Из отверстия в дне высокого сосуда
Тема. Решение задач по теме “Гидростатика и гидродинамика”.
Цели:
- – рассмотреть основные приемы решения расчетных задач на тему “Гидростатика и гидродинамика”.
Ход занятия
В ходе проведения занятия необходимо рассмотреть ряд качественных задач и далее решить несколько расчетных задач.
Прежде чем приступить к выполнению задания, следует повторить основные законы гидромеханики.
Основной закон гидростатики – закон Паскаля, согласно которому в состоянии равновесия давление жидкости в данной точке не зависит от ориентации площадки, на которую она действует.
Поскольку в школьном курсе рассматривается стационарное течение несжимаемой жидкости, то будет справедливо уравнение неразрывности струи.
Для идеальной жидкости выполняется уравнение Бернулли. Покажите, что уравнение Бернулли является следствием закона сохранения энергии.
Качественные задачи
- К концам равноплечного рычага подвесили две одинаковые гири. Что произойдет, если одну гирю поместить в воду, а другую в керосин?
Ответ: равновесие нарушится.
- Почему, если близко стоишь около быстро идущего поезда, возникает эффект “притягивания” к колесам?
Ответ: проходящий поезд увлекает за собой примыкающие к нему слои воздуха. Воздух, движущийся между человеком и поездом, оказывает на него меньшее давление, чем неподвижный. Эта разность давлений и обусловливает силу, увлекающую человека к поезду.
- При испытании реактивного снаряда, установленного в хвосте самолета для защиты его от нападения сзади, был обнаружен удивительный факт: при пуске снаряд разворачивался и догонял свой самолет. Как можно объяснить это явление?
- Проделайте эксперимент. Вложите в воронку бумажный фильтр (рис. 1) и попробуйте выдуть его через узкий конец воронки. У вас не получилось? Почему?
Ответ: чем сильнее вы вдуваете воздух, тем плотнее фильтр входит в воронку. Объясняется это с помощью закона Бернулли, согласно которому давление понижается в местах сужения. В узком просвете между воронкой и бумажным фильтром давление понижается, и внешнее атмосферное давление удерживает фильтр в воронке.
Примеры решения расчетных задач
Задача 1. Из отверстия в дне высокого сосуда вытекает вода. Сечение сосуда S1, сечение струи S2 (рис. 2). Найдите ускорение, с которым перемещается уровень воды в сосуде.
Решение:
Будем считать жидкость несжимаемой. Тогда для каждого момента времени, согласно уравнению неразрывности струи, можно записать
S1v1 = S2v2, (1)
где v1 – скорость воды в сосуде, v2 – скорость воды в струе вблизи отверстия.
Возьмем производную по времени от (1)
,
где – ускорение воды в сосуде, – ускорение свободного падения, так на выходе из сосуда вода начинает свободно падать. Таким образом,
.
Ответ: .
Задача 2. В сосуде с жидкостью сделано отверстие площадью S. Размеры отверстия малы по сравнению с высотой столба жидкости. В одном случае отверстие закрыто пластинкой и измеряется сила давления жидкости на пластинку F1 при высоте столба жидкости h (рис. 3). В другом случае тот же сосуд стоит на тележке, отверстие открыто, и измеряется сила отдачи F2 при установившемся токе жидкости в момент, когда высота столба жидкости будет та же, что и в первом случае. Будут ли силы F1 и F2 равны?
Решение:
Согласно закону Паскаля давление на жидкость передается во всех направлениях одинаково, поэтому в первом случае давление, производимое на пластинку жидкостью, равно гидростатическому давлению столба жидкости высотой h, а значит, F1 = ρghS , где ρ – плотность жидкости.
Во втором случае сила F2 согласно второму закону Ньютона равна изменению импульса жидкости в единицу времени
.
Изменение импульса Δp = Δmv , где Δm – масса жидкости, вытекающей в единицу времени, v – скорость истечения жидкости из отверстия.
Масса вытекающей жидкости Δm = ρgS, скорость истечения согласно формуле Торричелли . Следовательно,
F2 = ρv2S = 2ρghS.
