Из отверстия в дне высокого сосуда вытекает

|
Источник
В сечении /-I геометрический напор 2] = Я, а в сечении I]-II напор 22 = 0. Сосуд открыт, истечение через отверстие происходит в пространство с атмосферным давлением следовательно, р = р2. Скоростью в поперечном сечении сосуда, по сравнению со скоростью в отверстии, можно пренебречь, т. е. принять w = 0. Сделав соответствующие подстановки и сокращения в уравнении (6-28), получим [c.164]
Формулы (6-73) и (6-76) могут быть применены при расчете истечения через отверстие в стенке, разделяющей два сосуда, причем в данном случае Н представляет собой разность постоянных уровней жидкости в сосудах. [c.166]
ИСТЕЧЕНИЕ ЧЕРЕЗ ОТВЕРСТИЯ И НАСАДКИ ПРИ ПЕРЕМЕННОМ НАПОРЕ (ОПОРОЖНЕНИЕ СОСУДОВ) [c.134]
Истечение через отверстие в дне сосуда при постоянном уровне жидкости к сосуде, В этом случае (рис. 10) сила напора И затрачивается на создание скорости истечения Шд жидкости и преодоление сопротивления в отверстии. Если эго сопротивление отсутствует, т. е. происходит истечение идеальной жидкости, то согласно уравнению Бернулли весь статический напор в отверстии переходит в скоростной [c.48]
Величина коэффициента сжатия зависит от характера сжатия, которое бывает полным и неполным, совершенным и несовершенным. Сжатие называется совершенным, если оно наблюдается при истечении через отверстия в тонком плоском дне, при котором боковые стенки сосуда влияния на сжатие не оказывают. Последнее имеет место, если стенки расположены на расстоянии с от отверстия, не меньшем утроенной длины соответствующей стороны отверстия (рис. 1.65,1). [c.66]
Истечение через отверстие в дне сосуда [c.203]
Задача анализа – определение массового расхода газа G при стационарном его истечении через отверстие, сопло или насадок из сосуда с повышенным давлением в газовую среду с более низким. [c.209]
Скорость истечения зернистой среды через отверстие сосуда так же, как и при истечении жидкостей, определяется нормальным давлением над плоскостью, нормальной к направлению потока материала в зоне течения [c.434]
При вибрировании тиксотропных влажных паст наблюдается их истечение через отверстия в дне сосуда, подобно тому как вытекает вязкая жидкость под гидростатическим давлением. [c.157]
Расчетная формула для расхода жидкости при истечении через отверстие в днище сосуда будет иметь вид [c.83]
Уменьшение объема жидкости в левом сосуде будет равно расходу ее при истечении через отверстие, расположенное между сосудами. Можно написать [c.84]
При истечении через отверстие в боковой стенке (см. рис. 6-19,6) напор не будет одинаковым для всех точек по сечению отверстия и уравнения (6-71) и (6-72), строго говоря, будут применимы только для элемента сечения высотой йН. В этом случае расход жидкости может быть точно определен только путем суммирования, т. е. интегрирования элементарных расходов по всему сечению отверстия. Однако в технических расчетах для отверстия в тонкой боковой стенке можно с достаточной точностью пользоваться теми же расчетными уравнениями, что и для отверстия в дне сосуда. Лишь для отверстий больших размеров следует учитывать изменения коэффициентов расхода, значения которых приводятся в справочниках. [c.166]
Однако в технических расчетах истечения через отверстие в тонкой боковой стенке можно с достаточной точностью пользоваться теми же расчетными уравнениями, что и при истечении через отверстие в дне сосуда. [c.58]
Теперь рассмотрим истечение через отверстие в тонком днище при переменном уровне жидкости в сосуде с целью определения времени опорожнения сосудов. [c.65]
