Источник давления в сосуде

Источник давления в сосуде thumbnail
источник давления

источник давления : Газогенерирующий элемент, баллон со сжатым газом или непосредственно газ, создающие избыточное давление для подачи огнетушащего вещества в очаг горения.

3.15 источник давления: Баллон высокого давления для хранения сжатого или сжиженного газа или газогенерирующее устройство, устанавливаемые внутри или снаружи корпуса огнетушителя.

Источник давления – газогенерирующий элемент, баллон со сжатым газом или непосредственно газ, создающие избыточное давление для подачи огнетушащего вещества в очаг горения.

Смотри также родственные термины:

источник давления (ИД) – устройство, предназначенное для создания в корпусе огнетушителя рабочего давления, необходимого для выброса огнетушащего вещества;

Словарь-справочник терминов нормативно-технической документации. academic.ru. 2015.

Смотреть что такое “источник давления” в других словарях:

  • источник давления (ИД) – устройство, предназначенное для создания в корпусе огнетушителя рабочего давления, необходимого для выброса огнетушащего вещества; Источник: НПБ 199 2001: Техника пожарная. Огнетушители. Источники давления. Общие технические требования. Мето … Словарь-справочник терминов нормативно-технической документации

  • источник – 3.18 источник (source): Объект или деятельность с потенциальными последствиями. Примечание Применительно к безопасности источник представляет собой опасность (см. ИСО/МЭК Руководство 51). [ИСО/МЭК Руководство 73:2002, пункт 3.1.5] Источник … Словарь-справочник терминов нормативно-технической документации

  • источник защитного газа – Компрессор, нагнетательный вентилятор или баллон со сжатым газом, обеспечивающий подачу защитного газа под избыточным давлением. Источник защитного газа содержит входные и выходные трубопроводы, регуляторы давления, клапаны, кроме компонентов… … Справочник технического переводчика

  • Источник вытесняющего газа в огнетушителе – Источник вытесняющего газа: баллон высокого давления для хранения сжатого или сжиженного газа или газогенерирующее устройство, устанавливаемые внутри или снаружи корпуса огнетушителя… Источник: Техника пожарная . Огнетушители передвижные. Общие … Официальная терминология

  • источник вакуума – Система, включающая насос, предназначенный для создания отрицательного давления. [ГОСТ Р 52423 2005] Тематики ингаляц. анестезия, искусств. вентиляц. легких EN vacuum source DE Vakuumquelle FR centrale d aspiration medicale (vide) … Справочник технического переводчика

  • источник защитного газа – 3.11 источник защитного газа: Устройство (компрессор, воздуходувка, газопровод или баллон со сжатым газом), обеспечивающее подачу защитного газа под избыточным давлением. Источник защитного газа содержит входные и выходные трубы, регуляторы… … Словарь-справочник терминов нормативно-технической документации

  • источник вытесняющего газа – 3.15 источник вытесняющего газа: Баллон высокого давления для хранения сжатого или сжиженного газа или газогенерирующее устройство, устанавливаемые внутри или снаружи корпуса огнетушителя. Источник: ГОСТ Р 51057 2001: Техника пожарная.… … Словарь-справочник терминов нормативно-технической документации

  • Источник выброса – 3.23. Источник выброса сооружение, устройство или установка, из которой загрязняющее вещество поступает в атмосферу1. 1 Места хранения (захоронения) радиоактивных отходов в настоящих Рекомендациях рассматриваются в качестве источников воздействия … Словарь-справочник терминов нормативно-технической документации

  • источник защитного газа – protective gas supply Компрессор, нагнетательный вентилятор или баллон со сжатым газом, обеспечивающий подачу защитного газа под избыточным давлением. Источник защитного газа содержит входные и выходные трубопроводы, регуляторы давления, клапаны … Электротехнический словарь

  • НПБ 199-2001: Техника пожарная. Огнетушители. Источники давления. Общие технические требования. Методы испытаний – Терминология НПБ 199 2001: Техника пожарная. Огнетушители. Источники давления. Общие технические требования. Методы испытаний: баллон высокого давления (БВД) герметически закрытый сосуд со сжатым или сжиженным газом под давлением; Определения… … Словарь-справочник терминов нормативно-технической документации