Таким образом, F2 = 2F1 . Объяснить это можно так. Когда жидкость вытекает из малого отверстия, линии тока вблизи него сгущаются, а значит, как следует из уравнения Бернулли, давление на стенку вблизи отверстия уменьшается. Поэтому сила реакции вытекающей струи оказывается больше силы статического давления на площадь отверстия.
Ответ: силы F1 и F2 не равны.
Задача 3. Из крана выливается вода. Начиная с некоторого места, диаметр струи уменьшается на протяжении h от а до b (рис. 3). Сколько воды вытечет из крана за время t?
Решение:
Воспользуемся условием стационарности течения несжимаемой жидкости
. (1)
Для идеальной жидкости справедливо уравнение Бернулли:
.
Поскольку жидкость свободно падает, то давления в обоих сечениях одинаковы, и уравнение Бернулли принимает вид:
. (2)
За время t через любое сечение протекает один и тот же объем воды, поэтому можно записать
. (3)
Выразим скорость v1 из (1) и (2):
.
Подставим полученное значение v1 в (3) и получим окончательный ответ:
.
Ответ: .
Задача 4. Площадь поршня в шприце S1 = 2 см2, а площадь отверстия S2 = 1 мм2 (рис. 4). Сколько времени будет вытекать вода из шприца, если действовать на поршень с силой F = 5 H и если ход поршня l = 5 см?
Решение:
Так как из шприца вытечет вся находившаяся в нем жидкость, то
S1l = S2v2t, (5)
где v2 – скорость истечения струи. Будем считать жидкость идеальной, тогда можно использовать уравнение Бернулли:
.
Шприц расположен горизонтально, следовательно, h = const. Уравнение Бернулли тогда запишется следующим образом:
, (6)
где Ра – атмосферное давление, а v1 – скорость движения поршня. Из уравнения неразрывности следует
S1v1 = S2v2. (7)
Решая совместно уравнения (6) и (7), получим
,
отсюда
.
Подставляя найденное значение v2 в (5), получим
.
Так как S2S1 , то можно записать
.
Ответ:
Задачи для самостоятельной работы
- “Вечерело. Уставший за нелегкий трудовой день Абдулла Ибн Сауд присел на берегу реки и стал обдумывать свой социальный статус. В колхоз не берут, кооперативы эмир разогнал, к нему самому на службу устраиваться – так стражники без золотых во дворец не пускают. Эх, жизнь… Но тут взгляд Абдуллы остановился: по реке плыл какой-то предмет, и лишь маленький кусочек сургуча был виден над водой. Абдулла бросился в воду и вытащил оттуда старинный глиняный кувшин, герметично закупоренный сургучом. Распечатав кувшин и перевернув его, Абдулла обомлел: сверкнуло золото. Из кувшина высыпалось 147 одинаковых золотых монет. Монеты Абдулла спрятал, а сосуд запечатал и бросил обратно в воду. Поплыл сосуд дальше, примерно треть его объема торчало над водой”.
Так говорится в одной из восточных сказок. Предполагая, что кувшин был двухлитровый, оцените массу одной золотой монеты.Ответ: m = 4,45 г.
- На некоторых железных дорогах пополнение паровозного котла водой производится без остановки паровоза. Для этой цели применяется изогнутая под прямым углом труба, которая опускается на ходу паровоза в канаву с водой, проложенную вдоль рельсов. При какой скорости паровоза вода может подняться на высоту 3 м?
Ответ: v = 28 км/ч.
- Из поднятого на высоту h резервуара выходит труба постоянного сечения S, переходящая в короткую трубу сечением S1, перекрытую краном. Найдите давление в магистральной трубе при открытом кране.
Ответ: Р = Ратм + ρgh.
- Определите расход воды Q, протекающей через слив плотины, имеющей ширину l, глубину потока d и понижение уровня потока по сравнению с уровнем воды в водохранилище, равное h.
Ответ: Q = ρdl·√(2gh).
- Какова примерно скорость катера, если при его движении вода поднимается вдоль его носовой части
на высоту h = 1 м?Ответ: v ≈ √(2gh) ≈ 4,4 м/с.