Заключив в замкнутый сосуд образец какого-либо газа, мы можем измерить его массу, объем, давление на стенки сосуда, вязкость, температуру, теплопроводность и скорость распространения в нем звука. Легко также измерить скорость эффузии (истечения) газа через отверстие в сосуде и скорость, с которой один газ диффундирует в другой. В данной главе будет показано, что все эти свойства не являются независимыми друг от друга, а связаны при помощи довольно простой теории, основанной на предположении, что газы состоят из непрерывно движущихся и сталкивающихся частиц. [c.114]
При выгрузке через отверстие в стенке или дне сосуда псевдоожиженный материал принимает форму струи. Последняя на выходе из отверстия очень похожа на струю капельной жидкости независимо от агрегатного состояния ожижающего агента (газ или жидкость). Струи материала наблюдаются и при гравитационном движении массы твердых частиц через горизонтальные отверстия в дне бункеров, содержащих сухие сыпучие материалы. Известно, однако, что через отверстия в боковой стенке сосуда горизонтальное движение твердого материала в последнем случае практически отсутствует и струя никогда не образуется. У псевдоожиженных систем.на уровне отверстия поддерживается гидростатический напор, способствующий горизонтальному движению зернистого материала и выгрузке его из аппарата. Условия экспериментального исследования процесса истечения псевдоожиженных систем приведены в табл. XV-1. [c.568]
Сыпучесть является комплексной характеристикой способности материала образовывать дискретно-непрерывный устойчивый поток. Простейший способ экспериментального определения сыпучести состоит в определении максимальной скорости свободного истечения материала из сосуда через отверстие определенного диаметра. [c.47]
Рассмотрим истечение жидкости из открытого сосуда (рис. И-14), имеющего площадь поперечного сечения Р и донное отверстие площадью Ро. За бесконечно малый промежуток времени йТ через отверстие вытечет объем жидкости 0 , равный [c.58]
В отличие от истечения жидкостей из сосудов движение сыпучих материалов происходит неравномерно по поперечному сечению бункера, в результате этого в центре образуется воронка, постепенно достигающая стенок аппарата. В дальнейшем по мере разгрузки материала через нижнее отверстие стенки воронки обрушиваются. Среднюю скорость истечения сыпучего материала из отверстия бункера можно рассчитать по приближенному уравнению [c.360]
Расход и скорость истечения несжимаемой жидкости через отверстие в дне сосуда, при постоянном уровне Я (рис. 1-12) и постоянных давлениях р> [c.403]
Истечение жидкостей. Определим расход жидкости при ее истечении через круглое отверстие в тонком днище открытого сосуда, в котором поддерживается постоянный уровень Н жидкости (рис. П-20, а). [c.61]
Сжатие струи имеет место из-за наличия инерции газовых струй при входе в отверстие или сопловой канал. Нанбольшее сжатие происходит при истеченпп через выступающую внутрь сосуда тонкостенную трубу. В случае истечения через отверстие с острыми краями коэффициент сжатия е = 0,60- 0,62. [c.202]
Закон Грема. При равных давлениях скорости истечения газов из не1больШ Их отверстий (только при истечении через отверстия тонкостенных шайб или сосудов, когда не сказываются силы трения) обратно пропорциональны корням квадратным из их плотностей [c.83]
Сосуд с водой взвешивают и, вычитая из полученного веса вес пустого цилиндра, находят количество воды. После того как на приборе будет закрыт клапан 5 и левая кнопка перекидных рычагов поставлена до упора в верхнее положение, прибор может быть использован для последующей работы. Измерение с воздухом повторяют три раза и для расчета принимают среднее значс ние. Количество воды, протекающей за время, одинаковое со временем истечения через отверстие испытуемого газа, определяют аналогичным путем, за исключением того, что газоподводящую трубку 2 подключают к источнику анализируемого газа, продувают прибор и наполняют колокол газом, находящимся под давлением в газопроводе. [c.124]