Книги

  • Заземление. Самое важное открытие о здоровье?, Клинтон Обер, Стивен Синатра, Мартин Зукер. У нас под ногами – бесконечный источник природной целительной энергии! Эта блестящая, вдохновенная, подкрепленная серьезными исследованиями книга объясняет опасности, с которыми мы… Подробнее Купить за 113 руб
  • Диагностическая гимнастика при болях в позвоночнике и суставах, Игорь Борщенко. Вас беспокоят ноющие боли в спине, скачки давления, частые головные боли, онемение пальцев рук и ног, головокружение? У вас часто ломит суставы или отекают ноги? Книга известного нейрохирурга… Подробнее Купить за 29.95 руб электронная книга

Источник

В самых разнообразных областях техники и науки, в самых разных технических приборах и сооружениях требуется проводить измерения давления жидкостей или газов. В зависимости от назначения инженеры должны иметь возможность проводить измерения давления и использовать соответствующие единицы для точного отображения этих показаний, а также уметь правильно или оперировать.

Единицы измерения давления

Гидростатическое давление, как и напряжение, в системе СГС измеряется в дин/см2, в системе МКГСС – кгс/м2, в системе СИ – Па. Кроме того, гидростатическое давление измеряется в кгс/см2, высотой столба жидкости (в м вод. ст., мм рт.ст. и т. д.) и, наконец, в атмосферах физических (атм) и технических (ат) (в гидравлике пока еще преимущественно пользуются последней единицей). Для перевода одних единиц измерения давления в другие Вы можете воспользоваться нашим конвертером давлений. В ней есть возможность перевести бар, Psi. ат в Па, МПа в м.вод. столба или ртутного столба и т.д.

Абсолютное значение

Абсолютное давление ─ это истинное давление жидкостей, паров или газов, которое отсчитывается от абсолютного нуля давления (абсолютного вакуума).

Избыточное давление

Разность между абсолютным давлением p и атмосферным давлением pа называется избыточным давлением и обозначается ризб:

ризб = p – pа

или

ризб/γ = (p – pа)/γ = hп

hп в этом случае называется пьезометрической высотой, которая является мерой избыточного давления.

На рисунке показан закрытый резервуар с жидкостью, на поверхности которой давление p0. Подключенный к резервуару пьезометр П (см. рис. ниже) определяет избыточное давление в точке А.

Абсолютное и избыточное давления, выраженные в атмосферах, обозначаются соответственно ата и ати.

Вакууметрическое давление

Вакуумметрическое давление, или вакуум, – недостаток давления до атмосферного (дефицит давления), т. е. разность между атмосферным или барометрическим и абсолютным давлением:

рвак = pа – p

или

рвак/γ = (pа – p)/γ = hвак

где hвак – вакуумметрическая высота, т. е. показание вакуумметра В, подключенного к резервуару, показанному на рисунке ниже. Вакуум выражается в тех же единицах, что и давление, а также в долях или процентах атмосферы.

Абсолютное, избыточное и вакууметрическое давление

Из выражений последних двух выражений следует, что вакуум может изменяться от нуля до атмосферного давления; максимальное значение hвак при нормальном атмосферном давлении (760 мм рт. ст.) равно 10,33 м вод. ст.

Инфографика для лучшего запоминания и понимания.

Типы и виды давлений

Вильнер Я.М. Справочное пособие по гидравлике, гидромашинам и гидроприводам.

Источник

Определение

Закон Паскаля: давление, производимое на жидкость или газ, передается жидкостью или газом во все стороны одинаково.

Такая особенность передача давления жидкостями и газами связана с подвижностью молекул в жидком и газообразном состояниях.

Давление столба жидкости определяется формулой:

p = ρжgh

p – давление столба жидкости (Па), ρж- плотность жидкости (кг/м3), g – ускорение свободного падения (≈10 м/с2), h – высота столба жидкости, или ее глубина (м).

