3 воздуха, или плотность водяного пара, содержащегося в воздухе.

Если относительная влажность равна 9,41·10-3 кг/м3, то это означает, что в 1 м3 содержится 9,41·10-3 кг водяного пара.

Для того чтобы судить о степени влажности воздуха, вводят величину, называемую относительной влажностью.

Относительной влажностью воздуха ​( (varphi) )​ называют величину, равную отношению плотности водяного пара ​( (rho) )​, содержащегося в воздухе (абсолютной влажности), к плотности насыщенного водяного пара ​( (rho_0) )​ при этой температуре:

[ varphi=frac{rho}{rho_0}100% ]

​Обычно относительную влажность выражают в процентах.

При понижении температуры ненасыщенный нар может превратиться в насыщенный. Примером такого превращения является выпадение росы и образование тумана. Так, летним днём при температуре 30 °С плотность водяного пара равна 12,8·10-3 кг/м3. Этот водяной пар является ненасыщенным. При понижении вечером температуры до 15 °С он уже будет насыщенным, и выпадет роса.

Температуру, при которой водяной пар, содержащийся в воздухе, становится насыщенным, называют точкой росы.

Для измерения влажности воздуха используют прибор, называемый психрометром.

Психрометр состоит из двух термометров, один из которых сухой, а другой — влажный (рис. 74). Термометры прикреплены к таблице, в которой по вертикали указана температура, которую показывает сухой термометр, а по горизонтали — разность показаний сухого и влажного термометров. Определив показания термометров, по таблице находят значение относительной влажности воздуха.

Например, температура, которую показывает сухой термометр, 20 °С, показание влажного термометра — 15 °С. Разность показаний 5 °С. По таблице находим значение относительной влажности ​( varphi )​ = 59%.

4. Второй процесс парообразования — кипение. Наблюдать этот процесс можно с помощью простого опыта, нагревая воду в стеклянной колбе. При нагревании воды в ней через некоторое время появляются пузырьки, в которых содержатся воздух и насыщенный водяной пар, который образуется при испарении воды внутри пузырьков. При повышении температуры давление внутри пузырьков растёт, и под действием выталкивающей силы они поднимаются вверх. Однако, поскольку температура верхних слоёв воды меньше, чем нижних, пар в пузырьках начинает конденсироваться, и они сжимаются. Когда вода прогреется по всему объёму, пузырьки с паром поднимаются до поверхности, лопаются, и пар выходит наружу. Вода кипит. Это происходит при такой температуре, при которой давление насыщенного пара в пузырьках равно атмосферному давлению.

Процесс парообразования, происходящий во всем объёме жидкости при определённой температуре, называют кипением. Температуру, при которой жидкость кипит, называют температурой кипения.

Эта температура зависит от атмосферного давления. При повышении атмосферного давления температура кипения возрастает.

Опыт показывает, что в процессе кипения температура жидкости не изменяется, несмотря на то, что извне поступает энергия. Переход жидкости в газообразное состояние при температуре кипения связан с увеличением расстояния между молекулами и соответственно с преодолением притяжения между ними. На совершение работы по преодолению сил притяжения расходуется подводимая к жидкости энергия. Так происходит до тех пор, пока вся жидкость не превратится в пар. Поскольку жидкость и пар в процессе кипения имеют одинаковую температуру, то средняя кинетическая энергия молекул не изменяется, увеличивается лишь их потенциальная энергия.

Читайте также:  Персонал обслуживающий сосуды работающие под давлением инструкция

На рисунке 75 приведён график зависимости температуры воды от времени в процессе её нагревания от комнатной температуры до температуры кипения (АБ), кипения (БВ), нагревания пара (ВГ), охлаждения пара (ГД), конденсации (ДЕ) и последующего охлаждения (ЕЖ).

5. Для превращения разных веществ из жидкого состояния в газообразное требуется разная энергия, эта энергия характеризуется величиной, называемой удельной теплотой парообразования.

Удельной теплотой парообразования ​( (L) )​ называют величину, равную отношению количества теплоты, которое нужно сообщить веществу массой 1 кг, для превращения его из жидкого состояния в газообразное при температуре кипения.

Единица удельной теплоты парообразования — ​( [L] )​ = Дж/кг.

Чтобы рассчитать количество теплоты ​( Q )​, которое необходимо сообщить веществу массой ​( m )​ для его превращения из жидкого состояния в газообразное, необходимо удельную теплоту парообразования ​( (L) )​ умножить на массу вещества: ​( Q=Lm )​.

При конденсации пара выделяется некоторое количество теплоты, причем его значение равно значению количества теплоты, которое необходимо затратить для превращения жидкости в пар при той же температуре.