В тех случаях, когда отверстие настолько велико, что газ гидродинамически вытекает из него сплошной струей. Но если условия истечения газа таковы, что через отверстие в сосуде способны проходить только изолированные молекулы, совершающие беспорядочные движения в стационарном газе, предсказания молекулярно-кинетической теории вьшолн5потся точно. [c.149]
Аппарат Энглера был несколько видоизменен Уббелоде (357), снабдившим его более длинной и узкой трубкой истечения. Этот вариант пригоден для определения вязкости очень подвижных масел. Отличие от аппарата Эш лера состоит в том, что наблюдается скорость истечения только 100 см наполнение сосуда А (фиг. 53) производится автоматически до некоторого уровня, определяемого отводной трубкой d. Для более густых жидкостей, чем керосин, даже для тех, вязкость которых хорошо оиределяется энглеровским прибором, видоизменение Уббелоде дает, вообш е говоря, более точные-цифры. Настояш,ая область применения аппарата-определение вязкости лри температурах выше 50°. Уббелоде предложил еще один вариант вискозиметра, в котором постоянная температура иоследуемого масла поддерживается парами какой-нибудь кипящей однородной жидкости (анилин, нитробензол и т. п.). Рубашка, окружающая сосуд с маслом, закрыта наглухо в крьипке ее имеется отверстие для наливания жидкости и другое для обратного холодильника. Потеря через лучеиспускание происходит только через крышку сосуда с маслом, которая изолируется дурными проводниками тепла. [c.255]
Движение псевдоожиженных твердых частиц может происходить через отверстия в стенках аппарата или по вертикальным трубам, связывающим его с рядом стоящими аппаратами. В зависимости от того, происходит ли истечение из отверстий в свободное пространство или в другие псевдоожиженные слои, говорят о свободном или затопленном истечении. Во втором случае два соседних слоя могут находиться в общем сосуде частицы и газ будут перераспределяться между слоями в соответствии с перепадом давлений, устанавливающимся в зависимости от высоты слоев по разные стороны разделяющей перегородки. При движении плотной фазы твердых частиц по вертикальным трубам, связанным с аппаратами для псевдоожижения, мы имеем дело с движущимися псевдоожиженными системами их результирующая скорость относительно стенок сосуда отлична от нуля, а перепад давления – постоянен. Примеры движения псевдоожиженной плотной фазы через отверстия или по вертикальным трубам легко найти в нефтеперерабатывающей промыш.ген-ности циркуляция катализатора между реактором и регенераторо.ч в установках каталитического крекинга. [c.568]
Истечение из отверстия в дне сосуда при постоянном напоре. На рис.4.11 представлен сосуд с отверстием в горизонтальнои дне, через которое вытекает жидкость. Давление над уровнем жидкости в сосуде ран/м , давление среды, в которую происхс-дит истечение, рн/м . Расстояние от произвольно взятой плоскости сравнения х-х до уровня а-Ь жидкости в сосуде – го л. то же до сечения с-с( иа уровне отверстия – г м. [c.128]
Смотреть страницы где упоминается термин Истечение через отверстие в дне сосуда: [c.77] [c.164]
Источник
Лекция 5. ИСТЕЧЕНИЕ ЖИДКОСТИ ИЗ ОТВЕРСТИЙ, НАСАДКОВ И ИЗ-ПОД ЗАТВОРОВ
Рассмотрим различные случаи истечения жидкости из резервуаров, баков, котлов через отверстия и насадки (коротки трубки различной формы) в атмосферу или пространство, заполненное газом или той же жидкость. В процессе такого истечения запас потенциальной энергии, которым обладает жидкость, находящаяся в резервуаре, превращается в кинетическую энергию свободной струи.
Основным вопросом, который интересует в данном случае, является определение скорости истечения и расхода жидкости для различных форм отверстий и насадков.
Рассмотрим большой резервуар с жидкостью под давлением Р0, имеющий малое круглое отверстие в стенке на достаточно большой глубине Н0 от свободной поверхности (рис.5.1).