Важно! Высоту h нужно определять от поверхности жидкости.

Сила давления жидкости

Сила давления жидкости на дно сосуда – это произведение давления, оказываемого жидкостью на дно сосуда, на площадь этого дна:

F = pS = ρжghab

Сила давления жидкости на боковую грань сосуда – это произведение половины давления, оказываемого жидкостью на дно сосуда, на площадь грани:

Читайте также:  Самый большой сосуд для воды

F=ρжgh2hb

Подсказки к задачам:

  • Плотность пресной воды равна 1000 кг/м3.
  • Плотность соленой воды равна 1030 кг/м3.

Пример №1. Чему равно давление, созданное водой, на глубине 2 м?

Давление в жидкостях определяется формулой:

p = ρжgh.

Давление, созданное пресной водой, равно:

p = 1000∙10∙2 = 20000 (Па) = 20 (кПа)

Давление, созданное соленой водой, равно:

p = 1030∙10∙2 = 20600 (Па) = 20,6 (кПа)

Гидростатический парадокс

Из закона Паскаля следует, что давление на дно сосуда определяется только плотностью жидкости и высотой ее столба. Поэтому, если в разные сосуды налить одинаковую жидкость одинаковой высоты, давление, оказываемое ею на дно каждого из сосудов, будет одинаковым.

p1 = p2 = p3

Сила давления при этом будет разная, так как она прямо пропорционально зависит от площади дна. Так как площадь дна первого сосуда минимальна, а третьего максимальна, силы давления, оказываемые жидкостью на дно сосудов, будут такими:

F1 < F2 < F3

Пример №2. На рисунке изображены три сосуда с разными жидкостями. Площади дна сосудов равны. В первом сосуде находится вода (ρ1 = 1 г/см3), во втором – керосин (ρ2 = 0,8 г/см3), в третьем – спирт (ρ3 = 0,8 г/см3). В каком сосуде оказывается максимальное давление на дно?

Давление зависит только от плотности жидкости и от ее столба: площадь сосудов никакой роли не играет. Так как столбы жидкостей во всех сосудах одинаково, остается сравнивать плотности. Плотность воды больше плотности керосина и плотности спирта. Поэтому в сосуде 1 давление на дно сосуда будет максимальным.

Задание EF18645

В сосуд высотой 20 см налита вода, уровень которой ниже края сосуда на 2 см. Чему равна сила давления воды на дно сосуда, если площадь дна 0,01м2? Атмосферное давление не учитывать.

Алгоритм решения

  1. Записать исходные данные и перевести единицы измерения величин в СИ.
  2. Записать формулу для вычисления силы давления.
  3. Выполнить решение задачи в общем виде.
  4. Вычислить искомую величину, подставив известные данные.

Решение

Запишем исходные данные:

  • Высота сосуда H = 20 см.
  • Разница между высотой сосуда и уровнем налитой в него воды: b = 2 см.
  • Площадь дна сосуда: S = 0,01 м2.

20 см = 0,2 м

2 см = 0,02 м

Сила давления равна произведению давления на площадь, на которую это давление оказывается:

F = pS

Давление равно произведению высоты столба жидкости на ускорение свободного падения и на плотность самой жидкости. А высота столба воды в данном случае равна разности высоту стакана и разнице между высотой сосуда и уровнем воды. Поэтому:

F = pS = ρжghS = ρжg(H – b)S = 1000∙10∙(0,2 – 0,02)∙0,01 = 18 (Н)

Ответ: 18

pазбирался: Алиса Никитина | обсудить разбор | оценить

Задание EF22709 Какова сила давления керосина, заполняющего цистерну, на заплату в её стене, находящуюся на глубине 2 м? Площадь заплаты 10 см2. Атмосферное давление не учитывать.

Алгоритм решения

  1. Записать исходные данные и перевести единицы измерения величин в СИ.
  2. Записать формулу для вычисления силы давления.
  3. Выполнить решение задачи в общем виде.
  4. Вычислить искомую величину, подставив известные данные.