ПРИМЕРЫ ЗАДАНИЙ

Часть 1

1. Испарение и кипение — два процесса превращения вещества из одного агрегатного состояния в другое. Общей характеристикой этих процессов является то, что оба они

А. Представляют собой процесс превращения вещества из жидкого состояния в газообразное
Б. Происходят при определённой температуре

Правильный ответ

1) только А
2) только Б
3) и А, и Б
4) ни А, ни Б

2. Испарение и кипение — два процесса перехода вещества из одного агрегатного состояния в другое. Различие между ними заключается в том, что

А. Кипение происходит при определённой температуре, а испарение — при любой температуре.
Б. Испарение происходит с поверхности жидкости, а кипение — во всём объёме жидкости.

Правильным(-и) является(-ются) утверждение(-я)

1) только А
2) только Б
3) и А, и Б
4) ни А, ни Б

3. При нагревании вода превращается в пар той же температуры. При этом

1) увеличивается среднее расстояние между молекулами
2) уменьшается средний модуль скорости движения молекул
3) увеличивается средний модуль скорости движения молекул
4) уменьшается среднее расстояние между молекулами

4. В процессе конденсации водяного пара при неизменной его температуре выделилось некоторое количество теплоты. Что произошло с энергией молекул водяного пара?

1) изменилась как потенциальная, так и кинетическая энергия молекул пара
2) изменилась только потенциальная энергия молекул пара
3) изменилась только кинетическая энергия молекул пара
4) внутренняя энергия молекул пара не изменилась

5. На рисунке приведён график зависимости температуры воды от времени при её охлаждении и последующем нагревании. Первоначально вода находилась в газообразном состоянии. Какой участок графика соответствует процессу конденсации воды?

1) АВ
2) ВС
3) CD
4) DE

6. На рисунке приведён график зависимости температуры воды от времени. В начальный момент времени вода находилась в газообразном состоянии. В каком состоянии находится вода в момент времени ​( tau_1 )​?

1) только в газообразном
2) только в жидком
3) часть воды в жидком состоянии, часть — в газообразном
4) часть воды в жидком состоянии, часть — в кристаллическом

7. На рисунке приведён график зависимости температуры спирта от времени при его нагревании и последующем охлаждении. Первоначально спирт находился в жидком состоянии. Какой участок графика соответствует процессу кипения спирта?

1) АВ
2) ВС
3) CD
4) DE

8. Какое количество теплоты необходимо затратить, чтобы превратить в газообразное состояние 0,1 кг спирта при температуре кипения?

1) 240 Дж
2) 90 кДж
3) 230 кДж
4) 4500 кДж

9. В понедельник абсолютная влажность воздуха днём при температуре 20 °С была равной 12,8 г/см3. Во вторник она увеличилась и стала равной 15,4 г/см3. Выпала ли роса при понижении температуры до 16 °С, если плотность насыщенного пара при этой температуре 13,6 г/см3?

1) не выпала ни в понедельник, ни во вторник
2) выпала и в понедельник, и во вторник
3) в понедельник выпала, во вторник не выпала
4) в понедельник не выпала, во вторник выпала

10. Чему равна относительная влажность воздуха, если при температуре 30 °С абсолютная влажность воздуха равна 18·10-3 кг/м3, а плотность насыщенного пара при этой температуре 30·10-3 кг/м3?

1) 60%
2) 30%
3) 18 %
4) 1,7 %

11. Для каждого физического понятия из первого столбца подберите соответствующий пример из второго столбца. Запишите в таблицу выбранные цифры под соответствующими буквами.

ФИЗИЧЕСКИЕ ПОНЯТИЯ
A) физическая величина
Б) единица физической величины
B) прибор для измерения физической величины

ПРИМЕРЫ
1) кристаллизация
2) джоуль
3) кипение
4) температура
5) мензурка

12. На рисунке приведены графики зависимости от времени температуры двух веществ одинаковой массы, находившихся первоначально в жидком состоянии, получающих одинаковое количество теплоты в единицу времени. Из приведённых ниже утверждений выберите правильные и запишите их номера.

Читайте также:  Сосуды могут издавать звуки

1) Вещество 1 полностью переходит в газообразное состояние, когда начинается кипение вещества 2
2) Удельная теплоёмкость вещества 1 больше, чем вещества 2
3) Удельная теплота парообразования вещества 1 больше, чем вещества 2
4) Температура кипения вещества 1 выше, чем вещества 2
5) В течение промежутка времени ​( 0-t_1 )​ оба вещества находились в жидком состоянии

Часть 2

13. Какое количество теплоты необходимо для превращения в стоградусный пар 200 г воды, взятой при температуре 40 °С? Потерями энергии на нагревание окружающего воздуха пренебречь.

Ответы

Испарение и конденсация. Кипение жидкости

1 (20%) 1 vote

Источник

Определение

Испарениепереход молекул вещества из жидкого состояния в газообразное.

Процесс парообразования при испарении происходит только со свободной поверхности жидкости. Испарение бывает при любой температуре, так как всегда найдутся достаточно «быстрые» молекулы, способные преодолеть притяжение молекул жидкости.