Рис. 5.1. Истечение из резервуара через малое отверстие
Жидкость вытекает в воздушное пространство с давлением Р1. Пусть отверстие имеет форму, показанную на рис.5.2, а, т.е. выполнено в виде сверления в тонкой стенке без обработки входной кромки или имеет форму, показанную на рис.5.2, б, т.е. выполнено в толстой стенке, но с заострением входной кромки с внешней стороны. Струя, отрываясь от кромки отверстия, несколько сжимается (рис.5.2, а). Такое сжатие обусловлено движением жидкости от различных направлений, в том числе и от радиального движения по стенке, к осевому движению в струе.
Рис. 5.2. Истечение через круглое отверстие
Степень сжатия оценивается коэффициентом сжатия.
где Sс и Sо – площади поперечного сечения струи и отверстия соответственно; dс и dо – диаметры струи и отверстия соответственно.
Скорость истечения жидкости через отверстие такое отверстие
где Н – напор жидкости, определяется как
φ- коэффициент скорости
где α – коэффициент Кориолиса;
ζ- коэффициент сопротивления отверстия.
Расход жидкости определяется как произведение действительной скорости истечения на фактическую площадь сечения:
Произведение ε и φ принято обозначать буквой и называть коэффициентом расхода, т.е. μ = εφ.
В итоге получаем расход
где ΔР – расчетная разность давлений, под действием которой происходит истечение.
При помощи этого выражения решается основная задача – определяется расход.
Значение коэффициента сжатия ε, сопротивления ζ, скорости φ и расхода μ для круглого отверстия можно определить по эмпирически построенным зависимостям. На рис.5.3 показаны зависимости коэффициентов ε, ζ и μ от числа Рейнольдса, подсчитанного для идеальной скорости
где ν – кинематическая вязкость.
Рис. 5.3. Зависимость ε, φ и от числа Reu | Рис. 5.4. Инверсия струй |
При истечении струи в атмосферу из малого отверстия в тонкой стенке происходит изменение формы струи по ее длине, называемое инверсией струи (рис.5.4). Обуславливается это явление в основном действием сил поверхностного натяжения на вытекающие криволинейные струйки и различными условиями сжатия по периметру отверстия. Инверсия больше всего проявляется при истечении из некруглых отверстий.
Несовершенное сжатие наблюдается в том случае, когда на истечение жидкости через отверстие и на формирование струи оказывает влияние близость боковых стенок резервуара (рис.5.5).
Рис. 5.5. Схема несовершенного сжатия струи
Так как боковые стенки частично направляют движение жидкости при подходе к отверстию, то струя по выходе из отверстия сжимается в меньшей степени, чем из резервуара неограниченных размеров, как это было описано в п.5.1.
При истечении жидкостей из цилиндрического резервуара круглого сечения через круглое отверстие, расположенное в центре торцевой стенки, при больших числах Re коэффициент сжатия для идеальной жидкости можно найти по формуле, представленной Н.Е. Жуковским:
где n – отношение площади отверстия Sо к площади поперечного сечения резервуара S1
Расход жидкости при несовершенном сжатии
где напор Н нужно находить с учетом скоростного напора в резервуаре
Часто приходится иметь дело с истечением жидкости не в атмосферу, а в пространство, заполненное этой же жидкостью (рис.5.6). такой случай называется истечением под уровень, или истечением через затопленное отверстие.
Рис. 5.6. Истечение по уровень
В этом случае вся кинетическая энергия струи теряется на вихреобразование, как при внезапном расширении.
Скорость истечения в сжатом сечении струи
где φ – коэффициент скорости;
Н – расчетный напор,
Расход жидкости равен
Таким образом, имеем те же расчетные формулы, что и при истечении в воздух (газ), только расчетный напор Н в данном случае представляет собой разность гидростатических напоров по обе стенки, т.е. скорость и расход жидкости в данном случае не зависят от высот расположения отверстия.