Решение

Запишем исходные данные:

  • Глубина заплаты в цистерне h = 2 м.
  • Площадь заплаты: S = 10 см2.

10 см2 = 0,001 м2

Сила давления равна произведению давления на площадь, на которую это давление оказывается:

F = pS

Давление равно произведению высоты столба жидкости на ускорение свободного падения и на плотность самой жидкости. Поэтому:

F = pS = ρкghS = 800∙10∙2∙0,001 = 16 (Н)

Ответ: 16

pазбирался: Алиса Никитина | обсудить разбор | оценить

Задание EF18804

На рисунке представлены графики зависимости давления p от глубины погружения h для двух покоящихся жидкостей: воды и тяжёлой жидкости дийодметана, при постоянной температуре.

Выберите два верных утверждения, согласующихся с приведёнными графиками.

Ответ:

а) В воде на глубине 25 м давление p в 2,5 раза больше атмосферного.

б) С ростом глубины погружения давление в дийодметане возрастает быстрее, чем в воде.

в) Плотность керосина 0,82 г/см3, аналогичный график зависимости давления от глубины для керосина окажется между графиками для воды и дийодметана.

г) Если внутри пустотелого шарика давление равно атмосферному, то в воде на глубине 10 м давления на его поверхность извне и изнутри будут равны друг другу.

д) Плотность оливкового масла 0,92 г/см3, аналогичный график зависимости давления от глубины для масла окажется между графиком для воды и осью абсцисс (горизонтальной осью).

Алгоритм решения

1.Проверить все утверждения на истинность.

2.Записать буквы, соответствующие верным утверждениям, последовательно без пробелов.

Решение

Проверим истинность первого утверждения (а). Для этого определим по графику давление воды на глубине 25 м. Если пустить перпендикуляр к графику зависимости давления воды от глубины погружения через h = 25 м, то он пересечет график в точке, которой соответствует давление p = 350 кН. Атмосферное давление равно 100 кН. Следовательно, давление воды на этой глубине в 3,5 раза превышает атмосферное давление. Утверждение неверно.

Проверим второе утверждение (б). Согласно ему, с ростом глубины погружения давление в дийодметане возрастает быстрее, чем в воде. Это действительно так, потому что угол наклона графика зависимости давления дийодметана от глубины погружения к оси абсцисс больше того же графика для воды. Это можно подтвердить и математически: давление в более плотной жидкости с глубиной растет быстрее, так как давление имеет прямо пропорциональную зависимость с глубиной. Утверждение верно.

Проверим третье утверждение (в). Согласно ему, если на этом же рисунке построить график зависимости давления керосина от глубины погружения, то он окажется между двумя уже существующими графиками. Но этого не может быть, потому что давление в воде растет медленнее, чем давление в дийодметане, так как вода менее плотная. По этой же причине давление в керосине будет расти медленнее, чем в воде, так как керосин менее плотный по сравнению с водой. Третий график в этом случае займет положение между графиком зависимости давления воды от глубины погружения и осью абсцисс. Утверждение неверно.

Проверим четвертое утверждение (г). Согласно графику, давление воды на глубине 10 м равно 200 кПа. Поэтому давление на поверхность шарика снаружи, погруженного на такую глубину, будет вдвое больше, чем давление, оказываемое на его стенки изнутри (при условии, что давление внутри равно 1 атм.). Утверждение неверно.

Проверим последнее утверждение (д). Согласно ему, если на этом же рисунке построить график зависимости давления оливкового масла от глубины погружения, то он окажется между графиком для воды и осью абсцисс. Это действительно так, потому что плотность оливкового масла меньше плотности воды. Утверждение верно.

Верный ответ: бд.

Ответ: бд

pазбирался: Алиса Никитина | обсудить разбор | оценить

Алиса Никитина | ???? Скачать PDF | Просмотров: 2.1k | Оценить:

Источник

МИНИСТЕРСТВО

НЕФТЕПЕРЕРАБАТЫВАЮЩЕЙ И НЕФТЕХИМИЧЕСКОЙ ПРОМЫШЛЕННОСТИ СССР

СОГЛАСОВАНО

Заместитель Председателя

Госгортехнадзора СССР

В.П. Бибилуров

3/ X 1978 г.