Важно! В результате испарения жидкости вылетают самые быстрые молекулы. Поэтому средняя скорость молекул газа уменьшается. Это приводит к уменьшению средней кинетической энергии газа, а следовательно — и температуре.

Скорость испарения зависит от:

  • Температуры жидкости. Чем больше температура, тем интенсивнее происходит испарение, так как находится больше «быстрых» молекул.
  • Рода жидкости. Если взаимодействие между молекулами жидкости слабое, испарение будет происходить интенсивнее, так как молекулам проще преодолеть слабые связи.
  • Наличия воздушных потоков. На ветре испарение более интенсивно, так как потоки воздуха помогают «быстрым» молекулам преодолевать притяжение других молекул.
  • Влажности воздуха. Чем меньше влажность, тем интенсивнее испарение, так как «быстрые» молекулы встречают на пути меньшее сопротивление.
  • Площади открытой поверхности. Так как испарение происходит только на открытой поверхности, чем она больше, тем интенсивнее испаряется жидкость.

Определение

Конденсация — процесс, обратный испарению, т.е. молекулы из газообразного состояния переходят в жидкое.

В открытом сосуде всегда преобладает испарение. В герметично закрытом сосуде устанавливается равновесие между этими процессами.

Динамическое равновесие — это состояние, при котором число испарившихся за единицу времени молекул равно числу сконденсированных. пар, который находится в состоянии динамического равновесия, называется насыщенным.

Давление насыщенного пара в изотермическом процессе не зависит от объема. При уменьшении объема пара «лишние» молекулы воды конденсируются, а при увеличении объема недостаток молекул восполняется за счет испарения. В итоге через некоторое время снова наступает динамическое равновесие.

Пример №1. В сосуде под поршнем при температуре 100 oC находится 2 г водяного пара и такое количество воды. Не изменяя температуры, объем сосуда увеличили в 3 раза. Определить массу воды, перешедшей при этом в пар.

2 г = 10–3 кг

V2 = 3V1

Вода и пар под поршнем находятся в динамическом равновесии. Поэтому при увеличении объема изменение (уменьшение) давления вызывает усиление испарения. Вода кипит при 100 оС только при условии, что давление равно 105 Па. Следовательно, давление насыщенного пара равно именно 105 Па.

Применим уравнение состояния идеального газа для первого и второго случая:

p1V1=m1MRT

p2V2=m2MRT

m1 — масса пара в состоянии 1, m2 — масса газа в состоянии 2.

Внимание! Несмотря на постоянство температуры, применять закон Бойля — Мариотта нельзя, так как в данном случае не сохраняется постоянство массы (количества молекул) пара.

Преобразуем уравнения:

RTM=p1V1m1

RTM=p2V2m2

Приравняем правые части и выразим массу пара в состоянии 2:

p1V1m1=p2V2m2

p1V1m1=p23V1m2

6 г — это масса пара в состоянии 2. Это значит, что в газообразное состояние должно перейти 6 – 2 = 4 г воды. Но под поршнем было лишь 2 г. Следовательно, испарится вся вода.

Влажность воздуха

Выделяют абсолютную и относительную влажности воздуха.

Определение

Абсолютная влажность воздуха — физическая величина, показывающая массу водяных паров, содержащихся в 1 м3 воздуха.

Абсолютная влажность воздуха обозначается буквой ƒ. Единица измерения — кг/м3. Но так как содержание в воздухе водяных паров мало, абсолютную влажность воздуха часто указывают в г/м3.Исходя из определения, она определяется формулой:

ƒ=mV

Так как количество испаренных молекул зависит от температуры среды, при одинаковом объеме сосуда и количестве жидкости испарится больше там влаги, где температура выше. Поэтому абсолютная влажность воздуха не дает представления о том, насколько насыщенным является пар. В связи с этим было введено понятие относительной влажности воздуха.

Определение

Относительная влажность воздуха — отношение парциального давления водяного пара, содержащегося в воздухе при данной температуре, к давлению насыщенного пара при той же температуре, выраженной в процентах.

Относительная влажность воздуха обозначается буквой ϕ. Это безразмерная физическая величина. Математически ее можно вычислить по формуле:

φ=pp0100%

p — парциальное давление водяного пара, p0 — давление насыщенного пара (при той же температуре).

Парциальное давление водяного пара — давление, которое производил бы водяной пар, если бы все остальные газы отсутствовали.

Относительную влажность воздуха можно также вычислить через плотности:

φ=ρρ0100%

ρ — плотность водяного пара, ρ0 — плотность насыщенного пара при той же температуре (табличная величина).

Пример №2. Парциальное давление водяного пара в воздухе при 20 оС равно 699 Па, а давление насыщенных паров при этой температуре равно 2330 Па. Определить относительную влажность воздуха.

Алиса Никитина | ???? Скачать PDF |

Источник