- На гладкой горизонтальной поверхности стоит цилиндрический сосуд с водой. В боковой стене сосуда у дна имеется отверстие площадью S0. Какую силу нужно приложить к сосуду в горизонтальном направлении, чтобы удержать его в равновесии? Площадь поперечного сечения сосуда равна S, высота столба жидкости h.
Ответ: .
- На поршень шприца площади S действует сила F. С какой скоростью v должна вытекать в горизонтальном направлении струя из отверстия иглы площади s? Плотность жидкости ρ. Трением пренебречь.
Ответ: . Если s S, то .
Рекомендуемая литература
- Бутиков Е.И., Кондратьев А.С. Физика. Т. 1. Механика. – М.: Физматлит: Лаборатория базовых знаний; СПб.: Невский диалект, 2001. – С. 332-352.
- Физика. Механика / Под ред. Г.Я. Мякишева. – М.: Просвещение, 1995. – С. 420-436.
- Белолипецкий С.Н., Еркович О.С., Казаковцева В.А. и др. Задачник по физике. – М.: Физматлит, 2005. – С. 63-67.
- Готовцев В.В. Лучшие задачи по механике и термодинамике. – М.; Ростов н/Д: Издательский центр “Март”, 2004. – С. 184-212.
Источник
Решебник
ВСЕ
ФИЗИКА
МАТЕМАТИКА
ХИМИЯ
Задача по физике – 1448
Из крана выливается вода. Начиная с некоторого места диаметр струи уменьшается на протяжении $h$ от $b$ до $c$.
Сколько воды вытечет из крана за время $t$?
Подробнее
Задача по физике – 1449
Из широкого сосуда через узкую цилиндрическую трубку вытекает жидкость плотности $rho$. Как распределены по вертикали давление и скорость жидкости в сосуде и трубке? Давление воздуха $P_{0}$.
Подробнее
Задача по физике – 1450
Сосуд с водой подвешен к потолку. Высота воды в сосуде $H$. На сколько изменится натяжение веревки, если в днище сосуда открыть маленькое отверстие сечения $S$, из которого вытекает вода?
Подробнее
Задача по физике – 1451
Из отверстия в дне высокого сосуда вытекает вода. Сечение сосуда $S_{1}$, сечение струи $S_{2}$. Уровень воды в сосуде перемещается с постоянным ускорением. Найдите это ускорение.
Подробнее
Задача по физике – 1452
Насос должен подавать ежесекундно объем воды $Q$ на высоту $H$ по трубе постоянного сечения $S$. Какова должна быть мощность насоса? КПД насоса $eta$, плотность воды $rho$.
Подробнее
Задача по физике – 1453
По трубе сечением $S$, изогнутой под прямым углом, течет вода со скоростью $v$. Плотность воды $rho$.
Чему равна сила бокового давления в месте закругления трубы?
Подробнее
Задача по физике – 1821
Как вы думаете, справедлив ли закон сообщающихся Сосудов (однородная жидкость в сообщающихся сосудах имеет один и тот же уровень), если в одном из сосудов на поверхности жидкости находится некоторый поплавок (капиллярность не учитывать)?
Подробнее
Задача по физике – 1822
Достаточно длинная открытая снизу трубка с плотно пригнанным поршнем, который может все же двигаться по трубке без трения, находится под водой и удерживается с помощью веревки (рис.). Верхний конец трубки над поршнем пустой. Как зависит сила натяжения веревки от глубины погружения трубки в воду?
Подробнее
Задача по физике – 1823
Ведро, имеющее массу $m$, вместимость $V$, вытаскивают с водой из колодца. Плотность материала, из которого сделано ведро, равна $rho$, плотность воды $rho_{в}$. Какую силу необходимо приложить для подъема этого ведра, пока оно находится под водой и когда его вытащили из воды? Сопротивление воды движению ведра не учитывать.
Подробнее
Задача по физике – 1824
Для того чтобы поднять уровень жидкости в сосуде на Высоту $h$ с помощью насоса, надо совершить некоторую работу. Изменится ли необходимая для этой же цели работа, если на поверхности жидкости плавает какое-нибудь тело?