УТВЕРЖДАЮ

Заместитель Министра нефтеперерабатывающей и нефтехимической промышленности СССР

Л.А. Бычков

12/ X 1978 г.

ИНСТРУКЦИЯ

по выбору сосудов и аппаратов, работающих

Читайте также:  Сосуд для перевозки азота

под давлением до 100 кгс/см2 и защите их

от превышения давления

Москва – 1978 г.

Настоящая Инструкция является единым нормативным документом по выбору сосудов и аппаратов, работающих под давлением до 100 кгс/см2 и защите их от превышения давления на предприятиях нефтеперерабатывающей и нефтехимической промышленности.

При подготовке Инструкции учтен накопленный опыт по выбору, эксплуатации и защите оборудования, а также меры безопасности, обеспечивающие безаварийную работу оборудования.

Содержание

1. Общие положения

2. Защита сосудов и аппаратов от превышения давления

3. Требования к выбору сосудов и аппаратов

4. Организация сбросов паров, газов и жидкостей от предохранительных устройств

5. Направление сбросов от предохранительных клапанов

Принятая терминология

1.1. Инструкция по выбору сосудов и аппаратов работающих под давлением до 100 кгс/см2 и защите их от превышения давления содержит указания, направленные на повышение безопасности эксплуатации предприятий нефтеперерабатывающей и нефтехимической промышленности и на дальнейшее уменьшение загрязнения воздушного бассейна выбросами от предохранительных клапанов.

1.2. Выполнение инструкции обязательно для вновь проектируемых объектов нефтеперерабатывающей и нефтехимической промышленности.

1.3. С введением в действие настоящей инструкции утрачивают силу “Рекомендации по установке предохранительных клапанов” (РПК-66).

2.1. Каждый сосуд, аппарат или группа сосудов и аппаратов должны быть защищены от превышения давления.

2.2. Защита сосудов и аппаратов от превышения давления осуществляется:

– путем установки предохранительных клапанов или мембран;

– исключением из системы источников, которые могут создать давление в сосуде и аппарате выше их расчетного давления.

2.3. Предохранительные клапаны устанавливаются непосредственно на сосуде и аппарате в наиболее высокой их части с таким расчетом, чтобы в случае открытия клапана и аппарата, в первую очередь, удалялись скапливающиеся пары и газы.

На горизонтальных цилиндрических сосудах и аппаратах предохранительные клапаны следует устанавливать по длине верхнего положения образующей; на вертикальных сосудах и аппаратах, как правило, на верхних днищах или в местах наибольшего скопления паров и газов.

Если клапаны по конструктивным соображениям нельзя разместить на верхнем днище сосуда и аппарата, в виде исключения, их можно ставить на отводящем трубопроводе или специальном отводе.

2.4. Предохранительные клапаны должны быть защищены от примерзания, прикипания или засорения рабочей средой.

2.5. Установка запорной арматуры между сосудом и аппаратом и предохранительным клапаном не допускается за исключением решений, согласованных с Госгортехнадзором СССР.

2.6. Проходное сечение подводящего патрубка, на котором устанавливается предохранительный клапан, должно быть не менее проходного сечения фланца со стороны входа продукта в предохранительный клапан. При необходимости установки двух клапанов и более (по расчету) на одном патрубке, площадь поперечного сечения патрубка должна быть не менее 1,25 суммарной площади проходного сечения клапанов.

2.7. Внутренний диаметр выхлопной трубы предохранительного клапана должен быть не менее внутреннего диаметра выходного штуцера клапана. В случае объединения выхлопных труб от нескольких предохранительных клапанов, установленных на одном сосуде или аппарате, сечение коллектора должно быть не менее суммы сечений выхлопных труб от этих клапанов.

2.8. При проектировании сброса от предохранительных клапанов технологических установок в факельные системы следует руководствоваться “Временными нормами и Правилами по проектированию факельных систем” ВН и ПФ 01-74.