Коэффициенты сжатия и расхода при истечении под уровень можно принимать те же, что и при истечении в воздушную среду.
Внешним цилиндрическим насадком называется короткая трубка длиной, равной нескольким диаметрам без закругления входной кромки (рис. 5.7). На практике такой насадок часто получается в тех случаях, когда выполняют сверление в толстой стенке и не обрабатывают входную кромку. Истечение через такой насадок в газовую среду может происходить в двух режимах.
Первый режим – безотрывный режим. При истечении струя, после входа в насадок сжимается примерно так же, как и при истечении через отверстие в тонкой стенке. Затем струя постепенно расширяется до размеров отверстия из насадка выходит полным сечением (рис.5.7).
Рис. 5.7. Истечение через насадок
Коэффициент расхода μ, зависящий от относительной длины насадка l / d и числа Рейнольдса, определяется по эмпирической формуле:
Так как на выходе из насадка диаметр струи равен диаметру отверстия, то коэффициент сжатия ε = 1 и, следовательно, μ = φ , а коэффициент сопротивления ζ = 0,5.
Если составить уравнение Бернулли для сжатого сечения 1-1 и сечения за насадком 2-2 и преобразовать его, то можно получить падение давления внутри насадка
P2 – P1 0,75Hgρ
При некотором критическом напоре Нкр абсолютное давление внутри насадка (сечение 1-1) становится равным нулю (P1 = 0), и поэтому
Следовательно, при Н > Нкр давление P1 должно было бы стать отрицательным, но так как в жидкостях отрицательных давлений не бывает, то первый режим движения становится невозможным. Поэтому при Н Нкр происходит изменение режима истечения, переход от первого режима ко второму (рис.5.8).
Рис. 5.8. Второй режим истечения через насадок
Второй режим характеризуется тем, что струя после сжатия уже не расширяется, а сохраняет цилиндрическую форму и перемещается внутри насадка, не соприкасаясь с его стенками. Истечение становится точно таким же, как и из отверстия в тонкой стенке, с теми же значениями коэффициентов. Следовательно, при переходе от первого режима ко второму скорость возрастает, а расход уменьшается благодаря сжатию струи.
При истечении через цилиндрический насадок под уровень первый режим истечения не будет отличаться от описанного выше. Но при Н > Нкр перехода ко второму режиму не происходит, а начинается кавитационный режим.
Таким образом, внешний цилиндрический насадок имеет существенные недостатки: на первом режиме – большое сопротивление и недостаточно высокий коэффициент расхода, а на втором – очень низкий коэффициент расхода. Недостатком также является возможность кавитации при истечении под уровень.
Внешний цилиндрический насадок может быть значительно улучшен путем закругления входной кромки или устройства конического входа. На рис.5.9 даны различные типы насадков и указаны значения соответствующих коэффициентов.
Рис. 5.9. Истечение жидкости через насадки а – расширяющиеся конические; б – сужающиеся конические; в – коноидальные; г – внутренние цилиндрические
Конически сходящиеся и коноидальные насадки применяют там, где необходимо получить хорошую компактную струю сравнительно большой длины при малых потерях энергии (в напорных брандспойтах, гидромониторах и т.д.). Конически сходящиеся насадки используют для увеличения расхода истечения при малых выходных скоростях.
Рассмотрим случай опорожнения открытого в атмосферу сосуда при постоянно уменьшающемся напоре, при котором течение является неустановившемся (рис.5.10).
Однако если напор, а следовательно, и скорость истечения изменяются медленно, то движение в каждый момент времени можно рассматривать как установившееся, и для решения задачи применить уравнение Бернулли.
Рис. 5.10. Схема опорожнения резервуара
Обозначим переменную высоту уровня жидкости в сосуде за h, площадь сечения резервуара на этом уровнеS, площадь отверстия Sо, и взяв бесконечно малый отрезок времени dt, можно записать следующее уравнение объемов:
где dh – изменение уровня жидкости за время dt.