Подробнее
Задача по физике – 1825
Изменится ли осадка парохода, перешедшего из северных вод в экваториальные, вследствие изменения ускорения свободного падения с широтой?
Подробнее
Задача по физике – 1826
Как зависит подъемная сила аэростата от температуры, при которой производится его подъем?
Подробнее
Задача по физике – 1827
Когда объясняют опыт со взвешиванием воздуха, [иногда говорят, что сначала взвешивают колбу с воздухом, а затем, после откачки воздуха из колбы, взвешивают одну колбу. Разность показаний весов в первом и втором случаях и составляет массу воздуха в объеме колбы. Правильно ли такое толкование опыта по взвешиванию воздуха?
Подробнее
Задача по физике – 1828
Можно ли измерить плотность воздуха, взвешивая мягкий воздухонепроницаемый мешок сначала пустой (сжатый), а потом наполненный воздухом? Объем мешка в наполненном Состоянии известен.
Подробнее
Источник
Задача 9. На толстую стеклянную пластинку, покрытую тонкой пленкой с показателем преломления n=1,4. Падает нормально параллельный пучок монохроматического света с λ=0,6 мкм. Отражённый свет максимально ослаблен в следствии интерфернции. Определите минимальную толщину плёнки. Задача 1. Из отверстия в дне высокого сосуда вытекает вода. Сечение сосуда S1, сечение струи S2 (рис.). Найдите ускорение… Читать ещё >
- Выдержка
- Похожие работы
- Помощь в написании
Содержание
- Задача 1. Из отверстия в дне высокого сосуда вытекает вода. Сечение сосуда S1, сечение струи S2 (рис.). Найдите ускорение, с которым перемещается уровень воды в сосуде
Задача 2. В сосуде с жидкостью сделано отверстие площадью S. Размеры отверстия малы по сравнению с высотой столба жидкости. В одном случае отверстие закрыто пластинкой и измеряется сила давления жидкости на пластинку F1 при высоте столба жидкости h (рис.). В другом случае тот же сосуд стоит на тележке, отверстие открыто, и измеряется сила отдачи F2 при установившемся токе жидкости в момент, когда высота столба жидкости будет та же, что и в первом случае. Будут ли силы F1 и F2 равны?
Задача 3. Из крана выливается вода. Начиная с некоторого места, диаметр струи уменьшается на протяжении h от, а до b (рис.). Сколько воды вытечет из крана за время t?
Задача 4. Площадь поршня в шприце S1 = 2 см², а площадь отверстия S2 = 1 мм² (рис.). Сколько времени будет вытекать вода из шприца, если действовать на поршень с силой F = 5 H и если ход поршня l = 5 см?
Задача 5. Потенциал потока нервного волокна кальмара = -60мВ, а потенциал действия +35 В. В следствии чего происходит такое изменение мембранного потенциала?
Задача 6. Сила тока в соленоиде изменяется по закону J=10t-t2. Индуктивность соленоида L=10Гц. Какая ЭДС самоиндукции будет в соленоиде через Δt=2с?
Задача 7. два одинаковых маховика были раскручены до частоты вращения = 480мин^-1 и представлены сами себе. Под действием трения валов о подшипники 1 маховик остановился через t1=1мин20сек. 2-ой до полной остановки N=240 оборотов. Считая, что момент силы трения в обоих случаях постоянный. Определите во сколько раз момент силы трения одного больше другого?
Задача 8. Определите интенсивность звуков с частотами 100Гц, 500 Гц и 1000Гц, если уровень громкости звуков одинаков и равен 40.
Задача 9. На толстую стеклянную пластинку, покрытую тонкой пленкой с показателем преломления n=1,4. Падает нормально параллельный пучок монохроматического света с λ=0,6 мкм. Отражённый свет максимально ослаблен в следствии интерфернции. Определите минимальную толщину плёнки.