2.9. Количество рабочих клапанов, их пропускная способность должны быть выбраны так, чтобы в сосуде или в аппарате при полном открытии клапана не могло образоваться давление, превышающее расчетное более, чем на 0,5 кгс/см2 для сосудов и аппаратов с давлением до 3 кгс/см2 включительно и на 10% для сосудов и аппаратов с давлением свыше 3 кгс/см2.

Примечание . При выборе предохранительного клапана следует учитывать, что клапаны конструкции ВНИИНефтемаша типа ППК4, СППК4 открываются на полный проход при превышении давления над давлением начала открытия на 10%.

2.10. Регулировка предохранительных клапанов перед установкой должна осуществляться на давление начала открытия.

2.11. На сосудах и аппаратах, содержащих ядовитые, горючие или взрывоопасные среды, на которых подрыв предохранительных клапанов в процессе нормальной работы приводит к потере герметичности клапана, нарушению технологического режима, загазованию территории, должны устанавливаться предохранительные клапаны без приспособления для принудительного открывания их (рычага для принудительной продувки).

2.12. В случаях, когда продукты в сосудах и аппаратах по своим свойствам не гарантируют нормальную работу предохранительных клапанов (повышенная коррозия, полимеризация, коксообразование, отложения и т.д.) перед клапанами должны устанавливаться предохранительные мембраны.

2.13. Ревизия предохранительных клапанов всех типов должна производиться в сроки, предусмотренные “Руководящими указаниями по эксплуатации, ревизии и ремонту пружинных предохранительных клапанов”, согласованными Госгортехнадзором СССР 2 декабря 1977 г.

2.14. На аппаратах непрерывно действующих процессов, оборудованных предохранительными клапанами, продолжительность межремонтного пробега которых меньше межремонтного пробега установки или цеха, допускается установка резервного клапана к рабочему.

Рабочий и резервный клапаны должны устанавливаться на отдельных штуцерах, иметь одинаковую пропускную способность и обеспечивать в отдельности полную защиту сосуда или аппарата от превышения давления. Допускается установка на сосуде или аппарате рабочего и резервного клапанов с использованием переключающего устройства в соответствии с указаниями статьи 5-2-3 “Правил устройства и безопасной эксплуатации сосудов работающих под давлением”.

2.15. Выхлопные трубы от каждого предохранительного клапана до коллектора, к которому они подключаются, при необходимости теплоизолируются и обогреваются, чтобы избежать конденсации, кристаллизации, застывания и забивания проходного сечения в зависимости от химического состава, физических свойств и температуры сбрасываемого продукта.

Стояки, отводящие сбросы от предохранительных клапанов непосредственно в атмосферу, также, при необходимости, теплоизолируются и обогреваются.

Теплоизоляция должна быть из несгораемых материалов.

2.16. Конструкция стояка для отвода газа от предохранительного клапана в атмосферу должна исключать возможность попадания в него атмосферных осадков и в нижней точке, т.е. около клапана, иметь дренажное отверстие диаметром 20-50 мм для спуска жидкости.

2.17. В случае возможности уноса жидкости через предохранительный клапан вместе с газами или парами должен быть предусмотрен сепаратор (отбойник). В этом случае выхлопная труба от предохранительных клапанов должна прокладываться с уклоном не менее 0,002 в сторону сепаратора (отбойника).

2.18. Крепления предохранительных клапанов должны быть рассчитаны на нагрузки от веса клапанов и реактивных усилий, возникающих при срабатывании клапана.

2.19. Допускается защищать сосуд или аппарат от превышения давления установкой предохранительного клапана на насосе или компрессоре, если они являются единственными источниками давления. Сбросы от предохранительного клапана в этом случае разрешается осуществлять на прием машин.

3.1. Выбор сосудов и аппаратов следует осуществлять с учетом рабочей среды, давления и температуры стенок.