Отсюда время полного опорожнения сосуда высотой Н
Если будет известен закон изменения площади S по высоте h, то интеграл можно подсчитать. Для призматического сосуда S = const (рис.5.11), следовательно, время его полного опорожнения
Из этого выражения следует, что время полного опорожнения призматического сосуда в два раза больше времени истечения того же объема жидкости при постоянном напоре, равном первоначальному.
Для определения времени истечения жидкости из горизонтального цилиндрического сосуда (цистерны) (рис. 5.12) выразим зависимость переменной площади S от h:
где l – длина цистерны; D – диаметр цистерны.
Тогда время полного опорожнения такой цистерны, т.е. время изменения напора от h1 = D до h2 = 0, получится равным
Во многих водозаборных и водопропускных гидротехнических сооружениях расходы воды проходят через отверстия, перекрываемые затворами. Затворы поднимают на определенную высоту над дном и пропускают через отверстия необходимые расходы. Чаще всего на гидромелиоративных сооружениях устраивают отверстия прямоугольного сечения, истечение из которых и рассмотрим.
Отверстия могут быть незатопленными (истечение свободное) и затопленными, когда уровень воды за затвором влияет на истечение.
Если отверстие незатопленное, то вытекающая из-под затвора струя находится под атмосферным давлением (рис. 5.13). При истечении через затопленное отверстие струя за затвором находится под некоторым слоем воды (рис. 5.14).
Рис. 5.13. Истечение из-под затвора через незатопленное отверстие
Когда затвор приподнят над дном, вытекающая из-под него струя испытывает сжатие в вертикальной плоскости. На расстоянии, примерно равном высоте отверстия а (высоте поднятия затвора), наблюдается наиболее сжатое сечение. Глубина в сжатом сечении hc связана с высотой отверстия а следующей зависимостью:
hc = ε’a
где ε’ – коэффициент вертикального сжатия струи.
Коэффициент вертикального сжатия ε’ зависит от отношения высоты отверстия а к напору (глубине воды перед затвором) Н. Для ориентировочных расчетов можно принимать ε’ = 0,64.
Если составить уравнение Бернулли для сечений, проведенных перед затвором и в сжатом сечении, после преобразований получим:
где φ – коэффициент скорости,
где Н0 – напор с учетом скорости подхода,
Тогда расход при истечении из-под затвора при незатопленном отверстии определится по формуле:
где S – площадь отверстия, S = ab.
Рис. 5.14. Истечение из-под затвора при затопленном отверстии
При истечении через затопленное отверстие (рис. 5.14) расход определится по формуле:
где hz – глубина в том сечении, где наблюдается максимальное сжатие истекающей из-под затвора струи.
Глубина hz определяется из зависимости
в которой
а hб – глубина в отводящем канале (бытовая глубина).
Если вытекающая из отверстия или насадка струя попадает на неподвижную стенку, то она с определенным давлением воздействует на нее. Основное уравнение, по которому вычисляется давление струи на площадку, имеет вид
На рис. 5.15 приведены наиболее часто встречающиеся в практике ограждающие поверхности (преграды) и уравнения, по которым вычисляется давление струи на соответствующую поверхность.
Величина давления струи, естественно, зависит от расстояния насадка до преграды. С увеличением расстояния струя рассеивается и давление уменьшается. Соответствующие исследования показывают, что в данном случае струя может быть разбита на три характерные части: компактную, раздробленную и распыленную (рис.5.16).
В пределах компактной части сохраняется цилиндрическая форма струи без нарушения сплошности движения. В пределах раздробленной части сплошность потока нарушается, причем струя постепенно расширяется. Наконец, в пределах распыленной части струи происходит окончательный распад потока на отдельные капли.
Рис. 5.15. Взаимодействие струи жидкости с неподвижной поверхностью
Рис. 5.16. Составные части свободной струи
Источник