Задача 2. В сосуде с жидкостью сделано отверстие площадью S. Размеры отверстия малы по сравнению с высотой столба жидкости. В одном случае отверстие закрыто пластинкой и измеряется сила давления жидкости на пластинку F1 при высоте столба жидкости h (рис.). В другом случае тот же сосуд стоит на тележке, отверстие открыто, и измеряется сила отдачи F2 при установившемся токе жидкости в момент, когда высота столба жидкости будет та же, что и в первом случае. Будут ли силы F1 и F2 равны?
Решение:
Согласно закону Паскаля давление на жидкость передается во всех направлениях одинаково, поэтому в первом случае давление, производимое на пластинку жидкостью, равно гидростатическому давлению столба жидкости высотой h, а значит, F1 = ρghS, где ρ – плотность жидкости.
Во втором случае сила F2 согласно второму закону Ньютона равна изменению импульса жидкости в единицу времени .
Изменение импульса Δp = Δmv, где Δm — масса жидкости, вытекающей в единицу времени, v — скорость истечения жидкости из отверстия [https://referat.bookap.info, 29].
Масса вытекающей жидкости Δm = ρgS, скорость истечения согласно формуле Торричелли. Следовательно,
F2 = ρv2S = 2ρghS.
Таким образом, F2 = 2F1. Объяснить это можно так. Когда жидкость вытекает из малого отверстия, линии тока вблизи него сгущаются, а значит, как следует из уравнения Бернулли, давление на стенку вблизи отверстия уменьшается. Поэтому сила реакции вытекающей струи оказывается больше силы статического давления на площадь отверстия.
Ответ: силы F1 и F2 не равны.
Показать весь текст
Источник
(Все задачи по статике и гидростатике и ответы к ним находятся в zip-архиве (615 кб), который можно скачать и открыть на своем компьютере. Попробуйте решать задачи самостоятельно и только потом сравнивать свои ответы с нашими. Желаем успехов!)
21.1. Насосная станция города поддерживает в водопроводе на уровне первого этажа давление 5 атм. Определите (пренебрегая трением при течении жидкости) скорость струи воды, вытекающей из крана на первом, втором и третьем этажах, если краны каждого последующего этажа расположены на 4 м выше. На какой этаж вода по водопроводу уже не поднимется? [28,0; 27,3; 26,5 м/с. На 12-й этаж]
21.2. Сосуд с водой подвешен к потолку. Высота воды в сосуде h. На сколько изменится натяжение подвеса, если в днище сосуда открыть маленькое отверстие, из которого вытекает струя сечения S? Плотность воды ρ. [ищите ответ в общем файле темы]
21.3. Насос должен подавать ежесекундно объем Q воды на высоту h по трубе постоянного сечения S. Какова должна быть мощность насоса? Плотность воды ρ. [ищите ответ в общем файле темы]
21.4. а) Стационарный поток жидкости, протекающей по трубе переменного сечения, давит с силой F на участок A между сечениями 1 и 2, который по третьему закону Ньютона давит с такой же силой в противоположном направлении. Следовательно, суммарная сила, действующая на жидкость со стороны этого участка, направлена против движения жидкости. Почему же жидкость в области 2 имеет большую скорость, чем в области 1?