3.2. Расчетное давление сосудов и аппаратов, оборудованных предохранительными клапанами (без учета гидростатического давления) должно превышать рабочее давление:

– для сосудов и аппаратов содержащих нейтральные продукты (вещества) на 10%, но не менее, чем на 1 кгс/см2;

– для сосудов и аппаратов со взрывоопасными, взрывопожароопасными и высокотоксичными продуктами (веществами) с рабочим давлением до 40 кгс/см2 на 20%, но не менее, чем на 3 кгс/см2;

– для сосудов и аппаратов со взрывоопасными, взрывопожароопасными и высокотоксичными продуктами (веществами) с рабочим давлением свыше 40 кгс/см2 на 15%.

Читайте также:  Удаление сосудов лазером рубец

3.3. При выборе емкостей для хранения сжиженных нефтяных газов и легковоспламеняющихся жидкостей с температурой кипения до +45 °С расчетное давление должно соответствовать или превышать упругость паров продуктов при температуре +50 °С.

4.1. Сброс ядовитых, взрывоопасных и взрывопожароопасных паров и газов от предохранительных клапанов и мембран должен осуществляться в закрытую систему на улавливание, сжигание на факеле или в атмосферу – в безопасное место.

4.2. Сбросы газов и паров в атмосферу от предохранительных клапанов, установленных на сосудах и аппаратах, содержащих ядовитые среды, производятся после обезвреживания в специальном поглощающем устройстве.

4.3. При сбросе в атмосферу ядовитых газов и паров без обезвреживания, а также сбросе в атмосферу взрывоопасных и взрывопожароопасных газов и паров на сосудах и аппаратах следует устанавливать две системы клапанов: рабочие – со сбросом в атмосферу в безопасное место и контрольные – со сбросом в закрытую систему на улавливание или сжигание на факеле.

4.4. Сбросы газов и паров от предохранительных клапанов, установленных на сосудах и аппаратах с невзрывоопасными и неядовитыми средами, направляются в атмосферу.

4.5. Сбросы жидких продуктов от предохранительных клапанов и мембран должны осуществляться в специальные емкости или на приемы насосов.

4.6. В отдельных случаях сбросы от предохранительных клапанов допускается направлять в другие сосуды и аппараты, расположенные на установке, если это не вызывает опасных последствий или нарушений технологического режима.

4.7. Давление начала открытия рабочих предохранительных клапанов следует принимать равным расчетному давлению сосудов и аппаратов.

4.8. Давление начала открытия контрольных клапанов, устанавливаемых на сосудах и аппаратах с расчетным давлением до 60 кгс/см2 следует принимать на 10 процентов, но не менее чем на 1,5 кгс/см2 ниже их расчетного давления, а для сосудов и аппаратов с расчетным давлением выше 60 кгс/см2 – на 11% ниже их расчетного давления.

При наличии противодавления системы сброса от контрольного клапана давление начала открытия увеличивается на величину этого противодавления.

4.9. Пропускная способность контрольных клапанов должна быть равной пропускной способности рабочих клапанов. Рабочие и контрольные клапаны в отдельности должны обеспечивать полную защиту сосуда и аппарата от превышения давления. Для отключения контрольных клапанов на ремонт и ревизию допускается установка запорной арматуры до и после этих клапанов.

Запорная арматура на контрольных клапанах должна устанавливаться в положении, исключающем ее самопроизвольное закрытие и пломбироваться в открытом состоянии.

4.10. Допускается взамен контрольных клапанов, в случае технической целесообразности предусматривать блокировку источника давления, которая должна автоматически его исключать при превышении давления в сосуде и аппарате на 10 процентов, но не менее чем на 1,5 кгс/см2 выше рабочего.

Примечание . под автоматической блокировкой понимается такая блокировка при срабатывании которой повышение давления в сосуде и аппарате исключается от любой причины.

Например: когда источником давления является нагрев-отключение источника нагрева; когда источником давления является насос или компрессор-отключение насоса или компрессора от сосуда и т.п. В случае, когда источником давления является химическая реакция, автоматическая блокировка не может заменять установку предохранительного контрольного клапана.

4.11. Емкости, предназначенные для хранения сжиженных газов, а также легковоспламеняющихся жидкостей с температурой начала кипения до 45 °С, во всех случаях должны быть оборудованы рабочими и контрольными клапанами независимо от принятой системы сброса паров и газов.

4.12. Максимальная температура паров и газов, сбрасываемых от предохранительных клапанов в общезаводскую факельную систему, не должна превышать 200 °С, а температура газов на входе в газгольдер должна быть не более 60 °С.

4.13. Для предотвращения попадания сбрасываемого газа в газгольдер с температурой выше 60 °С допускается установка блокировки по сбросу газа на факел, минуя газгольдер.

№№ пп

Продукты сброса

Температура сброса

Направление сброса от рабочего клапана

Направление сброса от контрольного клапана

1

2

3

4

5

1

Вода чистая или загрязненная нефтепродуктами

В промканализацию

Не требуется

2

Вода, которая может содержать различные химические вещества

В одну из специальных канализаций в зависимости от продукта, загрязняющего воду

3

Воздух, водяной пар, инертный газ

В атмосферу через стояк

4

Водородосодержащий газ (содержание водорода 60% по объему и выше)

В атмосферу и безопасное место

5

Легкие нефтяные газы – метан, этилен и т.п. (при установке двух систем клапанов)

В атмосферу и безопасное место

В закрытую систему на улавливание или сжигание на факеле

6

Пары нефтепродуктов, нефтяные газы и их смеси (при установке двух систем клапанов)

В атмосферу и безопасное место

В закрытую систему на улавливание, а также сжигание на общезаводской факел или на факел при установке. Температура паров и газов, поступающих в мокрый газгольдер, должна быть в пределах +60 ¸ – 20 ° С

7

Жидкие нефтепродукты с температурой кипения от + 45 ° С до + 80 ° С

до 80 ° С

В дренажную емкость. Отвод паров из нее через конденсатор в атмосферу

Не требуется

8

Жидкие нефтепродукты с температурой кипения выше 80 ° С

выше 80 ° С

В аварийную емкость. Отвод паров из нее через конденсатор в атмосферу

Не требуется

9

Нефтяные газы, а также пары ЛВЖ с температурой кипения до +45 ° С

Через сепаратор (отбойник) и стояк в атмосферу

В закрытую систему на улавливание или сжигание на факеле

10

Сероводород (при установке двух систем клапанов)

В атмосферу через сепаратор поглощения

На установку сороочистки или на факел

11

Аммиак в газовой фазе

Через стояк в атмосферу

12

Нефтепродукты в смеси с фенолом, крезолом, футеролом

до 100 ° С

В емкость. Из емкости пары через стояк в атмосферу

13

Нефтепродукты в смеси с фенолом, крезолом, фурфуролом

выше 100 ° С

В емкость. Из емкости пары после охлаждения через стояк в атмосферу

Примечание:

1. При содержании в газах и парах сероводорода в количестве больше 8%, эти газы и пары должны подаваться на сжигание по специальным трубопроводам.

2. Сброс аммиака в атмосферу производить только при соответствующих обоснованиях. В остальных случаях предусматривать систему его поглощения.

Рабочее давление в сосуде – максимальное избыточное давление, возникающее при нормальном протекании рабочего процесса, без учета допустимого кратковременного превышения давления во время действия предохранительного клапана или других предохранительных устройств.

Расчетное давление сосуда – наименьшее из расчетных давлений отдельных элементов сосуда, работающего под давлением.

Сосуд, работающий под давлением – это герметический закрытый аппарат или емкость, предназначенный для ведения тепловых, химических и других технологических процессов, для хранения и перевозки сжатых, сжиженных и растворенных газов и жидкости под давлением.

Рабочие предохранительные клапаны – предохранительные клапаны, предназначенные для защиты сосудов, аппаратов и трубопроводов от разрыва.

Контрольные предохранительные клапаны – предохранительные клапаны, предназначенные для уменьшения случаев срабатывания рабочих предохранительных клапанов в атмосферу.

Источник