б) Чему равна суммарная сила, действующая на жидкость со стороны участка Л? Площади сечений в областях 1 и 2 равны S1 и S2. Плотность жидкости ρ. В области 2 скорость жидкости равна v, давление равно нулю. [ищите ответ в общем файле темы]
21.5. Из широкого сосуда через узкую цилиндрическую трубку вытекает жидкость плотности ρ. Как распределены по вертикали давление и скорость жидкости в сосуде и трубке? Давление воздуха Рo. [ищите ответ в общем файле темы]
21.6. По изогнутой под прямым углом трубе поперечного сечения S со скоростью v течет жидкость плотности ρ. С какой силой жидкость действует на трубу, если давление жидкости на выходе из трубы p? Силой тяжести пренебречь. [ищите ответ в общем файле темы]
21.7. Насос представляет собой расположенный горизонтально цилиндр с поршнем площади S и выходным отверстием площади s, расположенным на оси цилиндра. Определите скорость истечения струи из насоса, если поршень под действием силы F перемещается с постоянной скоростью. Плотность жидкости ρ. [ищите ответ в общем файле темы]
21.8. По наклонной плоскости стекает широкий поток воды. На расстоянии l по течению глубина потока уменьшилась вдвое. На каком расстоянии глубина потока уменьшится в 4 раза? [ x = 5 • l ]
21.9. Плита массы m удерживается на месте в горизонтальном положении N струями жидкости, бьющими вертикально вверх из отверстий сечения S каждое. Скорость жидкости на выходе из отверстий v. На какой высоте над отверстиями удерживается плита? [ищите ответ в общем файле темы]
21.10*. Во сколько раз увеличится сброс воды через широкую плотину, если уровень воды над кромкой плотины возрастет в 2 раза? Профиль плотины изображен на рисунке. [ищите ответ в общем файле темы]
21.11*. Водосброс из широкого плоского сосуда происходит через треугольный вырез в его кромке. Во сколько раз уменьшится водосброс при понижении уровня воды от H до h? [ищите ответ в общем файле темы]
21.12. Плоская бесконечная струя жидкости толщины h падает под углом α со скоростью v на плоскость. На какие струи распадается падающая струя? [ищите ответ в общем файле темы]
21.13*. Две пластины, расположенные под углом 2α друг к другу, движутся со скоростью v по нормалям к своим поверхностям. Найдите скорости струй, возникающих при столкновении пластин, если движение материала пластин рассматривать как движение идеальной жидкости. [ищите ответ в общем файле темы, к ответу есть рисунок и пояснение]
21.14*. Определите форму стационарной струи после столкновения двух струй радиусов R и r, которые двигались навстречу друг другу с одинаковыми скоростями. [ Конус с cos α = (R2 − r2)/(R2 + r2). К ответу есть рисунок-пояснение. ]
21.15. «… В 1941 году немцы придумали кумулятивный противотанковый снаряд. На конусе снаряда – запал. При ударе он вызывает детонацию и воспламеняет весь заряд. Снаряд пробивает всю броню. В 1944 году такие немецкие снаряды попали в наши руки и руки союзников. Начался широкий эксперимент. При этом обнаружили много дополнительных эффектов и парадоксов. Стали выяснять – что же летит, что пробивает? Сперва думали, что этот снаряд бронепрожигающий, что броню пронзает струя горячего газа. Нет, оказалось, что летит металл…: перед плитой со скоростью 8 км/с, внутри плиты 4 км/с, за плитой снова 8 км/с» (Из вступительного слова председателя Президиума СО АН СССР академика М. А. Лаврентьева перед учащимися Летней физико-математической школы в 1971 году). Объясните это явление. Определите, с какой скоростью двигалась стенка металлической конической полости, перекрывающей заряд, если угол при вершине полости 30°. [ищите ответ в общем файле темы]
21.16*. Плотность жидкости ρ. В начальный момент она заполняет вертикальный участок длины l в тонкой L-образной трубке. Найдите, как зависит от времени высота уровня жидкости. Найдите распределение давления в момент, когда высота столба уменьшится наполовину. [ищите ответ в общем файле темы]
21.17*. Из отверстия в дне высокого сосуда вытекает вода. Сечение сосуда S, сечение струи s. Уровень воды сосуде перемещается с постоянным ускорением. Найдите это ускорение. [ a = g(s/S)2 ]
21.18. В цилиндре с поршнем находится вода, внутри которой в начальный момент имеется полость объема V. Поршень оказывает на воду постоянное давление p. Какую энергию приобретет вода в момент, когда полость исчезнет? [ E = pV ]
21.19*. Рассмотрите «замыкание» сферической полости в большом водоеме. Давление воды p, начальный радиус полости R. Определите скорость воды на границе полости в момент, когда ее радиус был равен r. [ищите ответ в общем файле темы]
21.20. а) Оцените, при какой скорости кромки лопасти винта катера за лопастью возникнет полость. [При скорости больше 14 м/с]
б*) При какой интенсивности ультразвука в воде при атмосферном давлении начнут появляться микрополости? Сжимаемость воды 5 × 10−10 Па−1. [При интенсивности больше 700 Вт/м2]
Источник